ported refactoring from LuaDecompy

This commit is contained in:
CPunch 2022-09-01 15:12:21 -05:00
parent 379efb0f82
commit 63756b3bcd

480
luac.py
View File

@ -1,7 +1,7 @@
'''
Luac.py
l(un)dump.py
A Lua5.1 cross-platform bytecode deserializer. This module pulls int and size_t sizes from the
A Lua5.1 cross-platform bytecode deserializer && serializer. This module pulls int and size_t sizes from the
chunk header, meaning it should be able to deserialize lua bytecode dumps from most platforms,
regardless of the host machine.
@ -18,12 +18,66 @@ class InstructionType(Enum):
ABx = auto(),
AsBx = auto()
class Opcodes(IntEnum):
MOVE = 0,
LOADK = 1,
LOADBOOL = 2,
LOADNIL = 3,
GETUPVAL = 4,
GETGLOBAL = 5,
GETTABLE = 6,
SETGLOBAL = 7,
SETUPVAL = 8,
SETTABLE = 9,
NEWTABLE = 10,
SELF = 11,
ADD = 12,
SUB = 13,
MUL = 14,
DIV = 15,
MOD = 16,
POW = 17,
UNM = 18,
NOT = 19,
LEN = 20,
CONCAT = 21,
JMP = 22,
EQ = 23,
LT = 24,
LE = 25,
TEST = 26,
TESTSET = 27,
CALL = 28,
TAILCALL = 29,
RETURN = 30,
FORLOOP = 31,
FORPREP = 32,
TFORLOOP = 33,
SETLIST = 34,
CLOSE = 35,
CLOSURE = 36,
VARARG = 37
class ConstType(IntEnum):
NIL = 0,
BOOL = 1,
NUMBER = 3,
STRING = 4,
_RKBCInstr = [Opcodes.SETTABLE, Opcodes.ADD, Opcodes.SUB, Opcodes.MUL, Opcodes.DIV, Opcodes.MOD, Opcodes.POW, Opcodes.EQ, Opcodes.LT]
_RKCInstr = [Opcodes.GETTABLE, Opcodes.SELF]
_KBx = [Opcodes.LOADK, Opcodes.GETGLOBAL, Opcodes.SETGLOBAL]
_LUAMAGIC = b'\x1bLua'
# is an 'RK' value a K? (result is true for K, false for R)
def whichRK(rk: int):
return (rk & (1 << 8)) > 0
# read an RK as a K
def readRKasK(rk: int):
return (rk & ~(1 << 8))
class Instruction:
def __init__(self, type: InstructionType, name: str) -> None:
self.type = type
@ -33,27 +87,89 @@ class Instruction:
self.B: int = None
self.C: int = None
# 'RK's are special in because can be a register or a konstant. a bitflag is read to determine which
def __formatRK(self, rk: int) -> str:
if whichRK(rk):
return "K[" + str(readRKasK(rk)) + "]"
else:
return "R[" + str(rk) + "]"
def toString(self):
instr = "%10s" % self.name
regs = ""
if self.type == InstructionType.ABC:
regs = "%d %d %d" % (self.A, self.B, self.C)
# by default, treat them as registers
A = "%d" % self.A
B = "%d" % self.B
C = "%d" % self.C
# these opcodes have RKs for B & C
if self.opcode in _RKBCInstr:
A = "R[%d]" % self.A
B = self.__formatRK(self.B)
C = self.__formatRK(self.C)
elif self.opcode in _RKCInstr: # just for C
A = "R[%d]" % self.A
C = self.__formatRK(self.C)
regs = "%6s %6s %6s" % (A, B, C)
elif self.type == InstructionType.ABx or self.type == InstructionType.AsBx:
regs = "%d %d" % (self.A, self.B)
A = "R[%d]" % self.A
B = "%d" % self.B
if self.opcode in _KBx:
B = "K[%d]" % self.B
regs = "%6s %6s" % (A, B)
return "%s : %s" % (instr, regs)
def getAnnotation(self, chunk):
if self.opcode == Opcodes.MOVE:
return "move R[%d] into R[%d]" % (self.B, self.A)
elif self.opcode == Opcodes.LOADK:
return "load %s into R[%d]" % (chunk.getConstant(self.B).toCode(), self.A)
elif self.opcode == Opcodes.GETGLOBAL:
return 'move _G[%s] into R[%d]' % (chunk.getConstant(self.B).toCode(), self.A)
elif self.opcode == Opcodes.ADD:
return 'add %s to %s, place into R[%d]' % (self.__formatRK(self.C), self.__formatRK(self.B), self.A)
elif self.opcode == Opcodes.SUB:
return 'sub %s from %s, place into R[%d]' % (self.__formatRK(self.C), self.__formatRK(self.B), self.A)
elif self.opcode == Opcodes.MUL:
