1314 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1314 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
 | |
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| 
 | |
| #include <random>
 | |
| #include "common/scope_exit.h"
 | |
| #include "common/settings.h"
 | |
| #include "core/core.h"
 | |
| #include "core/hle/kernel/k_process.h"
 | |
| #include "core/hle/kernel/k_scoped_resource_reservation.h"
 | |
| #include "core/hle/kernel/k_shared_memory.h"
 | |
| #include "core/hle/kernel/k_shared_memory_info.h"
 | |
| #include "core/hle/kernel/k_thread_local_page.h"
 | |
| #include "core/hle/kernel/k_thread_queue.h"
 | |
| #include "core/hle/kernel/k_worker_task_manager.h"
 | |
| 
 | |
| #include "core/arm/dynarmic/arm_dynarmic_32.h"
 | |
| #include "core/arm/dynarmic/arm_dynarmic_64.h"
 | |
| #ifdef HAS_NCE
 | |
| #include "core/arm/nce/arm_nce.h"
 | |
| #endif
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| Result TerminateChildren(KernelCore& kernel, KProcess* process,
 | |
|                          const KThread* thread_to_not_terminate) {
 | |
|     // Request that all children threads terminate.
 | |
|     {
 | |
|         KScopedLightLock proc_lk(process->GetListLock());
 | |
|         KScopedSchedulerLock sl(kernel);
 | |
| 
 | |
|         if (thread_to_not_terminate != nullptr &&
 | |
|             process->GetPinnedThread(GetCurrentCoreId(kernel)) == thread_to_not_terminate) {
 | |
|             // NOTE: Here Nintendo unpins the current thread instead of the thread_to_not_terminate.
 | |
|             // This is valid because the only caller which uses non-nullptr as argument uses
 | |
|             // GetCurrentThreadPointer(), but it's still notable because it seems incorrect at
 | |
|             // first glance.
 | |
|             process->UnpinCurrentThread();
 | |
|         }
 | |
| 
 | |
|         auto& thread_list = process->GetThreadList();
 | |
|         for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
 | |
|             if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
 | |
|                 if (thread->GetState() != ThreadState::Terminated) {
 | |
|                     thread->RequestTerminate();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Wait for all children threads to terminate.
 | |
|     while (true) {
 | |
|         // Get the next child.
 | |
|         KThread* cur_child = nullptr;
 | |
|         {
 | |
|             KScopedLightLock proc_lk(process->GetListLock());
 | |
| 
 | |
|             auto& thread_list = process->GetThreadList();
 | |
|             for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
 | |
|                 if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
 | |
|                     if (thread->GetState() != ThreadState::Terminated) {
 | |
|                         if (thread->Open()) {
 | |
|                             cur_child = thread;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // If we didn't find any non-terminated children, we're done.
 | |
|         if (cur_child == nullptr) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // Terminate and close the thread.
 | |
|         SCOPE_EXIT({ cur_child->Close(); });
 | |
| 
 | |
|         if (const Result terminate_result = cur_child->Terminate();
 | |
|             ResultTerminationRequested == terminate_result) {
 | |
|             R_THROW(terminate_result);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| class ThreadQueueImplForKProcessEnterUserException final : public KThreadQueue {
 | |
| private:
 | |
|     KThread** m_exception_thread;
 | |
| 
 | |
| public:
 | |
|     explicit ThreadQueueImplForKProcessEnterUserException(KernelCore& kernel, KThread** t)
 | |
|         : KThreadQueue(kernel), m_exception_thread(t) {}
 | |
| 
 | |
|     virtual void EndWait(KThread* waiting_thread, Result wait_result) override {
 | |
|         // Set the exception thread.
 | |
|         *m_exception_thread = waiting_thread;
 | |
| 
 | |
|         // Invoke the base end wait handler.
 | |
|         KThreadQueue::EndWait(waiting_thread, wait_result);
 | |
|     }
 | |
| 
 | |
|     virtual void CancelWait(KThread* waiting_thread, Result wait_result,
 | |
|                             bool cancel_timer_task) override {
 | |
|         // Remove the thread as a waiter on its mutex owner.
 | |
|         waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
 | |
| 
 | |
|         // Invoke the base cancel wait handler.
 | |
|         KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
 | |
|     }
 | |
| };
 | |
| 
 | |
| void GenerateRandom(std::span<u64> out_random) {
 | |
|     std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
 | |
|                                                        : static_cast<u32>(std::time(nullptr)));
 | |
|     std::uniform_int_distribution<u64> distribution;
 | |
|     std::generate(out_random.begin(), out_random.end(), [&] { return distribution(rng); });
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| void KProcess::Finalize() {
 | |
|     // Delete the process local region.
 | |
|     this->DeleteThreadLocalRegion(m_plr_address);
 | |
| 
 | |
|     // Get the used memory size.
 | |
|     const size_t used_memory_size = this->GetUsedNonSystemUserPhysicalMemorySize();
 | |
| 
 | |
|     // Finalize the page table.
 | |
|     m_page_table.Finalize();
 | |
| 
 | |
|     // Finish using our system resource.
 | |
|     if (m_system_resource) {
 | |
|         if (m_system_resource->IsSecureResource()) {
 | |
|             // Finalize optimized memory. If memory wasn't optimized, this is a no-op.
 | |
|             m_kernel.MemoryManager().FinalizeOptimizedMemory(this->GetId(), m_memory_pool);
 | |
|         }
 | |
| 
 | |
|         m_system_resource->Close();
 | |
|         m_system_resource = nullptr;
 | |
|     }
 | |
| 
 | |
|     // Free all shared memory infos.
 | |
|     {
 | |
|         auto it = m_shared_memory_list.begin();
 | |
|         while (it != m_shared_memory_list.end()) {
 | |
|             KSharedMemoryInfo* info = std::addressof(*it);
 | |
|             KSharedMemory* shmem = info->GetSharedMemory();
 | |
| 
 | |
|             while (!info->Close()) {
 | |
|                 shmem->Close();
 | |
|             }
 | |
|             shmem->Close();
 | |
| 
 | |
|             it = m_shared_memory_list.erase(it);
 | |
|             KSharedMemoryInfo::Free(m_kernel, info);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Our thread local page list must be empty at this point.
 | |
|     ASSERT(m_partially_used_tlp_tree.empty());
 | |
|     ASSERT(m_fully_used_tlp_tree.empty());
 | |
| 
 | |
|     // Release memory to the resource limit.
