glerminal/source/glerminal.cpp
2024-06-14 20:32:08 -04:00

927 lines
30 KiB
C++

#define STB_IMAGE_IMPLEMENTATION
#define STBI_ONLY_PNG
#define STBI_MAX_DIMENSIONS 512
#include "glerminal-private.h"
#define GRID_SIZE_UNIFORM_NAME "grid_size"
#define SPRITES_UNIFORM_NAME "sprites"
#define LAYERS_UNIFORM_NAME "layers"
#define LAYER_COUNT_UNIFORM_NAME "layer_count"
#define ATLAS_WIDTH_UNIFORM_NAME "atlas_width"
namespace
{
glerminal::glerminal* GLERMINAL_G = nullptr;
constexpr float VBO_VERTICES[] =
{
// first triangle
0, 0, // top right
0, -1, // bottom right
-1, 0, // top left
// second triangle
0, -1, // bottom right
-1, -1, // bottom left
-1, 0 // top left
};
constexpr char VERTEX_SHADER_SOURCE[] =
"#version 450 core\n"
"layout (location = 0) in vec2 position;\n"
"layout (location = 1) in vec2 offset;\n"
"layout (location = 2) in int sprite;\n"
"layout (location = 3) in vec4 color;\n"
"layout (location = 4) in float scale;\n"
"uniform vec4 " GRID_SIZE_UNIFORM_NAME ";\n"
"uniform int " ATLAS_WIDTH_UNIFORM_NAME ";\n"
"out VS_OUT {\n"
" flat int sprite;\n"
" flat int layer;\n"
" flat vec4 layer_color;\n"
" vec2 texcoord;\n"
"} vs_out;\n"
"void main()\n"
"{\n"
" const int layer = int(floor(gl_InstanceID / " GRID_SIZE_UNIFORM_NAME ".y));\n"
" vec2 scaled_offset = 2 * offset * " GRID_SIZE_UNIFORM_NAME ".zw;\n"
" vs_out.sprite = sprite;\n"
" vs_out.layer = layer;\n"
" vs_out.layer_color = color;\n"
" vs_out.texcoord = vec2(sprite % " ATLAS_WIDTH_UNIFORM_NAME " + position.x + 1, (sprite / " ATLAS_WIDTH_UNIFORM_NAME ") - position.y) / vec2(" ATLAS_WIDTH_UNIFORM_NAME ") + vec2(-(2 * position.x + 1) * " GRID_SIZE_UNIFORM_NAME ".z / 16, (2 * position.y + 1) * " GRID_SIZE_UNIFORM_NAME ".z / 16);\n"
" vec2 cell_position = vec2(scale + (gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) - " GRID_SIZE_UNIFORM_NAME ".x * floor((gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) / " GRID_SIZE_UNIFORM_NAME ".x), -floor((gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) / " GRID_SIZE_UNIFORM_NAME ".x));\n"
" vec2 temp = ((position + vec2(-0.5, 0.5)) * scale + cell_position + vec2(-0.5, 0.5)) * " GRID_SIZE_UNIFORM_NAME ".zw * 2 + vec2(-1, 1);\n"
" gl_Position = vec4(scaled_offset.x + temp.x, scaled_offset.y - temp.y, 0, 1);\n"
"}";
// note: AMD_vertex_shader_layer support required
constexpr char VERTEX_SHADER_ARB_SOURCE[] =
"#version 450 core\n"
"#extension GL_ARB_shader_viewport_layer_array : enable\n"
"#extension GL_AMD_vertex_shader_layer : enable\n"
"layout (location = 0) in vec2 position;\n"
"layout (location = 1) in vec2 offset;\n"
"layout (location = 2) in int sprite;\n"
"layout (location = 3) in vec4 color;\n"
"layout (location = 4) in float scale;\n"
"uniform vec4 " GRID_SIZE_UNIFORM_NAME ";\n"
"uniform int " ATLAS_WIDTH_UNIFORM_NAME ";\n"
"out VS_OUT {\n"
" flat int sprite;\n"
" flat vec4 layer_color;\n"
" vec2 texcoord;\n"
"} vs_out;\n"
"void main()\n"
"{\n"
" const int layer = int(floor(gl_InstanceID / " GRID_SIZE_UNIFORM_NAME ".y));\n"
" gl_Layer = layer;\n"
