yuzu/src/video_core/regs_pipeline.h
Yuri Kunde Schlesner 553e672777 VideoCore: Split u64 Pica reg unions into 2 separate u32 unions
This eliminates UB when aliasing it with the array of u32 regs, and
is compatible with non-LE architectures.
2017-02-09 00:04:25 -08:00

231 lines
7.4 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Pica {
struct PipelineRegs {
enum class VertexAttributeFormat : u32 {
BYTE = 0,
UBYTE = 1,
SHORT = 2,
FLOAT = 3,
};
struct {
BitField<0, 29, u32> base_address;
PAddr GetPhysicalBaseAddress() const {
return base_address * 8;
}
// Descriptor for internal vertex attributes
union {
BitField<0, 2, VertexAttributeFormat> format0; // size of one element
BitField<2, 2, u32> size0; // number of elements minus 1
BitField<4, 2, VertexAttributeFormat> format1;
BitField<6, 2, u32> size1;
BitField<8, 2, VertexAttributeFormat> format2;
BitField<10, 2, u32> size2;
BitField<12, 2, VertexAttributeFormat> format3;
BitField<14, 2, u32> size3;
BitField<16, 2, VertexAttributeFormat> format4;
BitField<18, 2, u32> size4;
BitField<20, 2, VertexAttributeFormat> format5;
BitField<22, 2, u32> size5;
BitField<24, 2, VertexAttributeFormat> format6;
BitField<26, 2, u32> size6;
BitField<28, 2, VertexAttributeFormat> format7;
BitField<30, 2, u32> size7;
};
union {
BitField<0, 2, VertexAttributeFormat> format8;
BitField<2, 2, u32> size8;
BitField<4, 2, VertexAttributeFormat> format9;
BitField<6, 2, u32> size9;
BitField<8, 2, VertexAttributeFormat> format10;
BitField<10, 2, u32> size10;
BitField<12, 2, VertexAttributeFormat> format11;
BitField<14, 2, u32> size11;
BitField<16, 12, u32> attribute_mask;
// number of total attributes minus 1
BitField<28, 4, u32> max_attribute_index;
};
inline VertexAttributeFormat GetFormat(int n) const {
VertexAttributeFormat formats[] = {format0, format1, format2, format3,
format4, format5, format6, format7,
format8, format9, format10, format11};
return formats[n];
}
inline int GetNumElements(int n) const {
u32 sizes[] = {size0, size1, size2, size3, size4, size5,
size6, size7, size8, size9, size10, size11};
return (int)sizes[n] + 1;
}
inline int GetElementSizeInBytes(int n) const {
return (GetFormat(n) == VertexAttributeFormat::FLOAT)
? 4
: (GetFormat(n) == VertexAttributeFormat::SHORT) ? 2 : 1;
}
inline int GetStride(int n) const {
return GetNumElements(n) * GetElementSizeInBytes(n);
}
inline bool IsDefaultAttribute(int id) const {
return (id >= 12) || (attribute_mask & (1ULL << id)) != 0;
}
inline int GetNumTotalAttributes() const {
return (int)max_attribute_index + 1;
}
// Attribute loaders map the source vertex data to input attributes
// This e.g. allows to load different attributes from different memory locations
struct {
// Source attribute data offset from the base address
u32 data_offset;
union {
BitField<0, 4, u32> comp0;
BitField<4, 4, u32> comp1;
BitField<8, 4, u32> comp2;
BitField<12, 4, u32> comp3;
BitField<16, 4, u32> comp4;
BitField<20, 4, u32> comp5;
BitField<24, 4, u32> comp6;
BitField<28, 4, u32> comp7;
};
union {
BitField<0, 4, u32> comp8;
BitField<4, 4, u32> comp9;
BitField<8, 4, u32> comp10;
BitField<12, 4, u32> comp11;
// bytes for a single vertex in this loader
BitField<16, 8, u32> byte_count;
BitField<28, 4, u32> component_count;
};
inline int GetComponent(int n) const {
u32 components[] = {comp0, comp1, comp2, comp3, comp4, comp5,
comp6, comp7, comp8, comp9, comp10, comp11};
return (int)components[n];
}
} attribute_loaders[12];
} vertex_attributes;
struct {
enum IndexFormat : u32 {
BYTE = 0,
SHORT = 1,
};
union {
BitField<0, 31, u32> offset; // relative to base attribute address
BitField<31, 1, IndexFormat> format;
};
} index_array;
// Number of vertices to render
u32 num_vertices;
INSERT_PADDING_WORDS(0x1);
// The index of the first vertex to render
u32 vertex_offset;
INSERT_PADDING_WORDS(0x3);
// These two trigger rendering of triangles
u32 trigger_draw;
u32 trigger_draw_indexed;
INSERT_PADDING_WORDS(0x2);
// These registers are used to setup the default "fall-back" vertex shader attributes
struct {
// Index of the current default attribute
u32 index;
// Writing to these registers sets the "current" default attribute.
u32 set_value[3];
} vs_default_attributes_setup;
INSERT_PADDING_WORDS(0x2);
struct {
// There are two channels that can be used to configure the next command buffer, which can
// be then executed by writing to the "trigger" registers. There are two reasons why a game
// might use this feature:
// 1) With this, an arbitrary number of additional command buffers may be executed in
// sequence without requiring any intervention of the CPU after the initial one is
// kicked off.
// 2) Games can configure these registers to provide a command list subroutine mechanism.
BitField<0, 20, u32> size[2]; ///< Size (in bytes / 8) of each channel's command buffer
BitField<0, 28, u32> addr[2]; ///< Physical address / 8 of each channel's command buffer
u32 trigger[2]; ///< Triggers execution of the channel's command buffer when written to
unsigned GetSize(unsigned index) const {
ASSERT(index < 2);
return 8 * size[index];
}
PAddr GetPhysicalAddress(unsigned index) const {
ASSERT(index < 2);
return (PAddr)(8 * addr[index]);
}
} command_buffer;
INSERT_PADDING_WORDS(4);
/// Number of input attributes to the vertex shader minus 1
BitField<0, 4, u32> max_input_attrib_index;
INSERT_PADDING_WORDS(2);
enum class GPUMode : u32 {
Drawing = 0,
Configuring = 1,
};
GPUMode gpu_mode;
INSERT_PADDING_WORDS(0x18);
enum class TriangleTopology : u32 {
List = 0,
Strip = 1,
Fan = 2,
Shader = 3, // Programmable setup unit implemented in a geometry shader
};
BitField<8, 2, TriangleTopology> triangle_topology;
u32 restart_primitive;
INSERT_PADDING_WORDS(0x20);
};
static_assert(sizeof(PipelineRegs) == 0x80 * sizeof(u32), "PipelineRegs struct has incorrect size");
} // namespace Pica