mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2024-11-16 10:50:06 +00:00
1631 lines
48 KiB
C++
1631 lines
48 KiB
C++
// Copyright 2016 The University of North Carolina at Chapel Hill
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
// <http://gamma.cs.unc.edu/FasTC/>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#include "video_core/textures/astc.h"
|
|
|
|
class BitStream {
|
|
public:
|
|
explicit BitStream(unsigned char* ptr, int nBits = 0, int start_offset = 0)
|
|
: m_NumBits(nBits), m_CurByte(ptr), m_NextBit(start_offset % 8) {}
|
|
|
|
~BitStream() = default;
|
|
|
|
int GetBitsWritten() const {
|
|
return m_BitsWritten;
|
|
}
|
|
|
|
void WriteBitsR(unsigned int val, unsigned int nBits) {
|
|
for (unsigned int i = 0; i < nBits; i++) {
|
|
WriteBit((val >> (nBits - i - 1)) & 1);
|
|
}
|
|
}
|
|
|
|
void WriteBits(unsigned int val, unsigned int nBits) {
|
|
for (unsigned int i = 0; i < nBits; i++) {
|
|
WriteBit((val >> i) & 1);
|
|
}
|
|
}
|
|
|
|
int GetBitsRead() const {
|
|
return m_BitsRead;
|
|
}
|
|
|
|
int ReadBit() {
|
|
|
|
int bit = *m_CurByte >> m_NextBit++;
|
|
while (m_NextBit >= 8) {
|
|
m_NextBit -= 8;
|
|
m_CurByte++;
|
|
}
|
|
|
|
m_BitsRead++;
|
|
return bit & 1;
|
|
}
|
|
|
|
unsigned int ReadBits(unsigned int nBits) {
|
|
unsigned int ret = 0;
|
|
for (unsigned int i = 0; i < nBits; i++) {
|
|
ret |= (ReadBit() & 1) << i;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
private:
|
|
void WriteBit(int b) {
|
|
|
|
if (done)
|
|
return;
|
|
|
|
const unsigned int mask = 1 << m_NextBit++;
|
|
|
|
// clear the bit
|
|
*m_CurByte &= ~mask;
|
|
|
|
// Write the bit, if necessary
|
|
if (b)
|
|
*m_CurByte |= mask;
|
|
|
|
// Next byte?
|
|
if (m_NextBit >= 8) {
|
|
m_CurByte += 1;
|
|
m_NextBit = 0;
|
|
}
|
|
|
|
done = done || ++m_BitsWritten >= m_NumBits;
|
|
}
|
|
|
|
int m_BitsWritten = 0;
|
|
const int m_NumBits;
|
|
unsigned char* m_CurByte;
|
|
int m_NextBit = 0;
|
|
int m_BitsRead = 0;
|
|
|
|
bool done = false;
|
|
};
|
|
|
|
template <typename IntType>
|
|
class Bits {
|
|
public:
|
|
explicit Bits(const IntType& v) : m_Bits(v) {}
|
|
|
|
Bits(const Bits&) = delete;
|
|
Bits& operator=(const Bits&) = delete;
|
|
|
|
uint8_t operator[](uint32_t bitPos) const {
|
|
return static_cast<uint8_t>((m_Bits >> bitPos) & 1);
|
|
}
|
|
|
|
IntType operator()(uint32_t start, uint32_t end) const {
|
|
if (start == end) {
|
|
return (*this)[start];
|
|
} else if (start > end) {
|
|
uint32_t t = start;
|
|
start = end;
|
|
end = t;
|
|
}
|
|
|
|
uint64_t mask = (1 << (end - start + 1)) - 1;
|
|
return (m_Bits >> start) & mask;
|
|
}
|
|
|
|
private:
|
|
const IntType& m_Bits;
|
|
};
|
|
|
|
enum EIntegerEncoding { eIntegerEncoding_JustBits, eIntegerEncoding_Quint, eIntegerEncoding_Trit };
|
|
|
|
class IntegerEncodedValue {
|
|
private:
|
|
const EIntegerEncoding m_Encoding;
|
|
const uint32_t m_NumBits;
|
|
uint32_t m_BitValue;
|
|
union {
|
|
uint32_t m_QuintValue;
|
|
uint32_t m_TritValue;
|
|
};
|
|
|
|
public:
|
|
// Jank, but we're not doing any heavy lifting in this class, so it's
|
|
// probably OK. It allows us to use these in std::vectors...
|
|
IntegerEncodedValue& operator=(const IntegerEncodedValue& other) {
|
|
new (this) IntegerEncodedValue(other);
|
|
return *this;
|
|
}
|
|
|
|
IntegerEncodedValue(EIntegerEncoding encoding, uint32_t numBits)
|
|
: m_Encoding(encoding), m_NumBits(numBits) {}
|
|
|
|
EIntegerEncoding GetEncoding() const {
|
|
return m_Encoding;
|
|
}
|
|
uint32_t BaseBitLength() const {
|
|
return m_NumBits;
|
|
}
|
|
|
|
uint32_t GetBitValue() const {
|
|
return m_BitValue;
|
|
}
|
|
void SetBitValue(uint32_t val) {
|
|
m_BitValue = val;
|
|
}
|
|
|
|
uint32_t GetTritValue() const {
|
|
return m_TritValue;
|
|
}
|
|
void SetTritValue(uint32_t val) {
|
|
m_TritValue = val;
|
|
}
|
|
|
|
uint32_t GetQuintValue() const {
|
|
return m_QuintValue;
|
|
}
|
|
void SetQuintValue(uint32_t val) {
|
|
m_QuintValue = val;
|
|
}
|
|
|
|
bool MatchesEncoding(const IntegerEncodedValue& other) const {
|
|
return m_Encoding == other.m_Encoding && m_NumBits == other.m_NumBits;
|
|
}
|
|
|
|
// Returns the number of bits required to encode nVals values.
|
|
uint32_t GetBitLength(uint32_t nVals) const {
|
|
uint32_t totalBits = m_NumBits * nVals;
|
|
if (m_Encoding == eIntegerEncoding_Trit) {
|
|
totalBits += (nVals * 8 + 4) / 5;
|
|
} else if (m_Encoding == eIntegerEncoding_Quint) {
|
|
totalBits += (nVals * 7 + 2) / 3;
|
|
}
|
|
return totalBits;
|
|
}
|
|
|
|
// Count the number of bits set in a number.
|
|
static inline uint32_t Popcnt(uint32_t n) {
|
|
uint32_t c;
|
|
for (c = 0; n; c++) {
|
|
n &= n - 1;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// Returns a new instance of this struct that corresponds to the
|
|
// can take no more than maxval values
|
|
static IntegerEncodedValue CreateEncoding(uint32_t maxVal) {
|
|
while (maxVal > 0) {
|
|
uint32_t check = maxVal + 1;
|
|
|
|
// Is maxVal a power of two?
