mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2025-01-12 21:10:34 +00:00
Merge pull request #810 from yuriks/memmap
Kernel: Add VMManager to manage process address spaces
This commit is contained in:
commit
8a04c65e20
@ -36,6 +36,7 @@ set(SRCS
|
||||
hle/kernel/shared_memory.cpp
|
||||
hle/kernel/thread.cpp
|
||||
hle/kernel/timer.cpp
|
||||
hle/kernel/vm_manager.cpp
|
||||
hle/service/ac_u.cpp
|
||||
hle/service/act_u.cpp
|
||||
hle/service/am_app.cpp
|
||||
@ -147,6 +148,7 @@ set(HEADERS
|
||||
hle/kernel/shared_memory.h
|
||||
hle/kernel/thread.h
|
||||
hle/kernel/timer.h
|
||||
hle/kernel/vm_manager.h
|
||||
hle/result.h
|
||||
hle/service/ac_u.h
|
||||
hle/service/act_u.h
|
||||
|
245
src/core/hle/kernel/vm_manager.cpp
Normal file
245
src/core/hle/kernel/vm_manager.cpp
Normal file
@ -0,0 +1,245 @@
|
||||
// Copyright 2015 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#include "common/assert.h"
|
||||
|
||||
#include "core/hle/kernel/vm_manager.h"
|
||||
#include "core/memory_setup.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
|
||||
ASSERT(base + size == next.base);
|
||||
if (permissions != next.permissions ||
|
||||
meminfo_state != next.meminfo_state ||
|
||||
type != next.type) {
|
||||
return false;
|
||||
}
|
||||
if (type == VMAType::AllocatedMemoryBlock &&
|
||||
(backing_block != next.backing_block || offset + size != next.offset)) {
|
||||
return false;
|
||||
}
|
||||
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
|
||||
return false;
|
||||
}
|
||||
if (type == VMAType::MMIO && paddr + size != next.paddr) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
VMManager::VMManager() {
|
||||
Reset();
|
||||
}
|
||||
|
||||
void VMManager::Reset() {
|
||||
vma_map.clear();
|
||||
|
||||
// Initialize the map with a single free region covering the entire managed space.
|
||||
VirtualMemoryArea initial_vma;
|
||||
initial_vma.size = MAX_ADDRESS;
|
||||
vma_map.emplace(initial_vma.base, initial_vma);
|
||||
|
||||
UpdatePageTableForVMA(initial_vma);
|
||||
}
|
||||
|
||||
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
|
||||
return std::prev(vma_map.upper_bound(target));
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
|
||||
std::shared_ptr<std::vector<u8>> block, u32 offset, u32 size, MemoryState state) {
|
||||
ASSERT(block != nullptr);
|
||||
ASSERT(offset + size <= block->size());
|
||||
|
||||
// This is the appropriately sized VMA that will turn into our allocation.
|
||||
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
||||
VirtualMemoryArea& final_vma = vma_handle->second;
|
||||
ASSERT(final_vma.size == size);
|
||||
|
||||
final_vma.type = VMAType::AllocatedMemoryBlock;
|
||||
final_vma.permissions = VMAPermission::ReadWrite;
|
||||
final_vma.meminfo_state = state;
|
||||
final_vma.backing_block = block;
|
||||
final_vma.offset = offset;
|
||||
UpdatePageTableForVMA(final_vma);
|
||||
|
||||
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8 * memory, u32 size, MemoryState state) {
|
||||
ASSERT(memory != nullptr);
|
||||
|
||||
// This is the appropriately sized VMA that will turn into our allocation.
|
||||
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
||||
VirtualMemoryArea& final_vma = vma_handle->second;
|
||||
ASSERT(final_vma.size == size);
|
||||
|
||||
final_vma.type = VMAType::BackingMemory;
|
||||
final_vma.permissions = VMAPermission::ReadWrite;
|
||||
final_vma.meminfo_state = state;
|
||||
final_vma.backing_memory = memory;
|
||||
UpdatePageTableForVMA(final_vma);
|
||||
|
||||
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state) {
|
||||
// This is the appropriately sized VMA that will turn into our allocation.