" vec2 scaled_offset = 2 * offset * " GRID_SIZE_UNIFORM_NAME ".zw;\n"
" vs_out.sprite = sprite;\n"
" vs_out.texcoord = vec2(sprite % " ATLAS_WIDTH_UNIFORM_NAME " + position.x + 1, (sprite / " ATLAS_WIDTH_UNIFORM_NAME ") - position.y) / vec2(" ATLAS_WIDTH_UNIFORM_NAME ") + vec2(-(2 * position.x + 1) * " GRID_SIZE_UNIFORM_NAME ".z / 16, (2 * position.y + 1) * " GRID_SIZE_UNIFORM_NAME ".z / 16);\n"
" vs_out.layer_color = color;\n"
" vec2 cell_position = vec2(scale + (gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) - " GRID_SIZE_UNIFORM_NAME ".x * floor((gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) / " GRID_SIZE_UNIFORM_NAME ".x), -floor((gl_InstanceID % int(" GRID_SIZE_UNIFORM_NAME ".y)) / " GRID_SIZE_UNIFORM_NAME ".x));\n"
" vec2 temp = ((position + vec2(-0.5, 0.5)) * scale + cell_position + vec2(-0.5, 0.5)) * " GRID_SIZE_UNIFORM_NAME ".zw * 2 + vec2(-1, 1);\n"
" gl_Position = vec4(scaled_offset.x + temp.x, scaled_offset.y - temp.y, 0, 1);\n"
"}";
constexpr const char* VERTEX_SHADER_SOURCE_PTR = VERTEX_SHADER_SOURCE;
constexpr const char* VERTEX_SHADER_ARB_SOURCE_PTR = VERTEX_SHADER_ARB_SOURCE;
constexpr char GEOMETRY_SHADER_SOURCE[] =
"#version 450 core\n"
"layout (triangles) in;\n"
"layout (triangle_strip, max_vertices = 3) out;\n"
"in VS_OUT {\n"
" flat int sprite;\n"
" flat int layer;\n"
" flat vec4 layer_color;\n"
" vec2 texcoord;\n"
"} gs_in[];\n"
"flat out int sprite;\n"
"flat out vec4 layer_color;\n"
"out vec2 texcoord;\n"
"void main()\n"
"{\n"
" gl_Layer = gs_in[0].layer;\n"
" gl_Position = gl_in[0].gl_Position;\n"
" sprite = gs_in[0].sprite;\n"
" layer_color = gs_in[0].layer_color;\n"
" texcoord = gs_in[0].texcoord;\n"
" EmitVertex();\n"
" gl_Layer = gs_in[1].layer;\n"
" gl_Position = gl_in[1].gl_Position;\n"
" sprite = gs_in[1].sprite;\n"
" layer_color = gs_in[1].layer_color;\n"
" texcoord = gs_in[1].texcoord;\n"
" EmitVertex();\n"
" gl_Layer = gs_in[2].layer;\n"
" gl_Position = gl_in[2].gl_Position;\n"
" sprite = gs_in[2].sprite;\n"
" layer_color = gs_in[2].layer_color;\n"
" texcoord = gs_in[2].texcoord;\n"
" EmitVertex();\n"
" EndPrimitive();\n"
"}";
constexpr const char* GEOMETRY_SHADER_SOURCE_PTR = GEOMETRY_SHADER_SOURCE;
constexpr char FRAGMENT_SHADER_SOURCE[] =
"#version 450 core\n"
"flat in int sprite;\n"
"flat vec4 layer_color;\n"
"in vec2 texcoord;\n"
"layout (binding = 2) uniform sampler2D " SPRITES_UNIFORM_NAME ";\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
" FragColor = layer_color * texture(" SPRITES_UNIFORM_NAME ", texcoord);\n"
"}";
// note: AMD_vertex_shader_layer support required
constexpr char FRAGMENT_SHADER_ARB_SOURCE[] =
"#version 450 core\n"
"in VS_OUT {\n"
" flat int sprite;\n"
" flat vec4 layer_color;\n"
" vec2 texcoord;\n"
"} fs_in;\n"
"layout (binding = 2) uniform sampler2D " SPRITES_UNIFORM_NAME ";\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
" FragColor = fs_in.layer_color * texture(" SPRITES_UNIFORM_NAME ", fs_in.texcoord);\n"
"}";
constexpr const char* FRAGMENT_SHADER_SOURCE_PTR = FRAGMENT_SHADER_SOURCE;