|
|
if (!(check & (check - 1))) {
|
|
return IntegerEncodedValue(eIntegerEncoding_JustBits, Popcnt(maxVal));
|
|
}
|
|
|
|
// Is maxVal of the type 3*2^n - 1?
|
|
if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
|
|
return IntegerEncodedValue(eIntegerEncoding_Trit, Popcnt(check / 3 - 1));
|
|
}
|
|
|
|
// Is maxVal of the type 5*2^n - 1?
|
|
if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
|
|
return IntegerEncodedValue(eIntegerEncoding_Quint, Popcnt(check / 5 - 1));
|
|
}
|
|
|
|
// Apparently it can't be represented with a bounded integer sequence...
|
|
// just iterate.
|
|
maxVal--;
|
|
}
|
|
return IntegerEncodedValue(eIntegerEncoding_JustBits, 0);
|
|
}
|
|
|
|
// Fills result with the values that are encoded in the given
|
|
// bitstream. We must know beforehand what the maximum possible
|
|
// value is, and how many values we're decoding.
|
|
static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result, BitStream& bits,
|
|
uint32_t maxRange, uint32_t nValues) {
|
|
// Determine encoding parameters
|
|
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
|
|
|
|
// Start decoding
|
|
uint32_t nValsDecoded = 0;
|
|
while (nValsDecoded < nValues) {
|
|
switch (val.GetEncoding()) {
|
|
case eIntegerEncoding_Quint:
|
|
DecodeQuintBlock(bits, result, val.BaseBitLength());
|
|
nValsDecoded += 3;
|
|
break;
|
|
|
|
case eIntegerEncoding_Trit:
|
|
DecodeTritBlock(bits, result, val.BaseBitLength());
|
|
nValsDecoded += 5;
|
|
break;
|
|
|
|
case eIntegerEncoding_JustBits:
|
|
val.SetBitValue(bits.ReadBits(val.BaseBitLength()));
|
|
result.push_back(val);
|
|
nValsDecoded++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
static void DecodeTritBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
|
|
uint32_t nBitsPerValue) {
|
|
// Implement the algorithm in section C.2.12
|
|
uint32_t m[5];
|
|
uint32_t t[5];
|
|
uint32_t T;
|
|
|
|
// Read the trit encoded block according to
|
|
// table C.2.14
|
|
m[0] = bits.ReadBits(nBitsPerValue);
|
|
T = bits.ReadBits(2);
|
|
m[1] = bits.ReadBits(nBitsPerValue);
|
|
T |= bits.ReadBits(2) << 2;
|
|
m[2] = bits.ReadBits(nBitsPerValue);
|
|
T |= bits.ReadBit() << 4;
|
|
m[3] = bits.ReadBits(nBitsPerValue);
|
|
T |= bits.ReadBits(2) << 5;
|
|
m[4] = bits.ReadBits(nBitsPerValue);
|
|
T |= bits.ReadBit() << 7;
|
|
|
|
uint32_t C = 0;
|
|
|
|
Bits<uint32_t> Tb(T);
|
|
if (Tb(2, 4) == 7) {
|
|
C = (Tb(5, 7) << 2) | Tb(0, 1);
|
|
t[4] = t[3] = 2;
|
|
} else {
|
|
C = Tb(0, 4);
|
|
if (Tb(5, 6) == 3) {
|
|
t[4] = 2;
|
|
t[3] = Tb[7];
|
|
} else {
|
|
t[4] = Tb[7];
|
|
t[3] = Tb(5, 6);
|
|
}
|
|
}
|
|
|
|
Bits<uint32_t> Cb(C);
|
|
if (Cb(0, 1) == 3) {
|
|
t[2] = 2;
|
|
t[1] = Cb[4];
|
|
t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
|
|
} else if (Cb(2, 3) == 3) {
|
|
t[2] = 2;
|
|
t[1] = 2;
|
|
t[0] = Cb(0, 1);
|
|
} else {
|
|
t[2] = Cb[4];
|
|
t[1] = Cb(2, 3);
|
|
t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < 5; i++) {
|
|
IntegerEncodedValue val(eIntegerEncoding_Trit, nBitsPerValue);
|
|
val.SetBitValue(m[i]);
|
|
val.SetTritValue(t[i]);
|
|
result.push_back(val);
|
|
}
|
|
}
|
|
|
|
static void DecodeQuintBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
|
|
uint32_t nBitsPerValue) {
|
|
// Implement the algorithm in section C.2.12
|
|
uint32_t m[3];
|
|
uint32_t q[3];
|
|
uint32_t Q;
|
|
|
|
// Read the trit encoded block according to
|
|
// table C.2.15
|
|
m[0] = bits.ReadBits(nBitsPerValue);
|
|
Q = bits.ReadBits(3);
|
|
m[1] = bits.ReadBits(nBitsPerValue);
|
|
Q |= bits.ReadBits(2) << 3;
|
|
m[2] = bits.ReadBits(nBitsPerValue);
|
|
Q |= bits.ReadBits(2) << 5;
|
|
|
|
Bits<uint32_t> Qb(Q);
|
|
if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
|
|
q[0] = q[1] = 4;
|
|
q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
|
|
} else {
|
|
uint32_t C = 0;
|
|
if (Qb(1, 2) == 3) {
|
|
q[2] = 4;
|
|
C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
|
|
} else {
|
|
q[2] = Qb(5, 6);
|
|
C = Qb(0, 4);
|
|
}
|
|
|
|
Bits<uint32_t> Cb(C);
|
|
if (Cb(0, 2) == 5) {
|
|
q[1] = 4;
|
|
q[0] = Cb(3, 4);
|
|
} else {
|
|
q[1] = Cb(3, 4);
|
|
q[0] = Cb(0, 2);
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
IntegerEncodedValue val(eIntegerEncoding_Quint, nBitsPerValue);
|
|
val.m_BitValue = m[i];
|
|
val.m_QuintValue = q[i];
|
|
result.push_back(val);
|
|
}
|
|
}
|
|
};
|
|
|
|
namespace ASTCC {
|
|
|
|
struct TexelWeightParams {
|
|
uint32_t m_Width = 0;
|
|
uint32_t m_Height = 0;
|
|
bool m_bDualPlane = false;
|
|
uint32_t m_MaxWeight = 0;
|
|
bool m_bError = false;
|
|
bool m_bVoidExtentLDR = false;
|
|
bool m_bVoidExtentHDR = false;
|
|
|
|
uint32_t GetPackedBitSize() const {
|
|
// How many indices do we have?