|
||||
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
||||
VirtualMemoryArea& final_vma = vma_handle->second;
|
||||
ASSERT(final_vma.size == size);
|
||||
|
||||
final_vma.type = VMAType::MMIO;
|
||||
final_vma.permissions = VMAPermission::ReadWrite;
|
||||
final_vma.meminfo_state = state;
|
||||
final_vma.paddr = paddr;
|
||||
UpdatePageTableForVMA(final_vma);
|
||||
|
||||
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
||||
}
|
||||
|
||||
void VMManager::Unmap(VMAHandle vma_handle) {
|
||||
VMAIter iter = StripIterConstness(vma_handle);
|
||||
|
||||
VirtualMemoryArea& vma = iter->second;
|
||||
vma.type = VMAType::Free;
|
||||
vma.permissions = VMAPermission::None;
|
||||
vma.meminfo_state = MemoryState::Free;
|
||||
|
||||
vma.backing_block = nullptr;
|
||||
vma.offset = 0;
|
||||
vma.backing_memory = nullptr;
|
||||
vma.paddr = 0;
|
||||
|
||||
UpdatePageTableForVMA(vma);
|
||||
|
||||
MergeAdjacent(iter);
|
||||
}
|
||||
|
||||
void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
|
||||
VMAIter iter = StripIterConstness(vma_handle);
|
||||
|
||||
VirtualMemoryArea& vma = iter->second;
|
||||
vma.permissions = new_perms;
|
||||
UpdatePageTableForVMA(vma);
|
||||
|
||||
MergeAdjacent(iter);
|
||||
}
|
||||
|
||||
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
|
||||
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
|
||||
// non-const access to its container.
|
||||
return vma_map.erase(iter, iter); // Erases an empty range of elements
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
|
||||
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size);
|
||||
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
||||
|
||||
VMAIter vma_handle = StripIterConstness(FindVMA(base));
|
||||
if (vma_handle == vma_map.end()) {
|
||||
// Target address is outside the range managed by the kernel
|
||||
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E01BF5
|
||||
}
|
||||
|
||||
VirtualMemoryArea& vma = vma_handle->second;
|
||||
if (vma.type != VMAType::Free) {
|
||||
// Region is already allocated
|
||||
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
|
||||
ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
|
||||
}
|
||||
|
||||
u32 start_in_vma = base - vma.base;
|
||||
u32 end_in_vma = start_in_vma + size;
|
||||
|
||||
if (end_in_vma > vma.size) {
|
||||
// Requested allocation doesn't fit inside VMA
|
||||
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
|
||||
ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
|
||||
}
|
||||
|
||||
if (end_in_vma != vma.size) {
|
||||
// Split VMA at the end of the allocated region
|
||||
SplitVMA(vma_handle, end_in_vma);
|
||||
}
|
||||
if (start_in_vma != 0) {
|
||||
// Split VMA at the start of the allocated region
|
||||
vma_handle = SplitVMA(vma_handle, start_in_vma);
|
||||
}
|
||||
|
||||
return MakeResult<VMAIter>(vma_handle);
|
||||
}
|
||||
|
||||
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
|
||||
VirtualMemoryArea& old_vma = vma_handle->second;
|
||||
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
|
||||
|
||||
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
||||
// a bug. This restriction might be removed later.
