JitX64: Implement register allocator

This commit is contained in:
MerryMage 2016-03-20 02:50:08 +00:00
parent a8dec47797
commit e34c66d62b
4 changed files with 488 additions and 0 deletions

View File

@ -264,6 +264,18 @@ set(HEADERS
system.h
)
if(ARCHITECTURE_x86_64)
set(SRCS ${SRCS}
arm/jit_x64/reg_alloc.cpp
)
set(HEADERS ${HEADERS}
arm/jit_x64/common.h
arm/jit_x64/reg_alloc.h
)
endif()
create_directory_groups(${SRCS} ${HEADERS})
add_library(core STATIC ${SRCS} ${HEADERS})

View File

@ -0,0 +1,39 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "core/arm/decoder/decoder.h"
#include "core/arm/skyeye_common/armstate.h"
namespace JitX64 {
using ArmReg = ArmDecoder::Register;
using ArmImm5 = ArmDecoder::Imm5;
using ArmImm8 = ArmDecoder::Imm8;
using ArmImm11 = ArmDecoder::Imm11;
using ArmImm24 = ArmDecoder::Imm24;
using Cond = ArmDecoder::Cond;
using ShiftType = ArmDecoder::ShiftType;
struct JitState {
JitState() : cpu_state(PrivilegeMode::USER32MODE) {}
void Reset() {
cpu_state.Reset();
}
ARMul_State cpu_state;
void* bb;
u64 save_host_RSP;
u64 return_RIP;
void* page_table;
s32 cycles_remaining;
};
}