|
|
uint32_t nIdxs = m_Height * m_Width;
|
|
if (m_bDualPlane) {
|
|
nIdxs *= 2;
|
|
}
|
|
|
|
return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
|
|
}
|
|
|
|
uint32_t GetNumWeightValues() const {
|
|
uint32_t ret = m_Width * m_Height;
|
|
if (m_bDualPlane) {
|
|
ret *= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
static TexelWeightParams DecodeBlockInfo(BitStream& strm) {
|
|
TexelWeightParams params;
|
|
|
|
// Read the entire block mode all at once
|
|
uint16_t modeBits = strm.ReadBits(11);
|
|
|
|
// Does this match the void extent block mode?
|
|
if ((modeBits & 0x01FF) == 0x1FC) {
|
|
if (modeBits & 0x200) {
|
|
params.m_bVoidExtentHDR = true;
|
|
} else {
|
|
params.m_bVoidExtentLDR = true;
|
|
}
|
|
|
|
// Next two bits must be one.
|
|
if (!(modeBits & 0x400) || !strm.ReadBit()) {
|
|
params.m_bError = true;
|
|
}
|
|
|
|
return params;
|
|
}
|
|
|
|
// First check if the last four bits are zero
|
|
if ((modeBits & 0xF) == 0) {
|
|
params.m_bError = true;
|
|
return params;
|
|
}
|
|
|
|
// If the last two bits are zero, then if bits
|
|
// [6-8] are all ones, this is also reserved.
|
|
if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
|
|
params.m_bError = true;
|
|
return params;
|
|
}
|
|
|
|
// Otherwise, there is no error... Figure out the layout
|
|
// of the block mode. Layout is determined by a number
|
|
// between 0 and 9 corresponding to table C.2.8 of the
|
|
// ASTC spec.
|
|
uint32_t layout = 0;
|
|
|
|
if ((modeBits & 0x1) || (modeBits & 0x2)) {
|
|
// layout is in [0-4]
|
|
if (modeBits & 0x8) {
|
|
// layout is in [2-4]
|
|
if (modeBits & 0x4) {
|
|
// layout is in [3-4]
|
|
if (modeBits & 0x100) {
|
|
layout = 4;
|
|
} else {
|
|
layout = 3;
|
|
}
|
|
} else {
|
|
layout = 2;
|
|
}
|
|
} else {
|
|
// layout is in [0-1]
|
|
if (modeBits & 0x4) {
|
|
layout = 1;
|
|
} else {
|
|
layout = 0;
|
|
}
|
|
}
|
|
} else {
|
|
// layout is in [5-9]
|
|
if (modeBits & 0x100) {
|
|
// layout is in [7-9]
|
|
if (modeBits & 0x80) {
|
|
// layout is in [7-8]
|
|
assert((modeBits & 0x40) == 0U);
|
|
if (modeBits & 0x20) {
|
|
layout = 8;
|
|
} else {
|
|
layout = 7;
|
|
}
|
|
} else {
|
|
layout = 9;
|
|
}
|
|
} else {
|
|
// layout is in [5-6]
|
|
if (modeBits & 0x80) {
|
|
layout = 6;
|
|
} else {
|
|
layout = 5;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(layout < 10);
|
|
|
|
// Determine R
|
|
uint32_t R = !!(modeBits & 0x10);
|
|
if (layout < 5) {
|
|
R |= (modeBits & 0x3) << 1;
|
|
} else {
|
|
R |= (modeBits & 0xC) >> 1;
|
|
}
|
|
assert(2 <= R && R <= 7);
|
|
|
|
// Determine width & height
|
|
switch (layout) {
|
|
case 0: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = B + 4;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 1: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = B + 8;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 2: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 7) & 0x3;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = B + 8;
|
|
break;
|
|
}
|
|
|
|
case 3: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 7) & 0x1;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = B + 6;
|
|
break;
|
|
}
|
|
|
|
case 4: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 7) & 0x1;
|
|
params.m_Width = B + 2;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 5: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
params.m_Width = 12;
|
|
params.m_Height = A + 2;
|
|
break;
|
|
}
|
|
|
|
case 6: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
params.m_Width = A + 2;
|
|
params.m_Height = 12;
|
|
break;
|
|
}
|
|
|
|
case 7: {
|
|
params.m_Width = 6;
|
|
params.m_Height = 10;
|
|
break;
|
|
}
|
|
|
|
case 8: {
|
|
params.m_Width = 10;
|
|
params.m_Height = 6;
|
|
break;
|
|
}
|
|
|
|
case 9: {
|
|
uint32_t A = (modeBits >> 5) & 0x3;
|
|
uint32_t B = (modeBits >> 9) & 0x3;
|
|
params.m_Width = A + 6;
|
|
params.m_Height = B + 6;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(!"Don't know this layout...");
|
|
params.m_bError = true;
|
|
break;
|
|
}
|
|
|
|
// Determine whether or not we're using dual planes
|
|
// and/or high precision layouts.
|
|
bool D = (layout != 9) && (modeBits & 0x400);
|
|
bool H = (layout != 9) && (modeBits & 0x200);
|
|
|
|
if (H) {
|
|
const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31};
|
|
params.m_MaxWeight = maxWeights[R - 2];
|
|
} else {
|
|
const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7};
|
|
params.m_MaxWeight = maxWeights[R - 2];
|
|
}
|
|
|
|
params.m_bDualPlane = D;
|
|
|
|
return params;
|
|
}
|
|
|
|
static void FillVoidExtentLDR(BitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
|
|
uint32_t blockHeight) {
|
|
// Don't actually care about the void extent, just read the bits...
|
|
for (int i = 0; i < 4; ++i) {
|
|
strm.ReadBits(13);
|
|
}
|
|
|
|
// Decode the RGBA components and renormalize them to the range [0, 255]
|
|
uint16_t r = strm.ReadBits(16);
|
|
uint16_t g = strm.ReadBits(16);
|
|
uint16_t b = strm.ReadBits(16);
|
|
uint16_t a = strm.ReadBits(16);
|
|
|
|
uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast<uint32_t>(b) & 0xFF00) << 8 |
|
|
(static_cast<uint32_t>(a) & 0xFF00) << 16;
|
|
|
|
for (uint32_t j = 0; j < blockHeight; j++) {
|
|
for (uint32_t i = 0; i < blockWidth; i++) {
|
|
outBuf[j * blockWidth + i] = rgba;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) {
|
|
for (uint32_t j = 0; j < blockHeight; j++) {
|
|
for (uint32_t i = 0; i < blockWidth; i++) {
|
|
outBuf[j * blockWidth + i] = 0xFFFF00FF;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
|
|
// is the same as [(numBits - 1):0] and repeats all the way down.