|
||||
ASSERT(offset_in_vma < old_vma.size);
|
||||
ASSERT(offset_in_vma > 0);
|
||||
|
||||
old_vma.size = offset_in_vma;
|
||||
new_vma.base += offset_in_vma;
|
||||
new_vma.size -= offset_in_vma;
|
||||
|
||||
switch (new_vma.type) {
|
||||
case VMAType::Free:
|
||||
break;
|
||||
case VMAType::AllocatedMemoryBlock:
|
||||
new_vma.offset += offset_in_vma;
|
||||
break;
|
||||
case VMAType::BackingMemory:
|
||||
new_vma.backing_memory += offset_in_vma;
|
||||
break;
|
||||
case VMAType::MMIO:
|
||||
new_vma.paddr += offset_in_vma;
|
||||
break;
|
||||
}
|
||||
|
||||
ASSERT(old_vma.CanBeMergedWith(new_vma));
|
||||
|
||||
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
|
||||
}
|
||||
|
||||
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
|
||||
VMAIter next_vma = std::next(iter);
|
||||
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
||||
iter->second.size += next_vma->second.size;
|
||||
vma_map.erase(next_vma);
|
||||
}
|
||||
|
||||
if (iter != vma_map.begin()) {
|
||||
VMAIter prev_vma = std::prev(iter);
|
||||
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
||||
prev_vma->second.size += iter->second.size;
|
||||
vma_map.erase(iter);
|
||||
iter = prev_vma;
|
||||
}
|
||||
}
|
||||
|
||||
return iter;
|
||||
}
|
||||
|
||||
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
|
||||
switch (vma.type) {
|
||||
case VMAType::Free:
|
||||
Memory::UnmapRegion(vma.base, vma.size);
|
||||
break;
|
||||
case VMAType::AllocatedMemoryBlock:
|
||||
Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_block->data() + vma.offset);
|
||||
break;
|
||||
case VMAType::BackingMemory:
|
||||
Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_memory);
|
||||
break;
|
||||
case VMAType::MMIO:
|
||||
// TODO(yuriks): Add support for MMIO handlers.
|
||||
Memory::MapIoRegion(vma.base, vma.size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
200
src/core/hle/kernel/vm_manager.h
Normal file
200
src/core/hle/kernel/vm_manager.h
Normal file
@ -0,0 +1,200 @@
|
||||
// Copyright 2015 Citra Emulator Project
|
||||
// Licensed under GPLv2 or any later version
|
||||
// Refer to the license.txt file included.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
#include "core/hle/result.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
enum class VMAType : u8 {
|
||||
/// VMA represents an unmapped region of the address space.
|
||||
Free,
|
||||
/// VMA is backed by a ref-counted allocate memory block.
|
||||
AllocatedMemoryBlock,
|
||||
/// VMA is backed by a raw, unmanaged pointer.
|
||||
BackingMemory,
|
||||
/// VMA is mapped to MMIO registers at a fixed PAddr.
|
||||
MMIO,
|
||||
// TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
|
||||
};
|
||||
|
||||
/// Permissions for mapped memory blocks
|
||||
enum class VMAPermission : u8 {
|
||||
None = 0,
|
||||
Read = 1,
|
||||
Write = 2,
|
||||
Execute = 4,
|
||||
|
||||
ReadWrite = Read | Write,
|
||||
ReadExecute = Read | Execute,
|
||||
WriteExecute = Write | Execute,
|
||||
ReadWriteExecute = Read | Write | Execute,
|
||||
};
|
||||
|
||||
/// Set of values returned in MemoryInfo.state by svcQueryMemory.
|
||||
enum class MemoryState : u8 {
|
||||
Free = 0,
|
||||
Reserved = 1,
|
||||
IO = 2,
|
||||
Static = 3,
|
||||
Code = 4,
|
||||
Private = 5,
|
||||
Shared = 6,
|
||||
Continuous = 7,
|
||||
Aliased = 8,
|
||||
Alias = 9,
|
||||
AliasCode = 10,
|
||||
Locked = 11,
|
||||
};
|
||||
|
||||
/**
|
||||
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
|
||||
* with homogeneous attributes across its extents. In this particular implementation each VMA is
|
||||
* also backed by a single host memory allocation.
|
||||
*/
|
||||
struct VirtualMemoryArea {
|
||||
/// Virtual base address of the region.
|
||||
VAddr base = 0;
|
||||
/// Size of the region.
|
||||
u32 size = 0;
|
||||
|
||||
VMAType type = VMAType::Free;
|
||||
VMAPermission permissions = VMAPermission::None;
|
||||
/// Tag returned by svcQueryMemory. Not otherwise used.
|
||||
MemoryState meminfo_state = MemoryState::Free;
|
||||
|
||||
// Settings for type = AllocatedMemoryBlock
|
||||
/// Memory block backing this VMA.
|
||||
std::shared_ptr<std::vector<u8>> backing_block = nullptr;
|
||||
/// Offset into the backing_memory the mapping starts from.