constexpr const char* FRAGMENT_SHADER_ARB_SOURCE_PTR = FRAGMENT_SHADER_ARB_SOURCE;
constexpr char SCREEN_VERTEX_SHADER_SOURCE[] =
"#version 450 core\n"
"layout (location = 0) in vec2 position;\n"
"out vec2 texcoord;\n"
"void main()\n"
"{\n"
" gl_Position = vec4(position * 2 + 1, 0, 1);\n"
" texcoord = vec2(position.x + 1, -position.y);\n"
"}";
constexpr const char* SCREEN_VERTEX_SHADER_SOURCE_PTR = SCREEN_VERTEX_SHADER_SOURCE;
constexpr char SCREEN_FRAGMENT_SHADER_SOURCE[] =
"#version 450 core\n"
"in vec2 texcoord;\n"
"layout (binding = 1) uniform sampler2DArray " LAYERS_UNIFORM_NAME ";\n"
"uniform int " LAYER_COUNT_UNIFORM_NAME ";\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
" vec3 current_color = vec3(0);\n"
" for (int i = 0; i < " LAYER_COUNT_UNIFORM_NAME "; i++)\n"
" {\n"
" vec4 texsample = texture(" LAYERS_UNIFORM_NAME ", vec3(texcoord, i));\n"
" current_color = mix(current_color, texsample.rgb, texsample.a);\n"
" }\n"
" FragColor = vec4(current_color, 1);\n"
"}";
constexpr const char* SCREEN_FRAGMENT_SHADER_SOURCE_PTR = SCREEN_FRAGMENT_SHADER_SOURCE;
}
namespace glerminal
{
glerminal::glerminal(glerminal_init_params params) :
m_main(params.main),
m_keypressed(params.keypress),
m_keyreleased(params.keyrelease),
m_mousemoved(params.moved),
m_mousepressed(params.mousepress),
m_mousereleased(params.mouserelease),
m_cells{ },
m_offsets{ },
m_sprites{ },
m_colors{ },
m_scales{ }
#ifdef GLERMINAL_OPENGL_DEBUG_CONTEXT
, m_log("log.txt")
#endif
{
if (GLERMINAL_G)
{
throw std::runtime_error("glerminal is already running.");
}
// unsure if this should be an error
if (!params.init)
{
throw std::runtime_error("No init callback provided.");
}
if (!m_main)
{
throw std::runtime_error("No main callback provided.");
}
for (int i = 0; i < GRID_AREA_2 * LAYER_COUNT; i++)
{
m_colors[i * 4 + 0] = m_colors[i * 4 + 1] = m_colors[i * 4 + 2] = m_colors[i * 4 + 3] = 255;
m_scales[i] = 1;
}
init_glfw();
init_gl();
GLERMINAL_G = this;
params.init();
}
glerminal::~glerminal()
{
deinit_gl();
deinit_glfw();
GLERMINAL_G = nullptr;
}
void glerminal::run()
{
double last = glfwGetTime();
while (!glfwWindowShouldClose(m_window))
{
glfwPollEvents();
const double current = glfwGetTime();
m_main(current - last);
last = current;
}
}
void glerminal::quit()
{
glfwSetWindowShouldClose(m_window, GLFW_TRUE);
}
void glerminal::flush()
{
glNamedBufferSubData(m_sprites_instance_vbo, 0, sizeof(m_cells), m_cells);
glNamedBufferSubData(m_offsets_instance_vbo, 0, sizeof(m_offsets), m_offsets);
update_sprites();
update_colors();
update_scales();
glUseProgram(m_program);
glBindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
glBindVertexArray(m_vao);
glClear(GL_COLOR_BUFFER_BIT);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, GRID_AREA_2 * LAYER_COUNT);
glUseProgram(m_screen_program);
glBindFramebuffer(GL_FRAMEBUFFER, m_screen_framebuffer);
glBindVertexArray(m_screen_vao);
glClear(GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBlitNamedFramebuffer(m_screen_framebuffer, 0, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glfwSwapInterval(0);