 | |
|     if (m_resource_limit != nullptr) {
 | |
|         ASSERT(used_memory_size >= m_memory_release_hint);
 | |
|         m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, used_memory_size,
 | |
|                                   used_memory_size - m_memory_release_hint);
 | |
|         m_resource_limit->Close();
 | |
|     }
 | |
| 
 | |
|     // Perform inherited finalization.
 | |
|     KSynchronizationObject::Finalize();
 | |
| }
 | |
| 
 | |
| Result KProcess::Initialize(const Svc::CreateProcessParameter& params, KResourceLimit* res_limit,
 | |
|                             bool is_real) {
 | |
|     // TODO: remove this special case
 | |
|     if (is_real) {
 | |
|         // Create and clear the process local region.
 | |
|         R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
 | |
|         this->GetMemory().ZeroBlock(m_plr_address, Svc::ThreadLocalRegionSize);
 | |
|     }
 | |
| 
 | |
|     // Copy in the name from parameters.
 | |
|     static_assert(sizeof(params.name) < sizeof(m_name));
 | |
|     std::memcpy(m_name.data(), params.name.data(), sizeof(params.name));
 | |
|     m_name[sizeof(params.name)] = 0;
 | |
| 
 | |
|     // Set misc fields.
 | |
|     m_state = State::Created;
 | |
|     m_main_thread_stack_size = 0;
 | |
|     m_used_kernel_memory_size = 0;
 | |
|     m_ideal_core_id = 0;
 | |
|     m_flags = params.flags;
 | |
|     m_version = params.version;
 | |
|     m_program_id = params.program_id;
 | |
|     m_code_address = params.code_address;
 | |
|     m_code_size = params.code_num_pages * PageSize;
 | |
|     m_is_application = True(params.flags & Svc::CreateProcessFlag::IsApplication);
 | |
| 
 | |
|     // Set thread fields.
 | |
|     for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
 | |
|         m_running_threads[i] = nullptr;
 | |
|         m_pinned_threads[i] = nullptr;
 | |
|         m_running_thread_idle_counts[i] = 0;
 | |
|         m_running_thread_switch_counts[i] = 0;
 | |
|     }
 | |
| 
 | |
|     // Set max memory based on address space type.
 | |
|     switch ((params.flags & Svc::CreateProcessFlag::AddressSpaceMask)) {
 | |
|     case Svc::CreateProcessFlag::AddressSpace32Bit:
 | |
|     case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
 | |
|     case Svc::CreateProcessFlag::AddressSpace64Bit:
 | |
|         m_max_process_memory = m_page_table.GetHeapRegionSize();
 | |
|         break;
 | |
|     case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
 | |
|         m_max_process_memory = m_page_table.GetHeapRegionSize() + m_page_table.GetAliasRegionSize();
 | |
|         break;
 | |
|     default:
 | |
|         UNREACHABLE();
 | |
|     }
 | |
| 
 | |
|     // Generate random entropy.
 | |
|     GenerateRandom(m_entropy);
 | |
| 
 | |
|     // Clear remaining fields.
 | |
|     m_num_running_threads = 0;
 | |
|     m_num_process_switches = 0;
 | |
|     m_num_thread_switches = 0;
 | |
|     m_num_fpu_switches = 0;
 | |
|     m_num_supervisor_calls = 0;
 | |
|     m_num_ipc_messages = 0;
 | |
| 
 | |
|     m_is_signaled = false;
 | |
|     m_exception_thread = nullptr;
 | |
|     m_is_suspended = false;
 | |
|     m_memory_release_hint = 0;
 | |
|     m_schedule_count = 0;
 | |
|     m_is_handle_table_initialized = false;
 | |
| 
 | |
|     // Open a reference to our resource limit.
 | |
|     m_resource_limit = res_limit;
 | |
|     m_resource_limit->Open();
 | |
| 
 | |
|     // We're initialized!
 | |
|     m_is_initialized = true;
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPageGroup& pg,
 | |
|                             std::span<const u32> caps, KResourceLimit* res_limit,
 | |
|                             KMemoryManager::Pool pool, bool immortal) {
 | |
|     ASSERT(res_limit != nullptr);
 | |
|     ASSERT((params.code_num_pages * PageSize) / PageSize ==
 | |
|            static_cast<size_t>(params.code_num_pages));
 | |
| 
 | |
|     // Set members.
 | |
|     m_memory_pool = pool;
 | |
|     m_is_default_application_system_resource = false;
 | |
|     m_is_immortal = immortal;
 | |
| 
 | |
|     // Setup our system resource.
 | |
|     if (const size_t system_resource_num_pages = params.system_resource_num_pages;
 | |
|         system_resource_num_pages != 0) {
 | |
|         // Create a secure system resource.
 | |
|         KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
 | |
|         R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
 | |
| 
 | |
|         ON_RESULT_FAILURE {
 | |
|             secure_resource->Close();
 | |
|         };
 | |
| 
 | |
|         // Initialize the secure resource.
 | |
|         R_TRY(secure_resource->Initialize(system_resource_num_pages * PageSize, res_limit,
 | |
|                                           m_memory_pool));
 | |
| 
 | |
|         // Set our system resource.
 | |
|         m_system_resource = secure_resource;
 | |
|     } else {
 | |
|         // Use the system-wide system resource.
 | |
|         const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
 | |
|         m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
 | |
|                                                   : m_kernel.GetSystemSystemResource());
 | |
| 
 | |
|         m_is_default_application_system_resource = is_app;
 | |
| 
 | |
|         // Open reference to the system resource.
 | |
|         m_system_resource->Open();
 | |
|     }
 | |
| 
 | |
|     // Ensure we clean up our secure resource, if we fail.
 | |
|     ON_RESULT_FAILURE {
 | |
|         m_system_resource->Close();
 | |
|         m_system_resource = nullptr;
 | |
|     };
 | |
| 
 | |
|     // Setup page table.
 | |
|     {
 | |
|         const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
 | |
|         const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
 | |
|         const bool enable_das_merge =
 | |
|             False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
 | |
|         R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
 | |
|                                       params.code_address, params.code_num_pages * PageSize,
 | |
|                                       m_system_resource, res_limit, this->GetMemory(), 0));
 | |
|     }
 | |
|     ON_RESULT_FAILURE_2 {
 | |
|         m_page_table.Finalize();
 | |
|     };
 | |
| 
 | |
|     // Ensure we can insert the code region.