|
|
template <typename IntType>
|
|
static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
|
|
if (numBits == 0)
|
|
return 0;
|
|
if (toBit == 0)
|
|
return 0;
|
|
IntType v = val & ((1 << numBits) - 1);
|
|
IntType res = v;
|
|
uint32_t reslen = numBits;
|
|
while (reslen < toBit) {
|
|
uint32_t comp = 0;
|
|
if (numBits > toBit - reslen) {
|
|
uint32_t newshift = toBit - reslen;
|
|
comp = numBits - newshift;
|
|
numBits = newshift;
|
|
}
|
|
res <<= numBits;
|
|
res |= v >> comp;
|
|
reslen += numBits;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
class Pixel {
|
|
protected:
|
|
using ChannelType = int16_t;
|
|
uint8_t m_BitDepth[4] = {8, 8, 8, 8};
|
|
int16_t color[4] = {};
|
|
|
|
public:
|
|
Pixel() = default;
|
|
Pixel(ChannelType a, ChannelType r, ChannelType g, ChannelType b, unsigned bitDepth = 8)
|
|
: m_BitDepth{uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth)},
|
|
color{a, r, g, b} {}
|
|
|
|
// Changes the depth of each pixel. This scales the values to
|
|
// the appropriate bit depth by either truncating the least
|
|
// significant bits when going from larger to smaller bit depth
|
|
// or by repeating the most significant bits when going from
|
|
// smaller to larger bit depths.
|
|
void ChangeBitDepth(const uint8_t (&depth)[4]) {
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]);
|
|
m_BitDepth[i] = depth[i];
|
|
}
|
|
}
|
|
|
|
template <typename IntType>
|
|
static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) {
|
|
float denominator = static_cast<float>((1 << bitDepth) - 1);
|
|
return static_cast<float>(channel) / denominator;
|
|
}
|
|
|
|
// Changes the bit depth of a single component. See the comment
|
|
// above for how we do this.
|
|
static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) {
|
|
assert(newDepth <= 8);
|
|
assert(oldDepth <= 8);
|
|
|
|
if (oldDepth == newDepth) {
|
|
// Do nothing
|
|
return val;
|
|
} else if (oldDepth == 0 && newDepth != 0) {
|
|
return (1 << newDepth) - 1;
|
|
} else if (newDepth > oldDepth) {
|
|
return Replicate(val, oldDepth, newDepth);
|
|
} else {
|
|
// oldDepth > newDepth
|
|
if (newDepth == 0) {
|
|
return 0xFF;
|
|
} else {
|
|
uint8_t bitsWasted = oldDepth - newDepth;
|
|
uint16_t v = static_cast<uint16_t>(val);
|
|
v = (v + (1 << (bitsWasted - 1))) >> bitsWasted;
|
|
v = ::std::min<uint16_t>(::std::max<uint16_t>(0, v), (1 << newDepth) - 1);
|
|
return static_cast<uint8_t>(v);
|
|
}
|
|
}
|
|
|
|
assert(!"We shouldn't get here.");
|
|
return 0;
|
|
}
|
|
|
|
const ChannelType& A() const {
|
|
return color[0];
|
|
}
|
|
ChannelType& A() {
|
|
return color[0];
|
|
}
|
|
const ChannelType& R() const {
|
|
return color[1];
|
|
}
|
|
ChannelType& R() {
|
|
return color[1];
|
|
}
|
|
const ChannelType& G() const {
|
|
return color[2];
|
|
}
|
|
ChannelType& G() {
|
|
return color[2];
|
|
}
|
|
const ChannelType& B() const {
|
|
return color[3];
|
|
}
|
|
ChannelType& B() {
|
|
return color[3];
|
|
}
|
|
const ChannelType& Component(uint32_t idx) const {
|
|
return color[idx];
|
|
}
|
|
ChannelType& Component(uint32_t idx) {
|
|
return color[idx];
|
|
}
|
|
|
|
void GetBitDepth(uint8_t (&outDepth)[4]) const {
|
|
for (int i = 0; i < 4; i++) {
|
|
outDepth[i] = m_BitDepth[i];
|
|
}
|
|
}
|
|
|
|
// Take all of the components, transform them to their 8-bit variants,
|
|
// and then pack each channel into an R8G8B8A8 32-bit integer. We assume
|
|
// that the architecture is little-endian, so the alpha channel will end
|
|
// up in the most-significant byte.
|
|
uint32_t Pack() const {
|
|
Pixel eightBit(*this);
|
|
const uint8_t eightBitDepth[4] = {8, 8, 8, 8};
|
|
eightBit.ChangeBitDepth(eightBitDepth);
|
|
|
|
uint32_t r = 0;
|
|
r |= eightBit.A();
|
|
r <<= 8;
|
|
r |= eightBit.B();
|
|
r <<= 8;
|
|
r |= eightBit.G();
|
|
r <<= 8;
|
|
r |= eightBit.R();
|
|
return r;
|
|
}
|
|
|
|
// Clamps the pixel to the range [0,255]
|
|
void ClampByte() {
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
|
|
}
|
|
}
|
|
|
|
void MakeOpaque() {
|
|
A() = 255;
|
|
}
|
|
};
|
|
|
|
static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* modes,
|
|
const uint32_t nPartitions, const uint32_t nBitsForColorData) {
|
|
// First figure out how many color values we have
|
|
uint32_t nValues = 0;
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
nValues += ((modes[i] >> 2) + 1) << 1;
|
|
}
|
|
|
|
// Then based on the number of values and the remaining number of bits,
|
|
// figure out the max value for each of them...
|
|
uint32_t range = 256;
|
|
while (--range > 0) {
|
|
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
|
|
uint32_t bitLength = val.GetBitLength(nValues);
|
|
if (bitLength <= nBitsForColorData) {
|
|
// Find the smallest possible range that matches the given encoding
|
|
while (--range > 0) {
|
|
IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
|
|
if (!newval.MatchesEncoding(val)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return to last matching range.
|
|
range++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We now have enough to decode our integer sequence.
|
|
std::vector<IntegerEncodedValue> decodedColorValues;
|
|
BitStream colorStream(data);
|
|
IntegerEncodedValue::DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
|
|
|
|
// Once we have the decoded values, we need to dequantize them to the 0-255 range
|
|
// This procedure is outlined in ASTC spec C.2.13
|
|
uint32_t outIdx = 0;
|
|
for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
|
|
// Have we already decoded all that we need?
|
|
if (outIdx >= nValues) {
|
|
break;
|
|
}
|
|
|
|
const IntegerEncodedValue& val = *itr;
|
|
uint32_t bitlen = val.BaseBitLength();
|
|
uint32_t bitval = val.GetBitValue();
|
|
|
|
assert(bitlen >= 1);
|
|
|
|
uint32_t A = 0, B = 0, C = 0, D = 0;
|
|
// A is just the lsb replicated 9 times.