glfwSwapBuffers(m_window);
glBlitNamedFramebuffer(m_screen_framebuffer, 0, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glfwSwapInterval(1);
glfwSwapBuffers(m_window);
}
void glerminal::set(unsigned char x, unsigned char y, unsigned char layer, unsigned short sprite)
{
if (x < GRID_WIDTH + 2 && y < GRID_HEIGHT + 2 && layer < LAYER_COUNT)
{
m_cells[x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2] = sprite;
}
}
unsigned short glerminal::get(unsigned char x, unsigned char y, unsigned char layer) const
{
if (x < GRID_WIDTH + 2 && y < GRID_HEIGHT + 2 && layer < LAYER_COUNT)
{
return m_cells[x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2];
}
else
{
return 0;
}
}
void glerminal::offset(unsigned char x, unsigned char y, unsigned char layer, float x_offset, float y_offset)
{
if (x < GRID_WIDTH + 2 && y < GRID_HEIGHT + 2 && layer < LAYER_COUNT)
{
m_offsets[2 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 0] = x_offset;
m_offsets[2 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 1] = y_offset;
}
}
void glerminal::color(unsigned char x, unsigned char y, unsigned char layer, unsigned int color)
{
if (x < GRID_WIDTH + 2 && y < GRID_HEIGHT + 2 && layer < LAYER_COUNT)
{
m_colors[4 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 0] = (color >> 0) & 0xFF;
m_colors[4 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 1] = (color >> 8) & 0xFF;
m_colors[4 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 2] = (color >> 16) & 0xFF;
m_colors[4 * (x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2) + 3] = (color >> 24) & 0xFF;
}
}
void glerminal::scale(unsigned char x, unsigned char y, unsigned char layer, float scale)
{
m_scales[x + y * (GRID_WIDTH + 2) + layer * GRID_AREA_2] = scale;
}
void glerminal::load_atlas(unsigned char w, unsigned char h, const unsigned int* data)
{
for (int src_atlas_row = 0; src_atlas_row < h; src_atlas_row++)
{
for (int src_atlas_col = 0; src_atlas_col < w; src_atlas_col++)
{
for (int sprite_row = 0; sprite_row < CELL_SIZE; sprite_row++)
{
const unsigned int sprite_index = src_atlas_col + src_atlas_row * w;
const unsigned int dst_atlas_row = sprite_index / MAX_SPRITES_ROW;
const unsigned int dst_atlas_col = sprite_index % MAX_SPRITES_ROW;
// offset from base address in source atlas layout
const unsigned int src_offset = CELL_SIZE * (src_atlas_col + sprite_row * w + src_atlas_row * w * CELL_SIZE);
const unsigned int dst_column = dst_atlas_col * (CELL_SIZE + 2) + 1;
const unsigned int dst_row = MAX_SPRITES_ROW * (CELL_SIZE + 2) * ((sprite_row + 1) + dst_atlas_row * (CELL_SIZE + 2));
// offset from base address in glerminal atlas layout
const unsigned int dst_offset = dst_column + dst_row;
memcpy(m_sprites + dst_offset, data + src_offset, CELL_SIZE * sizeof(unsigned int));
}
}
}
}
void glerminal::init_glfw()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 5);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// not resizable for now.