 | |
|     R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
 | |
|                                      KMemoryState::Code),
 | |
|              ResultInvalidMemoryRegion);
 | |
| 
 | |
|     // Map the code region.
 | |
|     R_TRY(m_page_table.MapPageGroup(params.code_address, pg, KMemoryState::Code,
 | |
|                                     KMemoryPermission::KernelRead));
 | |
| 
 | |
|     // Initialize capabilities.
 | |
|     R_TRY(m_capabilities.InitializeForKip(caps, std::addressof(m_page_table)));
 | |
| 
 | |
|     // Initialize the process id.
 | |
|     m_process_id = m_kernel.CreateNewUserProcessID();
 | |
|     ASSERT(InitialProcessIdMin <= m_process_id);
 | |
|     ASSERT(m_process_id <= InitialProcessIdMax);
 | |
| 
 | |
|     // Initialize the rest of the process.
 | |
|     R_TRY(this->Initialize(params, res_limit, true));
 | |
| 
 | |
|     // We succeeded!
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
 | |
|                             std::span<const u32> user_caps, KResourceLimit* res_limit,
 | |
|                             KMemoryManager::Pool pool, KProcessAddress aslr_space_start) {
 | |
|     ASSERT(res_limit != nullptr);
 | |
| 
 | |
|     // Set members.
 | |
|     m_memory_pool = pool;
 | |
|     m_is_default_application_system_resource = false;
 | |
|     m_is_immortal = false;
 | |
| 
 | |
|     // Get the memory sizes.
 | |
|     const size_t code_num_pages = params.code_num_pages;
 | |
|     const size_t system_resource_num_pages = params.system_resource_num_pages;
 | |
|     const size_t code_size = code_num_pages * PageSize;
 | |
|     const size_t system_resource_size = system_resource_num_pages * PageSize;
 | |
| 
 | |
|     // Reserve memory for our code resource.
 | |
|     KScopedResourceReservation memory_reservation(
 | |
|         res_limit, Svc::LimitableResource::PhysicalMemoryMax, code_size);
 | |
|     R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
 | |
| 
 | |
|     // Setup our system resource.
 | |
|     if (system_resource_num_pages != 0) {
 | |
|         // Create a secure system resource.
 | |
|         KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
 | |
|         R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
 | |
| 
 | |
|         ON_RESULT_FAILURE {
 | |
|             secure_resource->Close();
 | |
|         };
 | |
| 
 | |
|         // Initialize the secure resource.
 | |
|         R_TRY(secure_resource->Initialize(system_resource_size, res_limit, m_memory_pool));
 | |
| 
 | |
|         // Set our system resource.
 | |
|         m_system_resource = secure_resource;
 | |
| 
 | |
|     } else {
 | |
|         // Use the system-wide system resource.
 | |
|         const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
 | |
|         m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
 | |
|                                                   : m_kernel.GetSystemSystemResource());
 | |
| 
 | |
|         m_is_default_application_system_resource = is_app;
 | |
| 
 | |
|         // Open reference to the system resource.
 | |
|         m_system_resource->Open();
 | |
|     }
 | |
| 
 | |
|     // Ensure we clean up our secure resource, if we fail.
 | |
|     ON_RESULT_FAILURE {
 | |
|         m_system_resource->Close();
 | |
|         m_system_resource = nullptr;
 | |
|     };
 | |
| 
 | |
|     // Setup page table.
 | |
|     {
 | |
|         const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
 | |
|         const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
 | |
|         const bool enable_das_merge =
 | |
|             False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
 | |
|         R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
 | |
|                                       params.code_address, code_size, m_system_resource, res_limit,
 | |
|                                       this->GetMemory(), aslr_space_start));
 | |
|     }
 | |
|     ON_RESULT_FAILURE_2 {
 | |
|         m_page_table.Finalize();
 | |
|     };
 | |
| 
 | |
|     // Ensure we can insert the code region.
 | |
|     R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
 | |
|              ResultInvalidMemoryRegion);
 | |
| 
 | |
|     // Map the code region.
 | |
|     R_TRY(m_page_table.MapPages(params.code_address, code_num_pages, KMemoryState::Code,
 | |
|                                 KMemoryPermission::KernelRead | KMemoryPermission::NotMapped));
 | |
| 
 | |
|     // Initialize capabilities.
 | |
|     R_TRY(m_capabilities.InitializeForUser(user_caps, std::addressof(m_page_table)));
 | |
| 
 | |
|     // Initialize the process id.
 | |
|     m_process_id = m_kernel.CreateNewUserProcessID();
 | |
|     ASSERT(ProcessIdMin <= m_process_id);
 | |
|     ASSERT(m_process_id <= ProcessIdMax);
 | |
| 
 | |
|     // If we should optimize memory allocations, do so.
 | |
|     if (m_system_resource->IsSecureResource() &&
 | |
|         True(params.flags & Svc::CreateProcessFlag::OptimizeMemoryAllocation)) {
 | |
|         R_TRY(m_kernel.MemoryManager().InitializeOptimizedMemory(m_process_id, pool));
 | |
|     }
 | |
| 
 | |
|     // Initialize the rest of the process.
 | |
|     R_TRY(this->Initialize(params, res_limit, true));
 | |
| 
 | |
|     // We succeeded, so commit our memory reservation.
 | |
|     memory_reservation.Commit();
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| void KProcess::DoWorkerTaskImpl() {
 | |
|     // Terminate child threads.
 | |
|     TerminateChildren(m_kernel, this, nullptr);
 | |
| 
 | |
|     // Finalize the handle table, if we're not immortal.
 | |
|     if (!m_is_immortal && m_is_handle_table_initialized) {
 | |
|         this->FinalizeHandleTable();
 | |
|     }
 | |
| 
 | |
|     // Finish termination.
 | |
|     this->FinishTermination();
 | |
| }
 | |
| 
 | |
| Result KProcess::StartTermination() {
 | |
|     // Finalize the handle table when we're done, if the process isn't immortal.
 | |
|     SCOPE_EXIT({
 | |
|         if (!m_is_immortal) {
 | |
|             this->FinalizeHandleTable();
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     // Terminate child threads other than the current one.