|
||||
u32 offset = 0;
|
||||
|
||||
// Settings for type = BackingMemory
|
||||
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
|
||||
u8* backing_memory = nullptr;
|
||||
|
||||
// Settings for type = MMIO
|
||||
/// Physical address of the register area this VMA maps to.
|
||||
PAddr paddr = 0;
|
||||
|
||||
/// Tests if this area can be merged to the right with `next`.
|
||||
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
|
||||
};
|
||||
|
||||
/**
|
||||
* Manages a process' virtual addressing space. This class maintains a list of allocated and free
|
||||
* regions in the address space, along with their attributes, and allows kernel clients to
|
||||
* manipulate it, adjusting the page table to match.
|
||||
*
|
||||
* This is similar in idea and purpose to the VM manager present in operating system kernels, with
|
||||
* the main difference being that it doesn't have to support swapping or memory mapping of files.
|
||||
* The implementation is also simplified by not having to allocate page frames. See these articles
|
||||
* about the Linux kernel for an explantion of the concept and implementation:
|
||||
* - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
|
||||
* - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
|
||||
*/
|
||||
class VMManager {
|
||||
// TODO(yuriks): Make page tables switchable to support multiple VMManagers
|
||||
public:
|
||||
/**
|
||||
* The maximum amount of address space managed by the kernel. Addresses above this are never used.
|
||||
* @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000.
|
||||
*/
|
||||
static const u32 MAX_ADDRESS = 0x40000000;
|
||||
|
||||
/**
|
||||
* A map covering the entirety of the managed address space, keyed by the `base` field of each
|
||||
* VMA. It must always be modified by splitting or merging VMAs, so that the invariant
|
||||
* `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
|
||||
* merged when possible so that no two similar and adjacent regions exist that have not been
|
||||
* merged.
|
||||
*/
|
||||
std::map<VAddr, VirtualMemoryArea> vma_map;
|
||||
using VMAHandle = decltype(vma_map)::const_iterator;
|
||||
|
||||
VMManager();
|
||||
|
||||
/// Clears the address space map, re-initializing with a single free area.
|
||||
void Reset();
|
||||
|
||||
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
|
||||
VMAHandle FindVMA(VAddr target) const;
|
||||
|
||||
// TODO(yuriks): Should these functions actually return the handle?
|
||||
|
||||
/**
|
||||
* Maps part of a ref-counted block of memory at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param block The block to be mapped.
|
||||
* @param offset Offset into `block` to map from.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
|
||||
u32 offset, u32 size, MemoryState state);
|
||||
|
||||
/**
|
||||
* Maps an unmanaged host memory pointer at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param memory The memory to be mapped.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state);
|
||||
|
||||
/**
|
||||
* Maps a memory-mapped IO region at a given address.
|
||||
*
|
||||
* @param target The guest address to start the mapping at.
|
||||
* @param paddr The physical address where the registers are present.
|
||||
* @param size Size of the mapping.
|
||||
* @param state MemoryState tag to attach to the VMA.
|
||||
*/
|
||||
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
|
||||
|
||||
/// Unmaps the given VMA.
|
||||
void Unmap(VMAHandle vma);
|
||||
|
||||
/// Changes the permissions of the given VMA.
|
||||
void Reprotect(VMAHandle vma, VMAPermission new_perms);
|
||||
|
||||
private:
|
||||
using VMAIter = decltype(vma_map)::iterator;
|
||||
|
||||
/// Converts a VMAHandle to a mutable VMAIter.
|
||||
VMAIter StripIterConstness(const VMAHandle& iter);
|
||||
|
||||
/**
|
||||
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
|
||||
* the appropriate error checking.
|
||||
*/
|
||||
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
|
||||
|
||||
/**
|
||||
* Splits a VMA in two, at the specified offset.
|
||||
* @returns the right side of the split, with the original iterator becoming the left side.
|
||||
*/
|
||||
VMAIter SplitVMA(VMAIter vma, u32 offset_in_vma);
|
||||
|
||||
/**
|
||||
* Checks for and merges the specified VMA with adjacent ones if possible.