View File

@ -0,0 +1,335 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstddef>
#include <map>
#include "common/assert.h"
#include "core/arm/jit_x64/reg_alloc.h"
namespace JitX64 {
static const std::map<Gen::X64Reg, size_t> x64_reg_to_index = {
{ Gen::RAX, 0 },
{ Gen::RBX, 1 },
{ Gen::RCX, 2 },
{ Gen::RDX, 3 },
{ Gen::RBP, 4 },
{ Gen::RSI, 5 },
{ Gen::RDI, 6 },
{ Gen::RSP, 7 },
{ Gen::R8, 8 },
{ Gen::R9, 9 },
{ Gen::R10, 10 },
{ Gen::R11, 11 },
{ Gen::R12, 12 },
{ Gen::R13, 13 },
{ Gen::R14, 14 },
};
constexpr Gen::X64Reg jit_state_reg = Gen::R15;
Gen::X64Reg RegAlloc::JitStateReg() {
return jit_state_reg;
}
static Gen::OpArg MJitStateCpuReg(ArmReg arm_reg) {
// The below pointer arithmetic assumes the following:
static_assert(std::is_same<decltype(JitState::cpu_state), ARMul_State>::value, "JitState::cpu_state must be ARMul_State");
static_assert(std::is_same<decltype(ARMul_State::Reg), std::array<u32, 16>>::value, "ARMul_State::Reg must be std::array<u32, 16>");
ASSERT(arm_reg >= 0 && arm_reg <= 14);
return Gen::MDisp(jit_state_reg, offsetof(JitState, cpu_state) + offsetof(ARMul_State, Reg) + (arm_reg) * sizeof(u32));
}
static Gen::OpArg MJitStateMemoryMap() {
return Gen::MDisp(jit_state_reg, offsetof(JitState, page_table));
}
void RegAlloc::Init(Gen::XEmitter* emitter) {
code = emitter;
for (size_t i = 0; i < arm_gpr.size(); i++) {
arm_gpr[i].locked = false;
arm_gpr[i].location = MJitStateCpuReg(i);
}
for (size_t i = 0; i < x64_gpr.size(); i++) {
x64_gpr[i].locked = false;
x64_gpr[i].state = X64State::State::Free;
}
}
void RegAlloc::FlushX64(Gen::X64Reg x64_reg) {
const size_t x64_index = x64_reg_to_index.at(x64_reg);
X64State& state = x64_gpr[x64_index];
ASSERT(!state.locked);
switch (state.state) {
case X64State::State::Free:
case X64State::State::CleanArmReg:
case X64State::State::MemoryMap:
case X64State::State::Temp:
state.state = X64State::State::Free;
break;
case X64State::State::DirtyArmReg:
FlushArm(state.arm_reg);
break;
default:
UNREACHABLE();
break;
}
ASSERT(state.state == X64State::State::Free);
ASSERT(!state.locked);
}
void RegAlloc::LockX64(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(!x64_state.locked);
x64_state.locked = true;
}
void RegAlloc::UnlockX64(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
x64_state.locked = false;
}
void RegAlloc::FlushArm(ArmReg arm_reg) {
ArmState& arm_state = arm_gpr[arm_reg];
Gen::X64Reg x64_reg = GetX64For(arm_reg);
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(!arm_state.locked);
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
if (x64_state.state == X64State::State::DirtyArmReg) {
code->MOV(32, MJitStateCpuReg(arm_reg), R(x64_reg));
}
x64_state.state = X64State::State::Free;
arm_state.location = MJitStateCpuReg(arm_reg);
}
void RegAlloc::LockArm(ArmReg arm_reg) {
ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(!arm_state.locked);
arm_state.locked = true;
if (arm_state.location.IsSimpleReg()) {
Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = true;
}
}
Gen::X64Reg RegAlloc::BindMaybeLoadAndLockArm(ArmReg arm_reg, bool load) {
ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(!arm_state.locked);
arm_state.locked = true;
if (arm_state.location.IsSimpleReg()) {
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = true;
return x64_reg;
}
const Gen::X64Reg x64_reg = AllocReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
x64_state.locked = true;
x64_state.arm_reg = arm_reg;
x64_state.state = X64State::State::CleanArmReg;
if (load)
code->MOV(32, R(x64_reg), MJitStateCpuReg(arm_reg));
arm_state.location = R(x64_reg);
return x64_reg;
}
Gen::X64Reg RegAlloc::BindAndLockArm(ArmReg arm_reg) {
return BindMaybeLoadAndLockArm(arm_reg, true);
}
Gen::X64Reg RegAlloc::BindNoLoadAndLockArm(ArmReg arm_reg) {
return BindMaybeLoadAndLockArm(arm_reg, false);
}
void RegAlloc::UnlockArm(ArmReg arm_reg) {
ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(arm_state.locked);
arm_state.locked = false;
if (arm_state.location.IsSimpleReg()) {
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = false;
}
}
void RegAlloc::FlushAllArm() {
for (ArmReg arm_reg = 0; arm_reg < arm_gpr.size(); arm_reg++) {
ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(!arm_state.locked);
if (arm_state.location.IsSimpleReg()) {
FlushArm(arm_reg);
}
}
}
void RegAlloc::MarkDirty(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(arm_state.locked);
ASSERT(arm_state.location.IsSimpleReg());
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.state = X64State::State::DirtyArmReg;
}
void RegAlloc::FlushEverything() {
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
ASSERT(!x64_state.locked);
FlushX64(i.first);
ASSERT(x64_state.state == X64State::State::Free);
}
}
Gen::X64Reg RegAlloc::GetX64For(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(arm_state.location.IsSimpleReg());
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
const X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
return x64_reg;
}
Gen::OpArg RegAlloc::ArmR(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[arm_reg];
ASSERT(arm_state.locked);
return arm_state.location;
}
Gen::X64Reg RegAlloc::AllocAndLockTemp() {
const Gen::X64Reg x64_reg = AllocReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
x64_state.locked = true;
x64_state.state = X64State::State::Temp;
return x64_reg;
}
void RegAlloc::UnlockTemp(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::Temp);
x64_state.locked = false;
x64_state.state = X64State::State::Free;
}
Gen::X64Reg RegAlloc::BindAndLockMemoryMap() {
// First check to see if it exists.
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
if (x64_state.state == X64State::State::MemoryMap) {
ASSERT(!x64_state.locked);
x64_state.locked = true;
return i.first;
}
}
// Otherwise allocate it.
const Gen::X64Reg x64_reg = AllocReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
x64_state.locked = true;
x64_state.state = X64State::State::MemoryMap;
code->MOV(64, R(x64_reg), MJitStateMemoryMap());
return x64_reg;
}
void RegAlloc::UnlockMemoryMap(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::MemoryMap);
x64_state.locked = false;
}
Gen::X64Reg RegAlloc::AllocReg() {
// TODO: This is terrible.
// First check to see if there anything free.
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
if (x64_state.locked)
continue;
ASSERT(x64_state.state != X64State::State::Temp); // This can never happen.
if (x64_state.state == X64State::State::Free) {
return i.first;
}
}
// Otherwise flush something.
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
if (x64_state.locked)
continue;
FlushX64(i.first);
return i.first;
}
ASSERT_MSG(false, "Ran out of x64 registers");
UNREACHABLE();
}
}