|
|
A = Replicate(bitval & 1, 1, 9);
|
|
|
|
switch (val.GetEncoding()) {
|
|
// Replicate bits
|
|
case eIntegerEncoding_JustBits:
|
|
out[outIdx++] = Replicate(bitval, bitlen, 8);
|
|
break;
|
|
|
|
// Use algorithm in C.2.13
|
|
case eIntegerEncoding_Trit: {
|
|
|
|
D = val.GetTritValue();
|
|
|
|
switch (bitlen) {
|
|
case 1: {
|
|
C = 204;
|
|
} break;
|
|
|
|
case 2: {
|
|
C = 93;
|
|
// B = b000b0bb0
|
|
uint32_t b = (bitval >> 1) & 1;
|
|
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
|
|
} break;
|
|
|
|
case 3: {
|
|
C = 44;
|
|
// B = cb000cbcb
|
|
uint32_t cb = (bitval >> 1) & 3;
|
|
B = (cb << 7) | (cb << 2) | cb;
|
|
} break;
|
|
|
|
case 4: {
|
|
C = 22;
|
|
// B = dcb000dcb
|
|
uint32_t dcb = (bitval >> 1) & 7;
|
|
B = (dcb << 6) | dcb;
|
|
} break;
|
|
|
|
case 5: {
|
|
C = 11;
|
|
// B = edcb000ed
|
|
uint32_t edcb = (bitval >> 1) & 0xF;
|
|
B = (edcb << 5) | (edcb >> 2);
|
|
} break;
|
|
|
|
case 6: {
|
|
C = 5;
|
|
// B = fedcb000f
|
|
uint32_t fedcb = (bitval >> 1) & 0x1F;
|
|
B = (fedcb << 4) | (fedcb >> 4);
|
|
} break;
|
|
|
|
default:
|
|
assert(!"Unsupported trit encoding for color values!");
|
|
break;
|
|
} // switch(bitlen)
|
|
} // case eIntegerEncoding_Trit
|
|
break;
|
|
|
|
case eIntegerEncoding_Quint: {
|
|
|
|
D = val.GetQuintValue();
|
|
|
|
switch (bitlen) {
|
|
case 1: {
|
|
C = 113;
|
|
} break;
|
|
|
|
case 2: {
|
|
C = 54;
|
|
// B = b0000bb00
|
|
uint32_t b = (bitval >> 1) & 1;
|
|
B = (b << 8) | (b << 3) | (b << 2);
|
|
} break;
|
|
|
|
case 3: {
|
|
C = 26;
|
|
// B = cb0000cbc
|
|
uint32_t cb = (bitval >> 1) & 3;
|
|
B = (cb << 7) | (cb << 1) | (cb >> 1);
|
|
} break;
|
|
|
|
case 4: {
|
|
C = 13;
|
|
// B = dcb0000dc
|
|
uint32_t dcb = (bitval >> 1) & 7;
|
|
B = (dcb << 6) | (dcb >> 1);
|
|
} break;
|
|
|
|
case 5: {
|
|
C = 6;
|
|
// B = edcb0000e
|
|
uint32_t edcb = (bitval >> 1) & 0xF;
|
|
B = (edcb << 5) | (edcb >> 3);
|
|
} break;
|
|
|
|
default:
|
|
assert(!"Unsupported quint encoding for color values!");
|
|
break;
|
|
} // switch(bitlen)
|
|
} // case eIntegerEncoding_Quint
|
|
break;
|
|
} // switch(val.GetEncoding())
|
|
|
|
if (val.GetEncoding() != eIntegerEncoding_JustBits) {
|
|
uint32_t T = D * C + B;
|
|
T ^= A;
|
|
T = (A & 0x80) | (T >> 2);
|
|
out[outIdx++] = T;
|
|
}
|
|
}
|
|
|
|
// Make sure that each of our values is in the proper range...
|
|
for (uint32_t i = 0; i < nValues; i++) {
|
|
assert(out[i] <= 255);
|
|
}
|
|
}
|
|
|
|
static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
|
|
uint32_t bitval = val.GetBitValue();
|
|
uint32_t bitlen = val.BaseBitLength();
|
|
|
|
uint32_t A = Replicate(bitval & 1, 1, 7);
|
|
uint32_t B = 0, C = 0, D = 0;
|
|
|
|
uint32_t result = 0;
|
|
switch (val.GetEncoding()) {
|
|
case eIntegerEncoding_JustBits:
|
|
result = Replicate(bitval, bitlen, 6);
|
|
break;
|
|
|
|
case eIntegerEncoding_Trit: {
|
|
D = val.GetTritValue();
|
|
assert(D < 3);
|
|
|
|
switch (bitlen) {
|
|
case 0: {
|
|
uint32_t results[3] = {0, 32, 63};
|
|
result = results[D];
|
|
} break;
|
|
|
|
case 1: {
|
|
C = 50;
|
|
} break;
|
|
|
|
case 2: {
|
|
C = 23;
|
|
uint32_t b = (bitval >> 1) & 1;
|
|
B = (b << 6) | (b << 2) | b;
|
|
} break;
|
|
|
|
case 3: {
|
|
C = 11;
|
|
uint32_t cb = (bitval >> 1) & 3;
|
|
B = (cb << 5) | cb;
|
|
} break;
|
|
|
|
default:
|
|
assert(!"Invalid trit encoding for texel weight");
|
|
break;
|
|
}
|
|
} break;
|
|
|
|
case eIntegerEncoding_Quint: {
|
|
D = val.GetQuintValue();
|
|
assert(D < 5);
|
|
|
|
switch (bitlen) {
|
|
case 0: {
|
|
uint32_t results[5] = {0, 16, 32, 47, 63};
|
|
result = results[D];
|
|
} break;
|
|
|
|
case 1: {
|
|
C = 28;
|
|
} break;
|
|
|
|
case 2: {
|
|
C = 13;
|
|
uint32_t b = (bitval >> 1) & 1;
|
|
B = (b << 6) | (b << 1);
|
|
} break;
|
|
|
|
default:
|
|
assert(!"Invalid quint encoding for texel weight");
|
|
break;
|
|
}
|
|
} break;
|
|
}
|
|
|
|
if (val.GetEncoding() != eIntegerEncoding_JustBits && bitlen > 0) {
|
|
// Decode the value...