//
// need to think about how to handle resizing to ensure
// that the window stays an integer number of "tiles" large
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
#ifdef GLERMINAL_OPENGL_DEBUG_CONTEXT
glfwWindowHint(GLFW_CONTEXT_DEBUG, GLFW_TRUE);
#endif
// non-adjustable size for the same reason as above
m_window = glfwCreateWindow(SCREEN_WIDTH, SCREEN_HEIGHT, "glerminal", nullptr, nullptr);
if (!m_window)
{
throw std::runtime_error("Failed to create glerminal window.");
}
glfwSetWindowUserPointer(m_window, this);
glfwSetKeyCallback(m_window, glfw_key_handler);
glfwSetCursorPosCallback(m_window, glfw_mousemoved_handler);
glfwSetMouseButtonCallback(m_window, glfw_mousepress_handler);
}
void glerminal::log(GLenum type, GLuint id, GLenum severity, const char* message) const
{
#ifdef GLERMINAL_OPENGL_DEBUG_CONTEXT
glDebugMessageInsert(GL_DEBUG_SOURCE_THIRD_PARTY, type, id, severity, -1, message);
#endif
}
void glerminal::init_gl()
{
glfwMakeContextCurrent(m_window);
if (!gladLoadGLLoader(reinterpret_cast<GLADloadproc>(glfwGetProcAddress)))
{
throw std::runtime_error("Failed to initialize GLAD.");
}
#ifdef GLERMINAL_OPENGL_DEBUG_CONTEXT
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);
glDebugMessageCallback([](GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam)
{
const char* source_str = "[UNKNOWN]";
switch (source)
{
case GL_DEBUG_SOURCE_API:
source_str = "[API]";
break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM:
source_str = "[WINDOW]";
break;
case GL_DEBUG_SOURCE_SHADER_COMPILER:
source_str = "[SHADER]";
break;
case GL_DEBUG_SOURCE_THIRD_PARTY:
source_str = "[GLERMINAL]";
break;
case GL_DEBUG_SOURCE_APPLICATION:
source_str = "[APPLICATION]";
break;
}
const char* type_str = "[UNKNOWN]";
switch (type)
{
case GL_DEBUG_TYPE_ERROR:
type_str = "[ERROR]";
break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR:
type_str = "[DEPRECATED]";
break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR:
type_str = "[UNDEFINED]";
break;
case GL_DEBUG_TYPE_PORTABILITY:
type_str = "[PORTABILITY]";
break;
case GL_DEBUG_TYPE_PERFORMANCE:
type_str = "[PERFORMANCE]";
break;
}
static_cast<const glerminal*>(userParam)->m_log << source_str << type_str << ' ' << std::string(message, length) << std::endl;
}, this);
#endif
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glViewport(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT);
// -- setup vertex data --
// create vertex buffer object
glGenBuffers(1, &m_vbo);
glGenBuffers(1, &m_sprites_instance_vbo);
glGenBuffers(1, &m_offsets_instance_vbo);
glGenBuffers(1, &m_colors_instance_vbo);
glGenBuffers(1, &m_scales_instance_vbo);
// create vertex array object
glGenVertexArrays(1, &m_vao);
glBindVertexArray(m_vao);
// set up static vertex attributes
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferStorage(GL_ARRAY_BUFFER, sizeof(VBO_VERTICES), VBO_VERTICES, GL_NONE);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(*VBO_VERTICES), reinterpret_cast<void*>(0));
// set up instanced vertex attributes
glBindBuffer(GL_ARRAY_BUFFER, m_offsets_instance_vbo);
glBufferStorage(GL_ARRAY_BUFFER, sizeof(m_offsets), m_offsets, GL_DYNAMIC_STORAGE_BIT);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(*m_offsets), reinterpret_cast<void*>(0));
glVertexAttribDivisor(1, 1);
glBindBuffer(GL_ARRAY_BUFFER, m_sprites_instance_vbo);
glBufferStorage(GL_ARRAY_BUFFER, sizeof(m_cells), m_cells, GL_DYNAMIC_STORAGE_BIT);
glEnableVertexAttribArray(2);
glVertexAttribIPointer(2, 1, GL_UNSIGNED_SHORT, 1 * sizeof(*m_cells), reinterpret_cast<void*>(0));
glVertexAttribDivisor(2, 1);
glBindBuffer(GL_ARRAY_BUFFER, m_colors_instance_vbo);
glBufferStorage(GL_ARRAY_BUFFER, sizeof(m_colors), m_colors, GL_DYNAMIC_STORAGE_BIT);
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(*m_colors), reinterpret_cast<void*>(0));
glVertexAttribDivisor(3, 1);