 | |
|     R_RETURN(TerminateChildren(m_kernel, this, GetCurrentThreadPointer(m_kernel)));
 | |
| }
 | |
| 
 | |
| void KProcess::FinishTermination() {
 | |
|     // Only allow termination to occur if the process isn't immortal.
 | |
|     if (!m_is_immortal) {
 | |
|         // Release resource limit hint.
 | |
|         if (m_resource_limit != nullptr) {
 | |
|             m_memory_release_hint = this->GetUsedNonSystemUserPhysicalMemorySize();
 | |
|             m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, 0,
 | |
|                                       m_memory_release_hint);
 | |
|         }
 | |
| 
 | |
|         // Change state.
 | |
|         {
 | |
|             KScopedSchedulerLock sl(m_kernel);
 | |
|             this->ChangeState(State::Terminated);
 | |
|         }
 | |
| 
 | |
|         // Close.
 | |
|         this->Close();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::Exit() {
 | |
|     // Determine whether we need to start terminating
 | |
|     bool needs_terminate = false;
 | |
|     {
 | |
|         KScopedLightLock lk(m_state_lock);
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|         ASSERT(m_state != State::Created);
 | |
|         ASSERT(m_state != State::CreatedAttached);
 | |
|         ASSERT(m_state != State::Crashed);
 | |
|         ASSERT(m_state != State::Terminated);
 | |
|         if (m_state == State::Running || m_state == State::RunningAttached ||
 | |
|             m_state == State::DebugBreak) {
 | |
|             this->ChangeState(State::Terminating);
 | |
|             needs_terminate = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we need to start termination, do so.
 | |
|     if (needs_terminate) {
 | |
|         this->StartTermination();
 | |
| 
 | |
|         // Register the process as a work task.
 | |
|         m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
 | |
|     }
 | |
| 
 | |
|     // Exit the current thread.
 | |
|     GetCurrentThread(m_kernel).Exit();
 | |
| }
 | |
| 
 | |
| Result KProcess::Terminate() {
 | |
|     // Determine whether we need to start terminating.
 | |
|     bool needs_terminate = false;
 | |
|     {
 | |
|         KScopedLightLock lk(m_state_lock);
 | |
| 
 | |
|         // Check whether we're allowed to terminate.
 | |
|         R_UNLESS(m_state != State::Created, ResultInvalidState);
 | |
|         R_UNLESS(m_state != State::CreatedAttached, ResultInvalidState);
 | |
| 
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|         if (m_state == State::Running || m_state == State::RunningAttached ||
 | |
|             m_state == State::Crashed || m_state == State::DebugBreak) {
 | |
|             this->ChangeState(State::Terminating);
 | |
|             needs_terminate = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we need to terminate, do so.
 | |
|     if (needs_terminate) {
 | |
|         // Start termination.
 | |
|         if (R_SUCCEEDED(this->StartTermination())) {
 | |
|             // Finish termination.
 | |
|             this->FinishTermination();
 | |
|         } else {
 | |
|             // Register the process as a work task.
 | |
|             m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit,
 | |
|                                                  this);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
 | |
|     // Lock ourselves, to prevent concurrent access.
 | |
|     KScopedLightLock lk(m_state_lock);
 | |
| 
 | |
|     // Try to find an existing info for the memory.
 | |
|     KSharedMemoryInfo* info = nullptr;
 | |
|     for (auto it = m_shared_memory_list.begin(); it != m_shared_memory_list.end(); ++it) {
 | |
|         if (it->GetSharedMemory() == shmem) {
 | |
|             info = std::addressof(*it);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we didn't find an info, create one.
 | |
|     if (info == nullptr) {
 | |
|         // Allocate a new info.
 | |
|         info = KSharedMemoryInfo::Allocate(m_kernel);
 | |
|         R_UNLESS(info != nullptr, ResultOutOfResource);
 | |
| 
 | |
|         // Initialize the info and add it to our list.
 | |
|         info->Initialize(shmem);
 | |
|         m_shared_memory_list.push_back(*info);
 | |
|     }
 | |
| 
 | |
|     // Open a reference to the shared memory and its info.
 | |
|     shmem->Open();
 | |
|     info->Open();
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| void KProcess::RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
 | |
|     // Lock ourselves, to prevent concurrent access.
 | |
|     KScopedLightLock lk(m_state_lock);
 | |
| 
 | |
|     // Find an existing info for the memory.
 | |
|     KSharedMemoryInfo* info = nullptr;
 | |
|     auto it = m_shared_memory_list.begin();
 | |
|     for (; it != m_shared_memory_list.end(); ++it) {
 | |
|         if (it->GetSharedMemory() == shmem) {
 | |
|             info = std::addressof(*it);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ASSERT(info != nullptr);
 | |
| 
 | |
|     // Close a reference to the info and its memory.
 | |
|     if (info->Close()) {
 | |
|         m_shared_memory_list.erase(it);
 | |
|         KSharedMemoryInfo::Free(m_kernel, info);
 | |
|     }
 | |
| 
 | |
|     shmem->Close();
 | |
| }
 | |
| 
 | |
| Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
 | |
|     KThreadLocalPage* tlp = nullptr;
 | |
|     KProcessAddress tlr = 0;
 | |
| 
 | |
|     // See if we can get a region from a partially used TLP.
 | |
|     {
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|         if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
 | |
|             tlr = it->Reserve();
 | |
|             ASSERT(tlr != 0);
 | |
| 
 | |
|             if (it->IsAllUsed()) {
 | |
|                 tlp = std::addressof(*it);
 | |
|                 m_partially_used_tlp_tree.erase(it);
 | |
|                 m_fully_used_tlp_tree.insert(*tlp);
 | |
|             }
 | |
| 
 | |
|             *out = tlr;
 | |
|             R_SUCCEED();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Allocate a new page.
 | |
|     tlp = KThreadLocalPage::Allocate(m_kernel);
 | |
|     R_UNLESS(tlp != nullptr, ResultOutOfMemory);
 | |
|     ON_RESULT_FAILURE {
 | |
|         KThreadLocalPage::Free(m_kernel, tlp);
 | |
|     };
 | |
| 
 | |
|     // Initialize the new page.
 | |
|     R_TRY(tlp->Initialize(m_kernel, this));
 | |
| 
 | |
|     // Reserve a TLR.
 | |
|     tlr = tlp->Reserve();
 | |
|     ASSERT(tlr != 0);
 | |
| 
 | |
|     // Insert into our tree.