|
||||
* @returns the merged VMA or the original if no merging was possible.
|
||||
*/
|
||||
VMAIter MergeAdjacent(VMAIter vma);
|
||||
|
||||
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
|
||||
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
|
||||
};
|
||||
|
||||
}
|
@ -8,6 +8,10 @@
|
||||
#include "common/logging/log.h"
|
||||
|
||||
#include "core/hle/config_mem.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/shared_memory.h"
|
||||
#include "core/hle/kernel/vm_manager.h"
|
||||
#include "core/hle/result.h"
|
||||
#include "core/hle/shared_page.h"
|
||||
#include "core/mem_map.h"
|
||||
#include "core/memory.h"
|
||||
@ -17,31 +21,23 @@
|
||||
|
||||
namespace Memory {
|
||||
|
||||
u8* g_exefs_code; ///< ExeFS:/.code is loaded here
|
||||
u8* g_heap; ///< Application heap (main memory)
|
||||
u8* g_shared_mem; ///< Shared memory
|
||||
u8* g_heap_linear; ///< Linear heap
|
||||
u8* g_vram; ///< Video memory (VRAM) pointer
|
||||
u8* g_dsp_mem; ///< DSP memory
|
||||
u8* g_tls_mem; ///< TLS memory
|
||||
|
||||
namespace {
|
||||
|
||||
struct MemoryArea {
|
||||
u8** ptr;
|
||||
u32 base;
|
||||
u32 size;
|
||||
const char* name;
|
||||
};
|
||||
|
||||
// We don't declare the IO regions in here since its handled by other means.
|
||||
static MemoryArea memory_areas[] = {
|
||||
{&g_exefs_code, PROCESS_IMAGE_VADDR, PROCESS_IMAGE_MAX_SIZE},
|
||||
{&g_heap, HEAP_VADDR, HEAP_SIZE },
|
||||
{&g_shared_mem, SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE },
|
||||
{&g_heap_linear, LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE },
|
||||
{&g_vram, VRAM_VADDR, VRAM_SIZE },
|
||||
{&g_dsp_mem, DSP_RAM_VADDR, DSP_RAM_SIZE },
|
||||
{&g_tls_mem, TLS_AREA_VADDR, TLS_AREA_SIZE },
|
||||
{PROCESS_IMAGE_VADDR, PROCESS_IMAGE_MAX_SIZE, "Process Image"}, // ExeFS:/.code is loaded here
|
||||
{HEAP_VADDR, HEAP_SIZE, "Heap"}, // Application heap (main memory)
|
||||
{SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory
|
||||
{LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE, "Linear Heap"}, // Linear heap (main memory)
|
||||
{VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM)
|
||||
{DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory
|
||||
{TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory
|
||||
};
|
||||
|
||||
/// Represents a block of memory mapped by ControlMemory/MapMemoryBlock
|
||||
@ -135,27 +131,34 @@ VAddr PhysicalToVirtualAddress(const PAddr addr) {
|
||||
return addr | 0x80000000;
|
||||
}
|
||||
|
||||
// TODO(yuriks): Move this into Process
|
||||
static Kernel::VMManager address_space;
|
||||
|
||||
void Init() {
|
||||
using namespace Kernel;
|
||||
|
||||
InitMemoryMap();
|
||||
|
||||
for (MemoryArea& area : memory_areas) {
|
||||
*area.ptr = new u8[area.size];
|
||||
MapMemoryRegion(area.base, area.size, *area.ptr);
|
||||
auto block = std::make_shared<std::vector<u8>>(area.size);
|
||||
address_space.MapMemoryBlock(area.base, std::move(block), 0, area.size, MemoryState::Private).Unwrap();
|
||||
}
|
||||
MapMemoryRegion(CONFIG_MEMORY_VADDR, CONFIG_MEMORY_SIZE, (u8*)&ConfigMem::config_mem);
|
||||
MapMemoryRegion(SHARED_PAGE_VADDR, SHARED_PAGE_SIZE, (u8*)&SharedPage::shared_page);
|
||||
|
||||