glBindBuffer(GL_ARRAY_BUFFER, m_scales_instance_vbo);
glBufferStorage(GL_ARRAY_BUFFER, sizeof(m_scales), m_scales, GL_DYNAMIC_STORAGE_BIT);
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 1, GL_FLOAT, GL_FALSE, 1 * sizeof(*m_scales), reinterpret_cast<void*>(0));
glVertexAttribDivisor(4, 1);
// set up static vertex attributes
glGenVertexArrays(1, &m_screen_vao);
glBindVertexArray(m_screen_vao);
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(*VBO_VERTICES), reinterpret_cast<void*>(0));
glBindVertexArray(0);
// -- setup shader program --
// test for features
const bool vertex_shader_layer_supported =
glfwExtensionSupported("GL_ARB_shader_viewport_layer_array") || glfwExtensionSupported("GL_AMD_vertex_shader_layer");
// compile
const unsigned int vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &(vertex_shader_layer_supported ? VERTEX_SHADER_ARB_SOURCE_PTR : VERTEX_SHADER_SOURCE_PTR), nullptr);
glCompileShader(vertex_shader);
const unsigned int geometry_shader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometry_shader, 1, &GEOMETRY_SHADER_SOURCE_PTR, nullptr);
glCompileShader(geometry_shader);
const unsigned int fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &(vertex_shader_layer_supported ? FRAGMENT_SHADER_ARB_SOURCE_PTR : FRAGMENT_SHADER_SOURCE_PTR), nullptr);
glCompileShader(fragment_shader);
constexpr int INFO_LOG_SIZE = 512;
int success;
char info_log[INFO_LOG_SIZE + 1] = {};
// verify compile
glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertex_shader, INFO_LOG_SIZE, nullptr, info_log);
glDeleteShader(vertex_shader);
glDeleteShader(geometry_shader);
glDeleteShader(fragment_shader);
log(GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Could not compile vertex shader.");
log(GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not compile vertex shader.");
}
glGetShaderiv(geometry_shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(geometry_shader, INFO_LOG_SIZE, nullptr, info_log);
glDeleteShader(vertex_shader);
glDeleteShader(geometry_shader);
glDeleteShader(fragment_shader);
log(GL_DEBUG_TYPE_ERROR, 1, GL_DEBUG_SEVERITY_HIGH, "Could not compile geometry shader.");
log(GL_DEBUG_TYPE_ERROR, 1, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not compile geometry shader.");
}
glGetShaderiv(fragment_shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragment_shader, INFO_LOG_SIZE, nullptr, info_log);
glDeleteShader(vertex_shader);
glDeleteShader(geometry_shader);
glDeleteShader(fragment_shader);
log(GL_DEBUG_TYPE_ERROR, 2, GL_DEBUG_SEVERITY_HIGH, "Could not compile fragment shader.");
log(GL_DEBUG_TYPE_ERROR, 2, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not compile fragment shader.");
}
// link
m_program = glCreateProgram();
glAttachShader(m_program, vertex_shader);
// only need geometry shader if AMD_vertex_shader_layer is not supported
if (!vertex_shader_layer_supported)
{
glAttachShader(m_program, geometry_shader);
}
glAttachShader(m_program, fragment_shader);
glLinkProgram(m_program);
glDeleteShader(vertex_shader);
glDeleteShader(geometry_shader);
glDeleteShader(fragment_shader);
// verify link
glGetProgramiv(m_program, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(m_program, INFO_LOG_SIZE, nullptr, info_log);
glDeleteProgram(m_program);
log(GL_DEBUG_TYPE_ERROR, 3, GL_DEBUG_SEVERITY_HIGH, "Could not link shader program.");
log(GL_DEBUG_TYPE_ERROR, 3, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not link shader program.");
}
// setup uniforms
glUseProgram(m_program);
glUniform4f(glGetUniformLocation(m_program, GRID_SIZE_UNIFORM_NAME), GRID_WIDTH + 2, GRID_AREA_2, 1.0f / GRID_WIDTH, 1.0f / GRID_HEIGHT);
glUniform1i(glGetUniformLocation(m_program, ATLAS_WIDTH_UNIFORM_NAME), MAX_SPRITES_ROW);
// compile
const unsigned int screen_vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(screen_vertex_shader, 1, &SCREEN_VERTEX_SHADER_SOURCE_PTR, nullptr);