|
|
result = D * C + B;
|
|
result ^= A;
|
|
result = (A & 0x20) | (result >> 2);
|
|
}
|
|
|
|
assert(result < 64);
|
|
|
|
// Change from [0,63] to [0,64]
|
|
if (result > 32) {
|
|
result += 1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void UnquantizeTexelWeights(uint32_t out[2][144],
|
|
const std::vector<IntegerEncodedValue>& weights,
|
|
const TexelWeightParams& params, const uint32_t blockWidth,
|
|
const uint32_t blockHeight) {
|
|
uint32_t weightIdx = 0;
|
|
uint32_t unquantized[2][144];
|
|
|
|
for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
|
|
unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
|
|
|
|
if (params.m_bDualPlane) {
|
|
++itr;
|
|
unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
|
|
if (itr == weights.end()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (++weightIdx >= (params.m_Width * params.m_Height))
|
|
break;
|
|
}
|
|
|
|
// Do infill if necessary (Section C.2.18) ...
|
|
uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
|
|
uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
|
|
|
|
const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U;
|
|
for (uint32_t plane = 0; plane < kPlaneScale; plane++)
|
|
for (uint32_t t = 0; t < blockHeight; t++)
|
|
for (uint32_t s = 0; s < blockWidth; s++) {
|
|
uint32_t cs = Ds * s;
|
|
uint32_t ct = Dt * t;
|
|
|
|
uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6;
|
|
uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6;
|
|
|
|
uint32_t js = gs >> 4;
|
|
uint32_t fs = gs & 0xF;
|
|
|
|
uint32_t jt = gt >> 4;
|
|
uint32_t ft = gt & 0x0F;
|
|
|
|
uint32_t w11 = (fs * ft + 8) >> 4;
|
|
uint32_t w10 = ft - w11;
|
|
uint32_t w01 = fs - w11;
|
|
uint32_t w00 = 16 - fs - ft + w11;
|
|
|
|
uint32_t v0 = js + jt * params.m_Width;
|
|
|
|
#define FIND_TEXEL(tidx, bidx) \
|
|
uint32_t p##bidx = 0; \
|
|
do { \
|
|
if ((tidx) < (params.m_Width * params.m_Height)) { \
|
|
p##bidx = unquantized[plane][(tidx)]; \
|
|
} \
|
|
} while (0)
|
|
|
|
FIND_TEXEL(v0, 00);
|
|
FIND_TEXEL(v0 + 1, 01);
|
|
FIND_TEXEL(v0 + params.m_Width, 10);
|
|
FIND_TEXEL(v0 + params.m_Width + 1, 11);
|
|
|
|
#undef FIND_TEXEL
|
|
|
|
out[plane][t * blockWidth + s] =
|
|
(p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
|
|
}
|
|
}
|
|
|
|
// Transfers a bit as described in C.2.14
|
|
static inline void BitTransferSigned(int32_t& a, int32_t& b) {
|
|
b >>= 1;
|
|
b |= a & 0x80;
|
|
a >>= 1;
|
|
a &= 0x3F;
|
|
if (a & 0x20)
|
|
a -= 0x40;
|
|
}
|
|
|
|
// Adds more precision to the blue channel as described
|
|
// in C.2.14
|
|
static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) {
|
|
return Pixel(static_cast<int16_t>(a), static_cast<int16_t>((r + b) >> 1),
|
|
static_cast<int16_t>((g + b) >> 1), static_cast<int16_t>(b));
|
|
}
|
|
|
|
// Partition selection functions as specified in
|
|
// C.2.21
|
|
static inline uint32_t hash52(uint32_t p) {
|
|
p ^= p >> 15;
|
|
p -= p << 17;
|
|
p += p << 7;
|
|
p += p << 4;
|
|
p ^= p >> 5;
|
|
p += p << 16;
|
|
p ^= p >> 7;
|
|
p ^= p >> 3;
|
|
p ^= p << 6;
|
|
p ^= p >> 17;
|
|
return p;
|
|
}
|
|
|
|
static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
|
|
int32_t partitionCount, int32_t smallBlock) {
|
|
if (1 == partitionCount)
|
|
return 0;
|
|
|
|
if (smallBlock) {
|
|
x <<= 1;
|
|
y <<= 1;
|
|
z <<= 1;
|
|
}
|
|
|
|
seed += (partitionCount - 1) * 1024;
|
|
|
|
uint32_t rnum = hash52(static_cast<uint32_t>(seed));
|
|
uint8_t seed1 = static_cast<uint8_t>(rnum & 0xF);
|
|
uint8_t seed2 = static_cast<uint8_t>((rnum >> 4) & 0xF);
|
|
uint8_t seed3 = static_cast<uint8_t>((rnum >> 8) & 0xF);
|
|
uint8_t seed4 = static_cast<uint8_t>((rnum >> 12) & 0xF);
|
|
uint8_t seed5 = static_cast<uint8_t>((rnum >> 16) & 0xF);
|
|
uint8_t seed6 = static_cast<uint8_t>((rnum >> 20) & 0xF);
|
|
uint8_t seed7 = static_cast<uint8_t>((rnum >> 24) & 0xF);
|
|
uint8_t seed8 = static_cast<uint8_t>((rnum >> 28) & 0xF);
|
|
uint8_t seed9 = static_cast<uint8_t>((rnum >> 18) & 0xF);
|
|
uint8_t seed10 = static_cast<uint8_t>((rnum >> 22) & 0xF);
|
|
uint8_t seed11 = static_cast<uint8_t>((rnum >> 26) & 0xF);
|
|
uint8_t seed12 = static_cast<uint8_t>(((rnum >> 30) | (rnum << 2)) & 0xF);
|
|
|
|
seed1 *= seed1;
|
|
seed2 *= seed2;
|
|
seed3 *= seed3;
|
|
seed4 *= seed4;
|
|
seed5 *= seed5;
|
|
seed6 *= seed6;
|
|
seed7 *= seed7;
|
|
seed8 *= seed8;
|
|
seed9 *= seed9;
|
|
seed10 *= seed10;
|
|
seed11 *= seed11;
|
|
seed12 *= seed12;
|
|
|
|
int32_t sh1, sh2, sh3;
|
|
if (seed & 1) {
|
|
sh1 = (seed & 2) ? 4 : 5;
|
|
sh2 = (partitionCount == 3) ? 6 : 5;
|
|
} else {
|
|
sh1 = (partitionCount == 3) ? 6 : 5;
|
|
sh2 = (seed & 2) ? 4 : 5;
|
|
}
|
|
sh3 = (seed & 0x10) ? sh1 : sh2;
|
|
|
|
seed1 >>= sh1;
|
|
seed2 >>= sh2;
|
|
seed3 >>= sh1;
|
|
seed4 >>= sh2;
|
|
seed5 >>= sh1;
|
|
seed6 >>= sh2;
|
|
seed7 >>= sh1;
|
|
seed8 >>= sh2;
|
|
seed9 >>= sh3;
|
|
seed10 >>= sh3;
|
|
seed11 >>= sh3;
|
|
seed12 >>= sh3;
|
|
|
|
int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
|
|
int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
|
|
int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
|
|
int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
|
|
|
|
a &= 0x3F;
|
|
b &= 0x3F;
|
|
c &= 0x3F;
|
|
d &= 0x3F;
|
|
|
|
if (partitionCount < 4)
|
|
d = 0;
|
|
if (partitionCount < 3)
|
|
c = 0;
|
|
|
|
if (a >= b && a >= c && a >= d)
|
|
return 0;
|
|
else if (b >= c && b >= d)
|
|
return 1;
|
|