return 'mul %s to %s, place into R[%d]' % (self.__formatRK(self.C), self.__formatRK(self.B), self.A)
elif self.opcode == Opcodes.DIV:
return 'div %s from %s, place into R[%d]' % (self.__formatRK(self.C), self.__formatRK(self.B), self.A)
elif self.opcode == Opcodes.CONCAT:
count = self.C - self.B + 1
return "concat %d values from R[%d] to R[%d], store into R[%d]" % (count, self.B, self.C, self.A)
else:
return ""
class Constant:
def __init__(self, type: ConstType, data) -> None:
self.type = type
self.data = data
def toString(self):
return "[" + self.type.name + "] " + str(self.data)
return "[%s] %s" % (self.type.name, str(self.data))
# format the constant so that it is parsable by lua
def toCode(self):
if self.type == ConstType.STRING:
return "\"" + self.data + "\""
elif self.type == ConstType.BOOL:
if self.data:
return "true"
else:
return "false"
elif self.type == ConstType.NUMBER:
return "%g" % self.data
else:
return "nil"
class Local:
def __init(self, name: str, start: int, end: int):
def __init__(self, name: str, start: int, end: int):
self.name = name
self.start = start
self.end = end
@ -73,6 +189,7 @@ class Chunk:
self.maxStack: int = 0
self.upvalues: list[str] = []
self.lineNums: list[int] = []
self.locals: list[Local] = []
def appendInstruction(self, instr: Instruction):
@ -84,19 +201,43 @@ class Chunk:
def appendProto(self, proto):
self.protos.append(proto)
def appendLine(self, line: int):
self.lineNums.append(line)
def appendLocal(self, local: Local):
self.locals.append(local)
def appendUpval(self, upval: str):
self.upvalues.append(upval)
def findLocal(self, pc: int) -> Local:
for l in self.locals:
if l.start <= pc and l.end >= pc:
return l
# there's no local information (may have been stripped)
return None
def getConstant(self, indx: int) -> Constant:
return self.constants[indx]
def print(self):
print("\n==== [[" + str(self.name) + "'s constants]] ====\n")
for z in range(len(self.constants)):
i = self.constants[z]
print(str(z) + ": " + i.toString())
for i in range(len(self.constants)):
print("%d: %s" % (i, self.constants[i].toString()))
print("\n==== [[" + str(self.name) + "'s locals]] ====\n")
for i in range(len(self.locals)):
print("R[%d]: %s" % (i, self.locals[i].name))
print("\n==== [[" + str(self.name) + "'s dissassembly]] ====\n")
for i in range(len(self.instructions)):
print("[%3d] %s" % (i, self.instructions[i].toString()))
print("[%3d] %-40s ; %s" % (i, self.instructions[i].toString(), self.instructions[i].getAnnotation(self)))
print("\n==== [[" + str(self.name) + "'s protos]] ====\n")
for z in self.protos:
z.print()
if len(self.protos) > 0:
print("\n==== [[" + str(self.name) + "'s protos]] ====\n")
for z in self.protos:
z.print()
instr_lookup_tbl = [
Instruction(InstructionType.ABC, "MOVE"), Instruction(InstructionType.ABx, "LOADK"), Instruction(InstructionType.ABC, "LOADBOOL"),
@ -115,19 +256,56 @@ instr_lookup_tbl = [
]
# at [p]osition, with [s]ize of bits
def _get_bits(num: int, p: int, s: int):
def get_bits(num: int, p: int, s: int):
return (num>>p) & (~((~0)<<s))
# set bits from data to num at [p]osition, with [s]ize of bits
def set_bits(num, data, p, s) -> int:
return (num & (~((~((~0)<<s))<<p))) | ((data << p) & ((~((~0)<<s))<<p))
def _decode_instr(data: int) -> Instruction:
opcode = get_bits(data, 0, 6)
template = instr_lookup_tbl[opcode]
instr = Instruction(template.type, template.name)