glCompileShader(screen_vertex_shader);
const unsigned int screen_fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(screen_fragment_shader, 1, &SCREEN_FRAGMENT_SHADER_SOURCE_PTR, nullptr);
glCompileShader(screen_fragment_shader);
// verify compile
glGetShaderiv(screen_vertex_shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(screen_vertex_shader, INFO_LOG_SIZE, 0, info_log);
glDeleteShader(screen_vertex_shader);
glDeleteShader(screen_fragment_shader);
log(GL_DEBUG_TYPE_ERROR, 4, GL_DEBUG_SEVERITY_HIGH, "Could not compile screen vertex shader.");
log(GL_DEBUG_TYPE_ERROR, 4, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not compile screen vertex shader.");
}
glGetShaderiv(screen_fragment_shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(screen_fragment_shader, INFO_LOG_SIZE, 0, info_log);
glDeleteShader(screen_vertex_shader);
glDeleteShader(screen_fragment_shader);
log(GL_DEBUG_TYPE_ERROR, 5, GL_DEBUG_SEVERITY_HIGH, "Could not compile screen fragment shader.");
log(GL_DEBUG_TYPE_ERROR, 5, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not compile screen fragment shader.");
}
// link
m_screen_program = glCreateProgram();
glAttachShader(m_screen_program, screen_vertex_shader);
glAttachShader(m_screen_program, screen_fragment_shader);
glLinkProgram(m_screen_program);
glDeleteShader(screen_vertex_shader);
glDeleteShader(screen_fragment_shader);
// verify link
glGetProgramiv(m_screen_program, GL_LINK_STATUS, &success);
if (!success)
{
glDeleteProgram(m_screen_program);
log(GL_DEBUG_TYPE_ERROR, 6, GL_DEBUG_SEVERITY_HIGH, "Could not link screen shader program.");
log(GL_DEBUG_TYPE_ERROR, 6, GL_DEBUG_SEVERITY_HIGH, info_log);
throw std::runtime_error("Could not link screen shader program.");
}
// setup uniforms for screen shader
glUseProgram(m_screen_program);
glUniform1i(glGetUniformLocation(m_screen_program, LAYER_COUNT_UNIFORM_NAME), LAYER_COUNT);
// -- setup textures --
glGenTextures(1, &m_sprites_texture);
glBindTexture(GL_TEXTURE_2D, m_sprites_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTextureStorage2D(m_sprites_texture, 1, GL_RGBA8, MAX_SPRITES_ROW * (CELL_SIZE + 2), MAX_SPRITES_ROW * (CELL_SIZE + 2));
update_sprites();
glBindTextureUnit(2, m_sprites_texture);
const auto err = glGetError();
// -- setup framebuffer --
glGenFramebuffers(1, &m_framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
glGenTextures(1, &m_framebuffer_backing_texture);
glBindTexture(GL_TEXTURE_2D_ARRAY, m_framebuffer_backing_texture);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, 0);
glTexStorage3D(GL_TEXTURE_2D_ARRAY, 1, GL_RGBA8, SCREEN_WIDTH, SCREEN_HEIGHT, LAYER_COUNT);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_framebuffer_backing_texture, 0);
glBindTextureUnit(1, m_framebuffer_backing_texture);
// -- setup screen framebuffer --
glGenFramebuffers(1, &m_screen_framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, m_screen_framebuffer);
glGenTextures(1, &m_screen_framebuffer_backing_texture);
glBindTexture(GL_TEXTURE_2D, m_screen_framebuffer_backing_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGB8, SCREEN_WIDTH, SCREEN_HEIGHT);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_screen_framebuffer_backing_texture, 0);
}
void glerminal::deinit_glfw()
{
glfwDestroyWindow(m_window);
glfwTerminate();
}
void glerminal::deinit_gl()
{
glDeleteFramebuffers(1, &m_screen_framebuffer);
glDeleteTextures(1, &m_screen_framebuffer_backing_texture);
glDeleteFramebuffers(1, &m_framebuffer);
glDeleteTextures(1, &m_framebuffer_backing_texture);
glDeleteTextures(1, &m_sprites_texture);
glDeleteVertexArrays(1, &m_vao);
glDeleteVertexArrays(1, &m_screen_vao);
glDeleteBuffers(1, &m_vbo);
glDeleteBuffers(1, &m_sprites_instance_vbo);
glDeleteBuffers(1, &m_offsets_instance_vbo);
glDeleteBuffers(1, &m_colors_instance_vbo);