 | |
|     {
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
|         if (tlp->IsAllUsed()) {
 | |
|             m_fully_used_tlp_tree.insert(*tlp);
 | |
|         } else {
 | |
|             m_partially_used_tlp_tree.insert(*tlp);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // We succeeded!
 | |
|     *out = tlr;
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
 | |
|     KThreadLocalPage* page_to_free = nullptr;
 | |
| 
 | |
|     // Release the region.
 | |
|     {
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|         // Try to find the page in the partially used list.
 | |
|         auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
 | |
|         if (it == m_partially_used_tlp_tree.end()) {
 | |
|             // If we don't find it, it has to be in the fully used list.
 | |
|             it = m_fully_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
 | |
|             R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
 | |
| 
 | |
|             // Release the region.
 | |
|             it->Release(addr);
 | |
| 
 | |
|             // Move the page out of the fully used list.
 | |
|             KThreadLocalPage* tlp = std::addressof(*it);
 | |
|             m_fully_used_tlp_tree.erase(it);
 | |
|             if (tlp->IsAllFree()) {
 | |
|                 page_to_free = tlp;
 | |
|             } else {
 | |
|                 m_partially_used_tlp_tree.insert(*tlp);
 | |
|             }
 | |
|         } else {
 | |
|             // Release the region.
 | |
|             it->Release(addr);
 | |
| 
 | |
|             // Handle the all-free case.
 | |
|             KThreadLocalPage* tlp = std::addressof(*it);
 | |
|             if (tlp->IsAllFree()) {
 | |
|                 m_partially_used_tlp_tree.erase(it);
 | |
|                 page_to_free = tlp;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we should free the page it was in, do so.
 | |
|     if (page_to_free != nullptr) {
 | |
|         page_to_free->Finalize();
 | |
| 
 | |
|         KThreadLocalPage::Free(m_kernel, page_to_free);
 | |
|     }
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value) {
 | |
|     if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
 | |
|         return rl->Reserve(which, value);
 | |
|     } else {
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value, s64 timeout) {
 | |
|     if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
 | |
|         return rl->Reserve(which, value, timeout);
 | |
|     } else {
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value) {
 | |
|     if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
 | |
|         rl->Release(which, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value, s64 hint) {
 | |
|     if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
 | |
|         rl->Release(which, value, hint);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::IncrementRunningThreadCount() {
 | |
|     ASSERT(m_num_running_threads.load() >= 0);
 | |
| 
 | |
|     ++m_num_running_threads;
 | |
| }
 | |
| 
 | |
| void KProcess::DecrementRunningThreadCount() {
 | |
|     ASSERT(m_num_running_threads.load() > 0);
 | |
| 
 | |
|     if (const auto prev = m_num_running_threads--; prev == 1) {
 | |
|         this->Terminate();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool KProcess::EnterUserException() {
 | |
|     // Get the current thread.
 | |
|     KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
 | |
|     ASSERT(this == cur_thread->GetOwnerProcess());
 | |
| 
 | |
|     // Check that we haven't already claimed the exception thread.
 | |
|     if (m_exception_thread == cur_thread) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Create the wait queue we'll be using.
 | |
|     ThreadQueueImplForKProcessEnterUserException wait_queue(m_kernel,
 | |
|                                                             std::addressof(m_exception_thread));
 | |
| 
 | |
|     // Claim the exception thread.
 | |
|     {
 | |
|         // Lock the scheduler.
 | |
|         KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|         // Check that we're not terminating.
 | |
|         if (cur_thread->IsTerminationRequested()) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // If we don't have an exception thread, we can just claim it directly.
 | |
|         if (m_exception_thread == nullptr) {
 | |
|             m_exception_thread = cur_thread;
 | |
|             KScheduler::SetSchedulerUpdateNeeded(m_kernel);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, we need to wait until we don't have an exception thread.
 | |
| 
 | |
|         // Add the current thread as a waiter on the current exception thread.
 | |
|         cur_thread->SetKernelAddressKey(
 | |
|             reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
 | |
|         m_exception_thread->AddWaiter(cur_thread);
 | |
| 
 | |
|         // Wait to claim the exception thread.
 | |
|         cur_thread->BeginWait(std::addressof(wait_queue));
 | |
|     }
 | |
| 
 | |
|     // If our wait didn't end due to thread termination, we succeeded.
 | |
|     return ResultTerminationRequested != cur_thread->GetWaitResult();
 | |
| }
 | |
| 
 | |
| bool KProcess::LeaveUserException() {
 | |
|     return this->ReleaseUserException(GetCurrentThreadPointer(m_kernel));
 | |
| }
 | |
| 
 | |
| bool KProcess::ReleaseUserException(KThread* thread) {
 | |
|     KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|     if (m_exception_thread == thread) {
 | |
|         m_exception_thread = nullptr;
 | |
| 
 | |
|         // Remove waiter thread.
 | |
|         bool has_waiters;
 | |
|         if (KThread* next = thread->RemoveKernelWaiterByKey(
 | |
|                 std::addressof(has_waiters),
 | |
|                 reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
 | |
|             next != nullptr) {
 | |
|             next->EndWait(ResultSuccess);
 | |
|         }
 | |
| 
 | |
|         KScheduler::SetSchedulerUpdateNeeded(m_kernel);
 | |
| 
 | |
|         return true;
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::RegisterThread(KThread* thread) {
 | |
|     KScopedLightLock lk(m_list_lock);
 | |
| 
 | |
|     m_thread_list.push_back(*thread);
 | |
| }
 | |
| 
 | |
| void KProcess::UnregisterThread(KThread* thread) {
 | |
|     KScopedLightLock lk(m_list_lock);
 | |
| 
 | |
|     m_thread_list.erase(m_thread_list.iterator_to(*thread));
 | |
| }
 | |
| 
 | |
| size_t KProcess::GetUsedUserPhysicalMemorySize() const {
 | |
|     const size_t norm_size = m_page_table.GetNormalMemorySize();
 | |
|     const size_t other_size = m_code_size + m_main_thread_stack_size;
 | |
|     const size_t sec_size = this->GetRequiredSecureMemorySizeNonDefault();
 | |
| 
 | |
|     return norm_size + other_size + sec_size;
 | |
| }
 | |
| 
 | |
| size_t KProcess::GetTotalUserPhysicalMemorySize() const {
 | |
|     // Get the amount of free and used size.