else if (c >= d)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount,
|
|
int32_t smallBlock) {
|
|
return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
|
|
}
|
|
|
|
// Section C.2.14
|
|
static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues,
|
|
uint32_t colorEndpointMode) {
|
|
#define READ_UINT_VALUES(N) \
|
|
uint32_t v[N]; \
|
|
for (uint32_t i = 0; i < N; i++) { \
|
|
v[i] = *(colorValues++); \
|
|
}
|
|
|
|
#define READ_INT_VALUES(N) \
|
|
int32_t v[N]; \
|
|
for (uint32_t i = 0; i < N; i++) { \
|
|
v[i] = static_cast<int32_t>(*(colorValues++)); \
|
|
}
|
|
|
|
switch (colorEndpointMode) {
|
|
case 0: {
|
|
READ_UINT_VALUES(2)
|
|
ep1 = Pixel(0xFF, v[0], v[0], v[0]);
|
|
ep2 = Pixel(0xFF, v[1], v[1], v[1]);
|
|
} break;
|
|
|
|
case 1: {
|
|
READ_UINT_VALUES(2)
|
|
uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0);
|
|
uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
|
|
ep1 = Pixel(0xFF, L0, L0, L0);
|
|
ep2 = Pixel(0xFF, L1, L1, L1);
|
|
} break;
|
|
|
|
case 4: {
|
|
READ_UINT_VALUES(4)
|
|
ep1 = Pixel(v[2], v[0], v[0], v[0]);
|
|
ep2 = Pixel(v[3], v[1], v[1], v[1]);
|
|
} break;
|
|
|
|
case 5: {
|
|
READ_INT_VALUES(4)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
ep1 = Pixel(v[2], v[0], v[0], v[0]);
|
|
ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
} break;
|
|
|
|
case 6: {
|
|
READ_UINT_VALUES(4)
|
|
ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
|
|
ep2 = Pixel(0xFF, v[0], v[1], v[2]);
|
|
} break;
|
|
|
|
case 8: {
|
|
READ_UINT_VALUES(6)
|
|
if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
|
|
ep1 = Pixel(0xFF, v[0], v[2], v[4]);
|
|
ep2 = Pixel(0xFF, v[1], v[3], v[5]);
|
|
} else {
|
|
ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
|
|
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
|
|
}
|
|
} break;
|
|
|
|
case 9: {
|
|
READ_INT_VALUES(6)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
BitTransferSigned(v[5], v[4]);
|
|
if (v[1] + v[3] + v[5] >= 0) {
|
|
ep1 = Pixel(0xFF, v[0], v[2], v[4]);
|
|
ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
|
|
} else {
|
|
ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
|
|
ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
|
|
}
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
} break;
|
|
|
|
case 10: {
|
|
READ_UINT_VALUES(6)
|
|
ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
|
|
ep2 = Pixel(v[5], v[0], v[1], v[2]);
|
|
} break;
|
|
|
|
case 12: {
|
|
READ_UINT_VALUES(8)
|
|
if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
|
|
ep1 = Pixel(v[6], v[0], v[2], v[4]);
|
|
ep2 = Pixel(v[7], v[1], v[3], v[5]);
|
|
} else {
|
|
ep1 = BlueContract(v[7], v[1], v[3], v[5]);
|
|
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
|
|
}
|
|
} break;
|
|
|
|
case 13: {
|
|
READ_INT_VALUES(8)
|
|
BitTransferSigned(v[1], v[0]);
|
|
BitTransferSigned(v[3], v[2]);
|
|
BitTransferSigned(v[5], v[4]);
|
|
BitTransferSigned(v[7], v[6]);
|
|
if (v[1] + v[3] + v[5] >= 0) {
|
|
ep1 = Pixel(v[6], v[0], v[2], v[4]);
|
|
ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
|
|
} else {
|
|
ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
|
|
ep2 = BlueContract(v[6], v[0], v[2], v[4]);
|
|
}
|
|
ep1.ClampByte();
|
|
ep2.ClampByte();
|
|
} break;
|
|
|
|
default:
|
|
assert(!"Unsupported color endpoint mode (is it HDR?)");
|
|
break;
|
|
}
|
|
|
|
#undef READ_UINT_VALUES
|
|
#undef READ_INT_VALUES
|
|
}
|
|
|
|
static void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth,
|
|
const uint32_t blockHeight, uint32_t* outBuf) {
|
|
BitStream strm(inBuf);
|
|
TexelWeightParams weightParams = DecodeBlockInfo(strm);
|
|
|
|
// Was there an error?
|
|
if (weightParams.m_bError) {
|
|
assert(!"Invalid block mode");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if (weightParams.m_bVoidExtentLDR) {
|
|
FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if (weightParams.m_bVoidExtentHDR) {
|
|
assert(!"HDR void extent blocks are unsupported!");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if (weightParams.m_Width > blockWidth) {
|
|
assert(!"Texel weight grid width should be smaller than block width");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
if (weightParams.m_Height > blockHeight) {
|
|
assert(!"Texel weight grid height should be smaller than block height");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
// Read num partitions
|
|
uint32_t nPartitions = strm.ReadBits(2) + 1;
|
|
assert(nPartitions <= 4);
|
|
|
|
if (nPartitions == 4 && weightParams.m_bDualPlane) {
|
|
assert(!"Dual plane mode is incompatible with four partition blocks");
|
|
FillError(outBuf, blockWidth, blockHeight);
|
|
return;
|
|
}
|
|
|
|
// Based on the number of partitions, read the color endpoint mode for
|
|
// each partition.
|
|
|
|
// Determine partitions, partition index, and color endpoint modes
|
|
int32_t planeIdx = -1;
|
|
uint32_t partitionIndex;
|
|
uint32_t colorEndpointMode[4] = {0, 0, 0, 0};
|
|
|
|
// Define color data.
|
|
uint8_t colorEndpointData[16];
|
|
memset(colorEndpointData, 0, sizeof(colorEndpointData));
|
|
BitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
|
|
|
|
// Read extra config data...
|
|
uint32_t baseCEM = 0;
|
|
if (nPartitions == 1) {
|
|
colorEndpointMode[0] = strm.ReadBits(4);
|
|
partitionIndex = 0;
|
|
} else {
|
|
partitionIndex = strm.ReadBits(10);
|
|
baseCEM = strm.ReadBits(6);
|
|
}
|
|
uint32_t baseMode = (baseCEM & 3);
|
|
|
|
// Remaining bits are color endpoint data...