LOG_DEBUG(HW_Memory, "initialized OK, RAM at %p", g_heap);
|
||||
auto cfg_mem_vma = address_space.MapBackingMemory(CONFIG_MEMORY_VADDR,
|
||||
(u8*)&ConfigMem::config_mem, CONFIG_MEMORY_SIZE, MemoryState::Shared).MoveFrom();
|
||||
address_space.Reprotect(cfg_mem_vma, VMAPermission::Read);
|
||||
|
||||
auto shared_page_vma = address_space.MapBackingMemory(SHARED_PAGE_VADDR,
|
||||
(u8*)&SharedPage::shared_page, SHARED_PAGE_SIZE, MemoryState::Shared).MoveFrom();
|
||||
address_space.Reprotect(shared_page_vma, VMAPermission::Read);
|
||||
|
||||
LOG_DEBUG(HW_Memory, "initialized OK");
|
||||
}
|
||||
|
||||
void Shutdown() {
|
||||
heap_map.clear();
|
||||
heap_linear_map.clear();
|
||||
|
||||
for (MemoryArea& area : memory_areas) {
|
||||
delete[] *area.ptr;
|
||||
*area.ptr = nullptr;
|
||||
}
|
||||
address_space.Reset();
|
||||
|
||||
LOG_DEBUG(HW_Memory, "shutdown OK");
|
||||
}
|
||||
|
@ -8,14 +8,6 @@
|
||||
|
||||
namespace Memory {
|
||||
|
||||
extern u8* g_exefs_code; ///< ExeFS:/.code is loaded here
|
||||
extern u8* g_heap; ///< Application heap (main memory)
|
||||
extern u8* g_shared_mem; ///< Shared memory
|
||||
extern u8* g_heap_linear; ///< Linear heap (main memory)
|
||||
extern u8* g_vram; ///< Video memory (VRAM)
|
||||
extern u8* g_dsp_mem; ///< DSP memory
|
||||
extern u8* g_tls_mem; ///< TLS memory
|
||||
|
||||
void Init();
|
||||
void Shutdown();
|
||||
|
||||
|
@ -14,12 +14,10 @@
|
||||
#include "core/hw/hw.h"
|
||||
#include "core/mem_map.h"
|
||||
#include "core/memory.h"
|
||||
#include "core/memory_setup.h"
|
||||
|
||||
namespace Memory {
|
||||
|
||||
const u32 PAGE_MASK = PAGE_SIZE - 1;
|
||||
const int PAGE_BITS = 12;
|
||||
|
||||
enum class PageType {
|
||||
/// Page is unmapped and should cause an access error.
|
||||
Unmapped,
|
||||
@ -64,7 +62,7 @@ static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
|
||||
while (base != end) {
|
||||
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
|
||||
|
||||
if (current_page_table->attributes[base] != PageType::Unmapped) {
|
||||
if (current_page_table->attributes[base] != PageType::Unmapped && type != PageType::Unmapped) {
|
||||
LOG_ERROR(HW_Memory, "overlapping memory ranges at %08X", base * PAGE_SIZE);
|
||||
}
|
||||
current_page_table->attributes[base] = type;
|
||||
@ -92,6 +90,12 @@ void MapIoRegion(VAddr base, u32 size) {
|
||||
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
|
||||
}
|
||||
|
||||
void UnmapRegion(VAddr base, u32 size) {
|
||||
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
||||
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
||||
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T Read(const VAddr vaddr) {
|
||||
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
||||
|
@ -6,8 +6,13 @@
|
||||
|
||||
#include "common/common_types.h"
|
||||
|
||||
#include "core/memory.h"
|
||||
|
||||
namespace Memory {
|
||||
|
||||
const u32 PAGE_MASK = PAGE_SIZE - 1;
|
||||
const int PAGE_BITS = 12;
|
||||
|
||||
void InitMemoryMap();
|
||||
|
||||
/**
|
||||
@ -26,4 +31,6 @@ void MapMemoryRegion(VAddr base, u32 size, u8* target);
|
||||
*/
|
||||
void MapIoRegion(VAddr base, u32 size);
|
||||
|
||||
void UnmapRegion(VAddr base, u32 size);
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user