 | |
|     const size_t free_size =
 | |
|         m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
 | |
|     const size_t max_size = m_max_process_memory;
 | |
| 
 | |
|     // Determine used size.
 | |
|     // NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
 | |
|     // GetUsedUserPhysicalMemorySize().
 | |
|     const size_t norm_size = m_page_table.GetNormalMemorySize();
 | |
|     const size_t other_size = m_code_size + m_main_thread_stack_size;
 | |
|     const size_t sec_size = this->GetRequiredSecureMemorySize();
 | |
|     const size_t used_size = norm_size + other_size + sec_size;
 | |
| 
 | |
|     // NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
 | |
|     // does it this way.
 | |
|     if (used_size + free_size > max_size) {
 | |
|         return max_size;
 | |
|     } else {
 | |
|         return free_size + this->GetUsedUserPhysicalMemorySize();
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t KProcess::GetUsedNonSystemUserPhysicalMemorySize() const {
 | |
|     const size_t norm_size = m_page_table.GetNormalMemorySize();
 | |
|     const size_t other_size = m_code_size + m_main_thread_stack_size;
 | |
| 
 | |
|     return norm_size + other_size;
 | |
| }
 | |
| 
 | |
| size_t KProcess::GetTotalNonSystemUserPhysicalMemorySize() const {
 | |
|     // Get the amount of free and used size.
 | |
|     const size_t free_size =
 | |
|         m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
 | |
|     const size_t max_size = m_max_process_memory;
 | |
| 
 | |
|     // Determine used size.
 | |
|     // NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
 | |
|     // GetUsedUserPhysicalMemorySize().
 | |
|     const size_t norm_size = m_page_table.GetNormalMemorySize();
 | |
|     const size_t other_size = m_code_size + m_main_thread_stack_size;
 | |
|     const size_t sec_size = this->GetRequiredSecureMemorySize();
 | |
|     const size_t used_size = norm_size + other_size + sec_size;
 | |
| 
 | |
|     // NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
 | |
|     // does it this way.
 | |
|     if (used_size + free_size > max_size) {
 | |
|         return max_size - this->GetRequiredSecureMemorySizeNonDefault();
 | |
|     } else {
 | |
|         return free_size + this->GetUsedNonSystemUserPhysicalMemorySize();
 | |
|     }
 | |
| }
 | |
| 
 | |
| Result KProcess::Run(s32 priority, size_t stack_size) {
 | |
|     // Lock ourselves, to prevent concurrent access.
 | |
|     KScopedLightLock lk(m_state_lock);
 | |
| 
 | |
|     // Validate that we're in a state where we can initialize.
 | |
|     const auto state = m_state;
 | |
|     R_UNLESS(state == State::Created || state == State::CreatedAttached, ResultInvalidState);
 | |
| 
 | |
|     // Place a tentative reservation of a thread for this process.
 | |
|     KScopedResourceReservation thread_reservation(this, Svc::LimitableResource::ThreadCountMax);
 | |
|     R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
 | |
| 
 | |
|     // Ensure that we haven't already allocated stack.
 | |
|     ASSERT(m_main_thread_stack_size == 0);
 | |
| 
 | |
|     // Ensure that we're allocating a valid stack.
 | |
|     stack_size = Common::AlignUp(stack_size, PageSize);
 | |
|     R_UNLESS(stack_size + m_code_size <= m_max_process_memory, ResultOutOfMemory);
 | |
|     R_UNLESS(stack_size + m_code_size >= m_code_size, ResultOutOfMemory);
 | |
| 
 | |
|     // Place a tentative reservation of memory for our new stack.
 | |
|     KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
 | |
|                                                stack_size);
 | |
|     R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
 | |
| 
 | |
|     // Allocate and map our stack.
 | |
|     KProcessAddress stack_top = 0;
 | |
|     if (stack_size) {
 | |
|         KProcessAddress stack_bottom;
 | |
|         R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
 | |
|                                     KMemoryState::Stack, KMemoryPermission::UserReadWrite));
 | |
| 
 | |
|         stack_top = stack_bottom + stack_size;
 | |
|         m_main_thread_stack_size = stack_size;
 | |
|     }
 | |
| 
 | |
|     // Ensure our stack is safe to clean up on exit.
 | |
|     ON_RESULT_FAILURE {
 | |
|         if (m_main_thread_stack_size) {
 | |
|             ASSERT(R_SUCCEEDED(m_page_table.UnmapPages(stack_top - m_main_thread_stack_size,
 | |
|                                                        m_main_thread_stack_size / PageSize,
 | |
|                                                        KMemoryState::Stack)));
 | |
|             m_main_thread_stack_size = 0;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // Set our maximum heap size.
 | |
|     R_TRY(m_page_table.SetMaxHeapSize(m_max_process_memory -
 | |
|                                       (m_main_thread_stack_size + m_code_size)));
 | |
| 
 | |
|     // Initialize our handle table.
 | |
|     R_TRY(this->InitializeHandleTable(m_capabilities.GetHandleTableSize()));
 | |
|     ON_RESULT_FAILURE_2 {
 | |
|         this->FinalizeHandleTable();
 | |
|     };
 | |
| 
 | |
|     // Create a new thread for the process.
 | |
|     KThread* main_thread = KThread::Create(m_kernel);
 | |
|     R_UNLESS(main_thread != nullptr, ResultOutOfResource);
 | |
|     SCOPE_EXIT({ main_thread->Close(); });
 | |
| 
 | |
|     // Initialize the thread.
 | |
|     R_TRY(KThread::InitializeUserThread(m_kernel.System(), main_thread, this->GetEntryPoint(), 0,
 | |
|                                         stack_top, priority, m_ideal_core_id, this));
 | |
| 
 | |
|     // Register the thread, and commit our reservation.
 | |
|     KThread::Register(m_kernel, main_thread);
 | |
|     thread_reservation.Commit();
 | |
| 
 | |
|     // Add the thread to our handle table.
 | |
|     Handle thread_handle;
 | |
|     R_TRY(m_handle_table.Add(std::addressof(thread_handle), main_thread));
 | |
| 
 | |
|     // Set the thread arguments.
 | |
|     main_thread->GetContext().r[0] = 0;
 | |
|     main_thread->GetContext().r[1] = thread_handle;
 | |
| 
 | |
|     // Update our state.