# i read the lopcodes.h file to get these bit position and sizes.
instr.opcode = opcode
instr.A = get_bits(data, 6, 8) # starts after POS_OP + SIZE_OP (6), with a size of 8
if instr.type == InstructionType.ABC:
instr.B = get_bits(data, 23, 9) # starts after POS_C + SIZE_C (23), with a size of 9
instr.C = get_bits(data, 14, 9) # starts after POS_A + SIZE_A (14), with a size of 9
elif instr.type == InstructionType.ABx:
instr.B = get_bits(data, 14, 18) # starts after POS_A + SIZE_A (14), with a size of 18
elif instr.type == InstructionType.AsBx:
instr.B = get_bits(data, 14, 18) - 131071 # Bx is now signed, so just sub half of the MAX_UINT for 18 bits
return instr
# returns a u32 instruction
def _encode_instr(instr: Instruction) -> int:
data = 0
# encode instruction (basically, do the inverse of _decode_instr)
data = set_bits(data, instr.opcode, 0, 6)
data = set_bits(data, instr.A, 6, 8)
if instr.type == InstructionType.ABC:
data = set_bits(data, instr.B, 23, 9)
data = set_bits(data, instr.C, 14, 9)
elif instr.type == InstructionType.ABx:
data = set_bits(data, instr.B, 14, 18)
elif instr.type == InstructionType.AsBx:
data = set_bits(data, instr.B + 131071, 14, 18)
return data
class LuaUndump:
def __init__(self):
self.rootChunk: Chunk = None
self.index = 0
@staticmethod
def dis_chunk(chunk: Chunk):
chunk.print()
def loadBlock(self, sz) -> bytearray:
def _loadBlock(self, sz) -> bytearray:
if self.index + sz > len(self.bytecode):
raise Exception("Malformed bytecode!")
@ -135,99 +313,71 @@ class LuaUndump:
self.index = self.index + sz
return temp
def get_byte(self) -> int:
return self.loadBlock(1)[0]
def _get_byte(self) -> int:
return self._loadBlock(1)[0]
def get_int32(self) -> int:
if (self.big_endian):
return int.from_bytes(self.loadBlock(4), byteorder='big', signed=False)
else:
return int.from_bytes(self.loadBlock(4), byteorder='little', signed=False)
def _get_uint32(self) -> int:
order = 'big' if self.big_endian else 'little'
return int.from_bytes(self._loadBlock(4), byteorder=order, signed=False)
def get_int(self) -> int:
if (self.big_endian):
return int.from_bytes(self.loadBlock(self.int_size), byteorder='big', signed=False)
else:
return int.from_bytes(self.loadBlock(self.int_size), byteorder='little', signed=False)
def _get_uint(self) -> int:
order = 'big' if self.big_endian else 'little'
return int.from_bytes(self._loadBlock(self.int_size), byteorder=order, signed=False)
def get_size_t(self) -> int:
if (self.big_endian):
return int.from_bytes(self.loadBlock(self.size_t), byteorder='big', signed=False)
else:
return int.from_bytes(self.loadBlock(self.size_t), byteorder='little', signed=False)
def _get_size_t(self) -> int:
order = 'big' if self.big_endian else 'little'
return int.from_bytes(self._loadBlock(self.size_t), byteorder=order, signed=False)
def get_double(self) -> int:
if self.big_endian:
return struct.unpack('>d', self.loadBlock(8))[0]
else:
return struct.unpack('<d', self.loadBlock(8))[0]
def _get_double(self) -> int:
order = '>d' if self.big_endian else '<d'
return struct.unpack(order, self._loadBlock(self.l_number_size))[0]
def get_string(self, size) -> str:
if (size == None):
size = self.get_size_t()
if (size == 0):
return ""
def _get_string(self) -> str:
size = self._get_size_t()
if (size == 0):
return ""
return "".join(chr(x) for x in self.loadBlock(size))
# [:-1] to remove the NULL terminator
return ("".join(chr(x) for x in self._loadBlock(size)))[:-1]
def decode_chunk(self):
def decode_chunk(self) -> Chunk:
chunk = Chunk()
chunk.name = self.get_string(None)
chunk.frst_line = self.get_int()
chunk.last_line = self.get_int()
chunk.numUpvals = self.get_byte()
chunk.numParams = self.get_byte()
chunk.isVarg = (self.get_byte() != 0)
chunk.maxStack = self.get_byte()
if (not chunk.name == ""):
chunk.name = chunk.name[1:-1]
# chunk meta info
chunk.name = self._get_string()
chunk.frst_line = self._get_uint()
chunk.last_line = self._get_uint()
chunk.numUpvals = self._get_byte()
chunk.numParams = self._get_byte()
chunk.isVarg = (self._get_byte() != 0)
chunk.maxStack = self._get_byte()
# parse instructions
num = self.get_int()
num = self._get_uint()
for i in range(num):
data = self.get_int32()
opcode = _get_bits(data, 0, 6)
template = instr_lookup_tbl[opcode]
instruction = Instruction(template.type, template.name)