glDeleteBuffers(1, &m_scales_instance_vbo);
glDeleteProgram(m_program);
}
void glerminal::update_sprites()
{
glTextureSubImage2D(m_sprites_texture, 0, 0, 0, (CELL_SIZE + 2) * MAX_SPRITES_ROW, (CELL_SIZE + 2) * MAX_SPRITES_ROW, GL_RGBA, GL_UNSIGNED_BYTE, m_sprites);
}
void glerminal::update_colors()
{
glNamedBufferSubData(m_colors_instance_vbo, 0, sizeof(m_colors), m_colors);
}
void glerminal::update_scales()
{
glNamedBufferSubData(m_scales_instance_vbo, 0, sizeof(m_scales), m_scales);
}
void glerminal::glfw_key_handler(GLFWwindow* window, int key, int scancode, int action, int mods)
{
const glerminal* const self = static_cast<glerminal*>(glfwGetWindowUserPointer(window));
if (self->m_keypressed && action == GLFW_PRESS)
{
self->m_keypressed(key);
}
if (self->m_keyreleased && action == GLFW_RELEASE)
{
self->m_keyreleased(key);
}
}
void glerminal::glfw_mousemoved_handler(GLFWwindow *window, double x, double y)
{
const glerminal* const self = static_cast<glerminal*>(glfwGetWindowUserPointer(window));
if (self->m_mousemoved) { self->m_mousemoved(x / (CELL_SIZE * CELL_SCALE), y / (CELL_SIZE * CELL_SCALE)); }
}
void glerminal::glfw_mousepress_handler(GLFWwindow *window, int button, int action, int mods)
{
const glerminal* const self = static_cast<glerminal*>(glfwGetWindowUserPointer(window));
double x, y;
glfwGetCursorPos(window, &x, &y);
if (self->m_mousepressed && action == GLFW_PRESS)
{
self->m_mousepressed(button, x / (CELL_SIZE * CELL_SCALE), y / (CELL_SIZE * CELL_SCALE));
}
if (self->m_mousereleased && action == GLFW_RELEASE)
{
self->m_mousereleased(button, x / (CELL_SIZE * CELL_SCALE), y / (CELL_SIZE * CELL_SCALE));
}
}
}
void glerminal_run(glerminal_init_params params)
{
try
{
glerminal::glerminal* g = new glerminal::glerminal(params);
g->run();
delete g;
}
catch (const std::runtime_error& e)
{
std::cout << e.what() << std::endl;
}
}
void glerminal_quit()
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->quit();
}
void glerminal_flush()
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->flush();
}
void glerminal_set(unsigned char x, unsigned char y, unsigned char layer, unsigned short sprite)
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->set(x, y, layer, sprite);
}
unsigned char glerminal_get(unsigned char x, unsigned char y, unsigned short layer)
{
if (!GLERMINAL_G) { return 0; }
return GLERMINAL_G->get(x, y, layer);
}
void glerminal_offset(unsigned char x, unsigned char y, unsigned char layer, float x_offset, float y_offset)
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->offset(x, y, layer, x_offset, y_offset);
}
void glerminal_color(unsigned char x, unsigned char y, unsigned char layer, unsigned int color)
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->color(x, y, layer, color);
}
void glerminal_scale(unsigned char x, unsigned char y, unsigned char layer, float scale)
{
if (!GLERMINAL_G) { return; }
GLERMINAL_G->scale(x, y, layer, scale);
}
int glerminal_load_sprites_file(const char* filename)
{
if (!GLERMINAL_G) { return false; }
bool success = false;
int w, h;
stbi_uc* const buffer = stbi_load(filename, &w, &h, nullptr, 4);
// verify atlas size is a multiple of CELL_SIZE in each dimension
if (buffer && w % glerminal::CELL_SIZE == 0 && h % glerminal::CELL_SIZE == 0)
{
GLERMINAL_G->load_atlas(w / glerminal::CELL_SIZE, h / glerminal::CELL_SIZE, reinterpret_cast<unsigned int*>(buffer));
success = true;
}
stbi_image_free(buffer);
return success;
}
int glerminal_load_sprites_buffer(unsigned char width, unsigned char height, const unsigned int* buffer)
{
if (!GLERMINAL_G) { return false; }
// verify atlas size is a multiple of CELL_SIZE in each dimension
if (width % glerminal::CELL_SIZE == 0 && height % glerminal::CELL_SIZE == 0)
{
GLERMINAL_G->load_atlas(width / glerminal::CELL_SIZE, height / glerminal::CELL_SIZE, buffer);
return true;
}
else
{
return false;
}
}