View File

@ -0,0 +1,102 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "common/common_types.h"
#include "common/common_funcs.h"
#include "common/x64/emitter.h"
#include "core/arm/decoder/decoder.h"
#include "core/arm/jit_x64/common.h"
namespace JitX64 {
// This is the register allocator
// TODO: Better algorithm required, ideally something that does reigster usage lookahead.
// (Designed so it should be simple to implement later.)
class RegAlloc final {
private:
struct ArmState {
Gen::OpArg location;
bool locked;
};
struct X64State {
enum class State {
Free,
Temp,
DirtyArmReg,
CleanArmReg,
MemoryMap
};
bool locked;
State state;
ArmReg arm_reg;
};
std::array<ArmState, 15> arm_gpr;
std::array<X64State, 16> x64_gpr;
Gen::XEmitter* code = nullptr;
public:
/// Initialise register allocator (call compiling a basic block as it resets internal state)
void Init(Gen::XEmitter* emitter);
/// Ensures that the state of that register is State::Free.
void FlushX64(Gen::X64Reg x64_reg);
/// Locks a register: Marks it as in-use so it isn't allocated.
void LockX64(Gen::X64Reg x64_reg);
/// Unlocks a register: Allows it to be used for allocation again.
void UnlockX64(Gen::X64Reg x64_reg);
/// Ensures that this ARM register is not in an x64 register.
void FlushArm(ArmReg arm_reg);
/// Locks an ARM register so it doesn't move.
void LockArm(ArmReg arm_reg);
/// Allocates a x64 register for an ARM register and loads its value into it if necessary.
Gen::X64Reg BindAndLockArm(ArmReg arm_reg);
/// Allocates a x64 register for an ARM register but does not load a value.
Gen::X64Reg BindNoLoadAndLockArm(ArmReg arm_reg);
/// Unlock ARM register so the register is free to move and the underlying x64 register is available (if any).
void UnlockArm(ArmReg arm_reg);
/// Flush all ARM registers.
void FlushAllArm();
/// Marks an ARM register as dirty.
void MarkDirty(ArmReg arm_reg);
/// Flush absolutely everything.
void FlushEverything();
/// Gets the x64 register which corresponds to that ARM register. (ASSERTS IF NOT IN A x64 REG OR NOT LOCKED!)
Gen::X64Reg GetX64For(ArmReg arm_reg);
/// Gets the current location of this ARM register. (ASSERTS IF NOT LOCKED!)
Gen::OpArg ArmR(ArmReg arm_reg);
/// Allocates a temporary register
Gen::X64Reg AllocAndLockTemp();
/// Releases a temporary register
void UnlockTemp(Gen::X64Reg x64_reg);
/// Gets the x64 register with the address of the memory map in it. Allocates one if one doesn't already exist.
Gen::X64Reg BindAndLockMemoryMap();
/// Releases the memory map register.
void UnlockMemoryMap(Gen::X64Reg x64_reg);
/// Returns the register in which the JitState pointer is stored.
Gen::X64Reg JitStateReg();
private:
/// INTERNAL: Allocates a register that is free. Flushes registers that are not locked if necessary.
Gen::X64Reg AllocReg();
/// INTERNAL: Implementation of BindNoLoadAndLockArm and BindAndLockArm
Gen::X64Reg BindMaybeLoadAndLockArm(ArmReg arm_reg, bool load);
};
}