# i read the lopcodes.h file to get these bit position and sizes.
instruction.opcode = opcode
instruction.A = _get_bits(data, 6, 8) # starts after POS_OP + SIZE_OP (6), with a size of 8
if instruction.type == InstructionType.ABC:
instruction.B = _get_bits(data, 23, 9) # starts after POS_C + SIZE_C (23), with a size of 9
instruction.C = _get_bits(data, 14, 9) # starts after POS_A + SIZE_A (14), with a size of 9
elif instruction.type == InstructionType.ABx:
instruction.B = _get_bits(data, 14, 18) # starts after POS_A + SIZE_A (14), with a size of 18
elif instruction.type == InstructionType.AsBx:
instruction.B = _get_bits(data, 14, 18) - 131071 # Bx is now signed, so just sub half of the MAX_UINT for 18 bits
chunk.appendInstruction(instruction)
chunk.appendInstruction(_decode_instr(self._get_uint32()))
# get constants
num = self.get_int()
num = self._get_uint()
for i in range(num):
constant: Constant = None
type = self.get_byte()
type = self._get_byte()
if type == 0: #nil
if type == 0: # nil
constant = Constant(ConstType.NIL, None)
elif type == 1: # bool
constant = Constant(ConstType.BOOL, (self.get_byte() != 0))
constant = Constant(ConstType.BOOL, (self._get_byte() != 0))
elif type == 3: # number
constant = Constant(ConstType.NUMBER, self.get_double())
constant = Constant(ConstType.NUMBER, self._get_double())
elif type == 4: # string
constant = Constant(ConstType.STRING, self.get_string(None)[:-1])
constant = Constant(ConstType.STRING, self._get_string())
else:
raise Exception("Unknown Datatype! [%d]" % type)
chunk.appendConstant(constant)
# parse protos
num = self.get_int()
num = self._get_uint()
for i in range(num):
chunk.appendProto(self.decode_chunk())
@ -235,46 +385,47 @@ class LuaUndump:
# eh, for now just consume the bytes.
# line numbers
num = self.get_int()
num = self._get_uint()
for i in range(num):
self.get_int()
self._get_uint()
# locals
num = self.get_int()
num = self._get_uint()
for i in range(num):
self.get_string(None)[:-1] # local name
self.get_int() # local start PC
self.get_int() # local end PC
name = self._get_string() # local name
start = self._get_uint() # local start PC
end = self._get_uint() # local end PC
chunk.appendLocal(Local(name, start, end))
# upvalues
num = self.get_int()
num = self._get_uint()
for i in range(num):
self.get_string(None) # upvalue name
chunk.appendUpval(self._get_string()) # upvalue name
return chunk
def decode_rawbytecode(self, rawbytecode):
# bytecode sanity checks
if not rawbytecode[0:4] == b'\x1bLua':
if not rawbytecode[0:4] == _LUAMAGIC:
raise Exception("Lua Bytecode expected!")