|
|
uint32_t nWeightBits = weightParams.GetPackedBitSize();
|
|
int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead();
|
|
|
|
// Consider extra bits prior to texel data...
|
|
uint32_t extraCEMbits = 0;
|
|
if (baseMode) {
|
|
switch (nPartitions) {
|
|
case 2:
|
|
extraCEMbits += 2;
|
|
break;
|
|
case 3:
|
|
extraCEMbits += 5;
|
|
break;
|
|
case 4:
|
|
extraCEMbits += 8;
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
remainingBits -= extraCEMbits;
|
|
|
|
// Do we have a dual plane situation?
|
|
uint32_t planeSelectorBits = 0;
|
|
if (weightParams.m_bDualPlane) {
|
|
planeSelectorBits = 2;
|
|
}
|
|
remainingBits -= planeSelectorBits;
|
|
|
|
// Read color data...
|
|
uint32_t colorDataBits = remainingBits;
|
|
while (remainingBits > 0) {
|
|
uint32_t nb = std::min(remainingBits, 8);
|
|
uint32_t b = strm.ReadBits(nb);
|
|
colorEndpointStream.WriteBits(b, nb);
|
|
remainingBits -= 8;
|
|
}
|
|
|
|
// Read the plane selection bits
|
|
planeIdx = strm.ReadBits(planeSelectorBits);
|
|
|
|
// Read the rest of the CEM
|
|
if (baseMode) {
|
|
uint32_t extraCEM = strm.ReadBits(extraCEMbits);
|
|
uint32_t CEM = (extraCEM << 6) | baseCEM;
|
|
CEM >>= 2;
|
|
|
|
bool C[4] = {0};
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
C[i] = CEM & 1;
|
|
CEM >>= 1;
|
|
}
|
|
|
|
uint8_t M[4] = {0};
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
M[i] = CEM & 3;
|
|
CEM >>= 2;
|
|
assert(M[i] <= 3);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
colorEndpointMode[i] = baseMode;
|
|
if (!(C[i]))
|
|
colorEndpointMode[i] -= 1;
|
|
colorEndpointMode[i] <<= 2;
|
|
colorEndpointMode[i] |= M[i];
|
|
}
|
|
} else if (nPartitions > 1) {
|
|
uint32_t CEM = baseCEM >> 2;
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
colorEndpointMode[i] = CEM;
|
|
}
|
|
}
|
|
|
|
// Make sure everything up till here is sane.
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
assert(colorEndpointMode[i] < 16);
|
|
}
|
|
assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
|
|
|
|
// Decode both color data and texel weight data
|
|
uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions
|
|
DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
|
|
colorDataBits);
|
|
|
|
Pixel endpoints[4][2];
|
|
const uint32_t* colorValuesPtr = colorValues;
|
|
for (uint32_t i = 0; i < nPartitions; i++) {
|
|
ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
|
|
}
|
|
|
|
// Read the texel weight data..
|
|
uint8_t texelWeightData[16];
|
|
memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
|
|
|
|
// Reverse everything
|
|
for (uint32_t i = 0; i < 8; i++) {
|
|
// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
|
|
#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
|
|
unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i]));
|
|
unsigned char b = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[15 - i]));
|
|
#undef REVERSE_BYTE
|
|
|
|
texelWeightData[i] = b;
|
|
texelWeightData[15 - i] = a;
|
|
}
|
|
|
|
// Make sure that higher non-texel bits are set to zero
|
|
const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
|
|
texelWeightData[clearByteStart - 1] &= (1 << (weightParams.GetPackedBitSize() % 8)) - 1;
|
|
memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
|
|
|
|
std::vector<IntegerEncodedValue> texelWeightValues;
|
|
BitStream weightStream(texelWeightData);
|
|
|
|
IntegerEncodedValue::DecodeIntegerSequence(texelWeightValues, weightStream,
|
|
weightParams.m_MaxWeight,
|
|
weightParams.GetNumWeightValues());
|
|
|
|
// Blocks can be at most 12x12, so we can have as many as 144 weights
|
|
uint32_t weights[2][144];
|
|
UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
|
|
|
|
// Now that we have endpoints and weights, we can interpolate and generate
|
|
// the proper decoding...
|
|
for (uint32_t j = 0; j < blockHeight; j++)
|
|
for (uint32_t i = 0; i < blockWidth; i++) {
|
|
uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions,
|
|
(blockHeight * blockWidth) < 32);
|
|
assert(partition < nPartitions);
|
|
|
|
Pixel p;
|
|
for (uint32_t c = 0; c < 4; c++) {
|
|
uint32_t C0 = endpoints[partition][0].Component(c);
|
|
C0 = Replicate(C0, 8, 16);
|
|
uint32_t C1 = endpoints[partition][1].Component(c);
|
|
C1 = Replicate(C1, 8, 16);
|
|
|
|
uint32_t plane = 0;
|
|
if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
|
|
plane = 1;
|
|
}
|
|
|
|
uint32_t weight = weights[plane][j * blockWidth + i];
|
|
uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
|
|
if (C == 65535) {
|
|
p.Component(c) = 255;
|
|
} else {
|
|
double Cf = static_cast<double>(C);
|
|
p.Component(c) = static_cast<uint16_t>(255.0 * (Cf / 65536.0) + 0.5);
|
|
}
|
|
}
|
|
|
|
outBuf[j * blockWidth + i] = p.Pack();
|
|
}
|
|
}
|
|
|
|
} // namespace ASTCC
|
|
|
|
namespace Tegra::Texture::ASTC {
|
|
|
|
std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
|
|
uint32_t depth, uint32_t block_width, uint32_t block_height) {
|
|
uint32_t blockIdx = 0;
|
|
std::vector<uint8_t> outData(height * width * depth * 4);
|
|
for (uint32_t k = 0; k < depth; k++) {
|
|
for (uint32_t j = 0; j < height; j += block_height) {
|
|
for (uint32_t i = 0; i < width; i += block_width) {
|
|
|
|
uint8_t* blockPtr = data.data() + blockIdx * 16;
|
|
|
|
// Blocks can be at most 12x12
|
|
uint32_t uncompData[144];
|
|
ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
|
|
|
|
uint32_t decompWidth = std::min(block_width, width - i);
|
|
uint32_t decompHeight = std::min(block_height, height - j);
|
|
|
|
uint8_t* outRow = outData.data() + (j * width + i) * 4;
|
|
for (uint32_t jj = 0; jj < decompHeight; jj++) {
|
|
memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4);
|
|
}
|
|
|
|
blockIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return outData;
|
|
}
|
|
|
|
} // namespace Tegra::Texture::ASTC
|