 | |
|     this->ChangeState((state == State::Created) ? State::Running : State::RunningAttached);
 | |
|     ON_RESULT_FAILURE_2 {
 | |
|         this->ChangeState(state);
 | |
|     };
 | |
| 
 | |
|     // Suspend for debug, if we should.
 | |
|     if (m_kernel.System().DebuggerEnabled()) {
 | |
|         main_thread->RequestSuspend(SuspendType::Debug);
 | |
|     }
 | |
| 
 | |
|     // Run our thread.
 | |
|     R_TRY(main_thread->Run());
 | |
| 
 | |
|     // Open a reference to represent that we're running.
 | |
|     this->Open();
 | |
| 
 | |
|     // We succeeded! Commit our memory reservation.
 | |
|     mem_reservation.Commit();
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::Reset() {
 | |
|     // Lock the process and the scheduler.
 | |
|     KScopedLightLock lk(m_state_lock);
 | |
|     KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|     // Validate that we're in a state that we can reset.
 | |
|     R_UNLESS(m_state != State::Terminated, ResultInvalidState);
 | |
|     R_UNLESS(m_is_signaled, ResultInvalidState);
 | |
| 
 | |
|     // Clear signaled.
 | |
|     m_is_signaled = false;
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| Result KProcess::SetActivity(Svc::ProcessActivity activity) {
 | |
|     // Lock ourselves and the scheduler.
 | |
|     KScopedLightLock lk(m_state_lock);
 | |
|     KScopedLightLock list_lk(m_list_lock);
 | |
|     KScopedSchedulerLock sl(m_kernel);
 | |
| 
 | |
|     // Validate our state.
 | |
|     R_UNLESS(m_state != State::Terminating, ResultInvalidState);
 | |
|     R_UNLESS(m_state != State::Terminated, ResultInvalidState);
 | |
| 
 | |
|     // Either pause or resume.
 | |
|     if (activity == Svc::ProcessActivity::Paused) {
 | |
|         // Verify that we're not suspended.
 | |
|         R_UNLESS(!m_is_suspended, ResultInvalidState);
 | |
| 
 | |
|         // Suspend all threads.
 | |
|         auto end = this->GetThreadList().end();
 | |
|         for (auto it = this->GetThreadList().begin(); it != end; ++it) {
 | |
|             it->RequestSuspend(SuspendType::Process);
 | |
|         }
 | |
| 
 | |
|         // Set ourselves as suspended.
 | |
|         this->SetSuspended(true);
 | |
|     } else {
 | |
|         ASSERT(activity == Svc::ProcessActivity::Runnable);
 | |
| 
 | |
|         // Verify that we're suspended.
 | |
|         R_UNLESS(m_is_suspended, ResultInvalidState);
 | |
| 
 | |
|         // Resume all threads.
 | |
|         auto end = this->GetThreadList().end();
 | |
|         for (auto it = this->GetThreadList().begin(); it != end; ++it) {
 | |
|             it->Resume(SuspendType::Process);
 | |
|         }
 | |
| 
 | |
|         // Set ourselves as resumed.
 | |
|         this->SetSuspended(false);
 | |
|     }
 | |
| 
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| void KProcess::PinCurrentThread() {
 | |
|     ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
 | |
| 
 | |
|     // Get the current thread.
 | |
|     const s32 core_id = GetCurrentCoreId(m_kernel);
 | |
|     KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
 | |
| 
 | |
|     // If the thread isn't terminated, pin it.
 | |
|     if (!cur_thread->IsTerminationRequested()) {
 | |
|         // Pin it.
 | |
|         this->PinThread(core_id, cur_thread);
 | |
|         cur_thread->Pin(core_id);
 | |
| 
 | |
|         // An update is needed.
 | |
|         KScheduler::SetSchedulerUpdateNeeded(m_kernel);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KProcess::UnpinCurrentThread() {
 | |
|     ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
 | |
| 
 | |
|     // Get the current thread.
 | |
|     const s32 core_id = GetCurrentCoreId(m_kernel);
 | |
|     KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
 | |
| 
 | |
|     // Unpin it.
 | |
|     cur_thread->Unpin();
 | |
|     this->UnpinThread(core_id, cur_thread);
 | |
| 
 | |
|     // An update is needed.
 | |
|     KScheduler::SetSchedulerUpdateNeeded(m_kernel);
 | |
| }
 | |
| 
 | |
| void KProcess::UnpinThread(KThread* thread) {
 | |
|     ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
 | |
| 
 | |
|     // Get the thread's core id.
 | |
|     const auto core_id = thread->GetActiveCore();
 | |
| 
 | |
|     // Unpin it.
 | |
|     this->UnpinThread(core_id, thread);
 | |
|     thread->Unpin();
 | |
| 
 | |
|     // An update is needed.
 | |
|     KScheduler::SetSchedulerUpdateNeeded(m_kernel);
 | |
| }
 | |
| 
 | |
| Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
 | |
|                                s32 max_out_count) {
 | |
|     // TODO: use current memory reference
 | |
|     auto& memory = m_kernel.System().ApplicationMemory();
 | |
| 
 | |
|     // Lock the list.
 | |
|     KScopedLightLock lk(m_list_lock);
 | |
| 
 | |
|     // Iterate over the list.
 | |
|     s32 count = 0;
 | |
|     auto end = this->GetThreadList().end();
 | |
|     for (auto it = this->GetThreadList().begin(); it != end; ++it) {
 | |
|         // If we're within array bounds, write the id.
 | |
|         if (count < max_out_count) {
 | |
|             // Get the thread id.
 | |
|             KThread* thread = std::addressof(*it);
 | |
|             const u64 id = thread->GetId();
 | |
| 
 | |
|             // Copy the id to userland.
 | |
|             memory.Write64(out_thread_ids + count * sizeof(u64), id);
 | |
|         }
 | |
| 
 | |
|         // Increment the count.
 | |
|         ++count;
 | |
|     }
 | |
| 
 | |
|     // We successfully iterated the list.
 | |
|     *out_num_threads = count;
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
 | |
| 
 | |
| KProcess::KProcess(KernelCore& kernel)
 | |
|     : KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
 | |
|       m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
 | |
|       m_handle_table{kernel} {}
 | |
| KProcess::~KProcess() = default;
 | |
| 
 | |
| Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
 | |
|                                   KProcessAddress aslr_space_start, bool is_hbl) {
 | |
|     // Create a resource limit for the process.