bytecode = array.array('b', rawbytecode)
return self.decode_bytecode(bytecode)
def decode_bytecode(self, bytecode):
self.bytecode = bytecode
self.bytecode = bytecode
# aligns index, skips header
self.index = 4
self.vm_version = self.get_byte()
self.bytecode_format = self.get_byte()
self.big_endian = (self.get_byte() == 0)
self.int_size = self.get_byte()
self.size_t = self.get_byte()
self.instr_size = self.get_byte() # gets size of instructions
self.l_number_size = self.get_byte() # size of lua_Number
self.integral_flag = self.get_byte()
self.vm_version = self._get_byte()
self.bytecode_format = self._get_byte()
self.big_endian = (self._get_byte() == 0)
self.int_size = self._get_byte()
self.size_t = self._get_byte()
self.instr_size = self._get_byte() # gets size of instructions
self.l_number_size = self._get_byte() # size of lua_Number
self.integral_flag = self._get_byte() # is lua_Number defined as an int? false = float/double, true = int/long/short/etc.
self.rootChunk = self.decode_chunk()
return self.rootChunk
@ -285,5 +436,122 @@ class LuaUndump:
return self.decode_rawbytecode(bytecode)
def print_dissassembly(self):
LuaUndump.dis_chunk(self.rootChunk)
self.rootChunk.print()
class LuaDump:
def __init__(self, rootChunk: Chunk):
self.rootChunk = rootChunk
self.bytecode = bytearray()
# header info
self.vm_version = 0x51
self.bytecode_format = 0x00
self.big_endian = False
# data sizes
self.int_size = 4
self.size_t = 8
self.instr_size = 4
self.l_number_size = 8
self.integral_flag = False # lua_Number is a double
def _writeBlock(self, data: bytes):
self.bytecode += bytearray(data)
def _set_byte(self, b: int):
self.bytecode.append(b)
def _set_uint32(self, i: int):
order = 'big' if self.big_endian else 'little'
self._writeBlock(i.to_bytes(4, order, signed=False))
def _set_uint(self, i: int):
order = 'big' if self.big_endian else 'little'
self._writeBlock(i.to_bytes(self.int_size, order, signed=False))
def _set_size_t(self, i: int):
order = 'big' if self.big_endian else 'little'
self._writeBlock(i.to_bytes(self.size_t, order, signed=False))
def _set_double(self, f: float):
order = '>d' if self.big_endian else '<d'
self._writeBlock(struct.pack(order, f))
def _set_string(self, string: str):
self._set_size_t(len(string)+1)
self._writeBlock(string.encode('utf-8'))
self._set_byte(0x00) # write null terminator
def _dumpChunk(self, chunk: Chunk):
# write meta info
self._set_string(chunk.name)
self._set_uint(chunk.frst_line)
self._set_uint(chunk.last_line)
self._set_byte(chunk.numUpvals)
self._set_byte(chunk.numParams)
self._set_byte(1 if chunk.isVarg else 1)
self._set_byte(chunk.maxStack)
# write instructions
self._set_uint(len(chunk.instructions))
for l in chunk.instructions:
self._set_uint32(_encode_instr(l))
# write constants
self._set_uint(len(chunk.constants))
for constant in chunk.constants:
# write constant data
if constant.type == ConstType.NIL:
self._set_byte(0)
elif constant.type == ConstType.BOOL:
self._set_byte(1)
self._set_byte(1 if constant.data else 0)
elif constant.type == ConstType.NUMBER: # number
self._set_byte(3)
self._set_double(constant.data)
elif constant.type == ConstType.STRING: # string
self._set_byte(4)
self._set_string(constant.data)
else:
raise Exception("Unknown Datatype! [%s]" % str(constant.type))
# write child protos
self._set_uint(len(chunk.protos))
for p in chunk.protos:
self._dumpChunk(p)
# write line numbers
self._set_uint(len(chunk.lineNums))
for l in chunk.lineNums:
self._set_uint(l)
# write locals
self._set_uint(len(chunk.locals))
for l in chunk.locals:
self._set_string(l.name)
self._set_uint(l.start)
self._set_uint(l.end)
# write upvals
self._set_uint(len(chunk.upvalues))
for u in chunk.upvalues:
self._set_string(u)
def _dumpHeader(self):
self._writeBlock(_LUAMAGIC)
# write header info
self._set_byte(self.vm_version)
self._set_byte(self.bytecode_format)
self._set_byte(0 if self.big_endian else 1)
self._set_byte(self.int_size)
self._set_byte(self.size_t)
self._set_byte(self.instr_size)
self._set_byte(self.l_number_size)
self._set_byte(self.integral_flag)
def dump(self) -> bytearray:
self._dumpHeader()
self._dumpChunk(self.rootChunk)
return self.bytecode