 | |
|     const auto physical_memory_size =
 | |
|         m_kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application);
 | |
|     auto* res_limit =
 | |
|         Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
 | |
| 
 | |
|     // Ensure we maintain a clean state on exit.
 | |
|     SCOPE_EXIT({ res_limit->Close(); });
 | |
| 
 | |
|     // Declare flags and code address.
 | |
|     Svc::CreateProcessFlag flag{};
 | |
|     u64 code_address{};
 | |
| 
 | |
|     // We are an application.
 | |
|     flag |= Svc::CreateProcessFlag::IsApplication;
 | |
| 
 | |
|     // If we are 64-bit, create as such.
 | |
|     if (metadata.Is64BitProgram()) {
 | |
|         flag |= Svc::CreateProcessFlag::Is64Bit;
 | |
|     }
 | |
| 
 | |
|     // Set the address space type and code address.
 | |
|     switch (metadata.GetAddressSpaceType()) {
 | |
|     case FileSys::ProgramAddressSpaceType::Is39Bit:
 | |
|         flag |= Svc::CreateProcessFlag::AddressSpace64Bit;
 | |
| 
 | |
|         // For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
 | |
|         // However, some (buggy) programs/libraries like skyline incorrectly depend on the
 | |
|         // existence of ASLR pages before the entry point, so we will adjust the load address
 | |
|         // to point to about 2GiB into the ASLR region.
 | |
|         code_address = 0x8000'0000;
 | |
|         break;
 | |
|     case FileSys::ProgramAddressSpaceType::Is36Bit:
 | |
|         flag |= Svc::CreateProcessFlag::AddressSpace64BitDeprecated;
 | |
|         code_address = 0x800'0000;
 | |
|         break;
 | |
|     case FileSys::ProgramAddressSpaceType::Is32Bit:
 | |
|         flag |= Svc::CreateProcessFlag::AddressSpace32Bit;
 | |
|         code_address = 0x20'0000;
 | |
|         break;
 | |
|     case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
 | |
|         flag |= Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias;
 | |
|         code_address = 0x20'0000;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     Svc::CreateProcessParameter params{
 | |
|         .name = {},
 | |
|         .version = {},
 | |
|         .program_id = metadata.GetTitleID(),
 | |
|         .code_address = code_address + GetInteger(aslr_space_start),
 | |
|         .code_num_pages = static_cast<s32>(code_size / PageSize),
 | |
|         .flags = flag,
 | |
|         .reslimit = Svc::InvalidHandle,
 | |
|         .system_resource_num_pages = static_cast<s32>(metadata.GetSystemResourceSize() / PageSize),
 | |
|     };
 | |
| 
 | |
|     // Set the process name.
 | |
|     const auto& name = metadata.GetName();
 | |
|     static_assert(sizeof(params.name) <= sizeof(name));
 | |
|     std::memcpy(params.name.data(), name.data(), sizeof(params.name));
 | |
| 
 | |
|     // Initialize for application process.
 | |
|     R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit,
 | |
|                            KMemoryManager::Pool::Application, aslr_space_start));
 | |
| 
 | |
|     // Assign remaining properties.
 | |
|     m_is_hbl = is_hbl;
 | |
|     m_ideal_core_id = metadata.GetMainThreadCore();
 | |
| 
 | |
|     // Set up emulation context.
 | |
|     this->InitializeInterfaces();
 | |
| 
 | |
|     // We succeeded.
 | |
|     R_SUCCEED();
 | |
| }
 | |
| 
 | |
| void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
 | |
|     const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
 | |
|                                       Svc::MemoryPermission permission) {
 | |
|         m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
 | |
|     };
 | |
| 
 | |
|     this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
 | |
| 
 | |
|     ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
 | |
|     ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
 | |
|     ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
 | |
| 
 | |
| #ifdef HAS_NCE
 | |
|     if (Settings::IsNceEnabled()) {
 | |
|         auto& buffer = m_kernel.System().DeviceMemory().buffer;
 | |
|         const auto& code = code_set.CodeSegment();
 | |
|         const auto& patch = code_set.PatchSegment();
 | |
|         buffer.Protect(GetInteger(base_addr + code.addr), code.size, true, true, true);
 | |
|         buffer.Protect(GetInteger(base_addr + patch.addr), patch.size, true, true, true);
 | |
|         ReprotectSegment(code_set.PatchSegment(), Svc::MemoryPermission::None);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void KProcess::InitializeInterfaces() {
 | |
|     this->GetMemory().SetCurrentPageTable(*this);
 | |
| 
 | |
| #ifdef HAS_NCE
 | |
|     if (this->Is64Bit() && Settings::IsNceEnabled()) {
 | |
|         for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
 | |
|             m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i);
 | |
|         }
 | |
|     } else
 | |
| #endif
 | |
|         if (this->Is64Bit()) {
 | |
|         for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
 | |
|             m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>(
 | |
|                 m_kernel.System(), m_kernel.IsMulticore(), this,
 | |
|                 static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i);
 | |
|         }
 | |
|     } else {
 | |
|         for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
 | |
|             m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>(
 | |
|                 m_kernel.System(), m_kernel.IsMulticore(), this,
 | |
|                 static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
 | |
|     const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
 | |
|         return wp.type == DebugWatchpointType::None;
 | |
|     })};
 | |
| 
 | |
|     if (watch == m_watchpoints.end()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     watch->start_address = addr;
 | |
|     watch->end_address = addr + size;
 | |
|     watch->type = type;
 | |
| 
 | |
|     for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
 | |
|          page += PageSize) {
 | |
|         m_debug_page_refcounts[page]++;
 | |
|         this->GetMemory().MarkRegionDebug(page, PageSize, true);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
 | |
|     const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
 | |
|         return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
 | |
|     })};
 | |
| 
 | |
|     if (watch == m_watchpoints.end()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     watch->start_address = 0;
 | |
|     watch->end_address = 0;
 | |
|     watch->type = DebugWatchpointType::None;
 | |
| 
 | |
|     for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
 | |
|          page += PageSize) {
 | |
|         m_debug_page_refcounts[page]--;
 | |
|         if (!m_debug_page_refcounts[page]) {
 | |
|             this->GetMemory().MarkRegionDebug(page, PageSize, false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| Core::Memory::Memory& KProcess::GetMemory() const {
 | |
|     // TODO: per-process memory
 | |
|     return m_kernel.System().ApplicationMemory();
 | |
| }
 | |
| 
 | |
| } // namespace Kernel
 | 
