yuzu/src/video_core/engines/puller.cpp
2022-10-19 06:21:51 +02:00

306 lines
11 KiB
C++

// SPDX-FileCopyrightText: 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core.h"
#include "video_core/control/channel_state.h"
#include "video_core/dma_pusher.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/engines/puller.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
namespace Tegra::Engines {
Puller::Puller(GPU& gpu_, MemoryManager& memory_manager_, DmaPusher& dma_pusher_,
Control::ChannelState& channel_state_)
: gpu{gpu_}, memory_manager{memory_manager_}, dma_pusher{dma_pusher_}, channel_state{
channel_state_} {}
Puller::~Puller() = default;
void Puller::ProcessBindMethod(const MethodCall& method_call) {
// Bind the current subchannel to the desired engine id.
LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel,
method_call.argument);
const auto engine_id = static_cast<EngineID>(method_call.argument);
bound_engines[method_call.subchannel] = static_cast<EngineID>(engine_id);
switch (engine_id) {
case EngineID::FERMI_TWOD_A:
dma_pusher.BindSubchannel(channel_state.fermi_2d.get(), method_call.subchannel);
break;
case EngineID::MAXWELL_B:
dma_pusher.BindSubchannel(channel_state.maxwell_3d.get(), method_call.subchannel);
break;
case EngineID::KEPLER_COMPUTE_B:
dma_pusher.BindSubchannel(channel_state.kepler_compute.get(), method_call.subchannel);
break;
case EngineID::MAXWELL_DMA_COPY_A:
dma_pusher.BindSubchannel(channel_state.maxwell_dma.get(), method_call.subchannel);
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
dma_pusher.BindSubchannel(channel_state.kepler_memory.get(), method_call.subchannel);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine {:04X}", engine_id);
}
}
void Puller::ProcessFenceActionMethod() {
switch (regs.fence_action.op) {
case Puller::FenceOperation::Acquire:
// UNIMPLEMENTED_MSG("Channel Scheduling pending.");
// WaitFence(regs.fence_action.syncpoint_id, regs.fence_value);
rasterizer->ReleaseFences();
break;
case Puller::FenceOperation::Increment:
rasterizer->SignalSyncPoint(regs.fence_action.syncpoint_id);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented operation {}", regs.fence_action.op.Value());
}
}
void Puller::ProcessSemaphoreTriggerMethod() {
const auto semaphoreOperationMask = 0xF;
const auto op =
static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
if (op == GpuSemaphoreOperation::WriteLong) {
const GPUVAddr sequence_address{regs.semaphore_address.SemaphoreAddress()};
const u32 payload = regs.semaphore_sequence;
[this, sequence_address, payload] {
memory_manager.Write<u64>(sequence_address + sizeof(u64), gpu.GetTicks());
memory_manager.Write<u64>(sequence_address, payload);
}();
} else {
do {
const u32 word{memory_manager.Read<u32>(regs.semaphore_address.SemaphoreAddress())};
regs.acquire_source = true;
regs.acquire_value = regs.semaphore_sequence;
if (op == GpuSemaphoreOperation::AcquireEqual) {
regs.acquire_active = true;
regs.acquire_mode = false;
if (word != regs.acquire_value) {
rasterizer->ReleaseFences();
continue;
}
} else if (op == GpuSemaphoreOperation::AcquireGequal) {
regs.acquire_active = true;
regs.acquire_mode = true;
if (word < regs.acquire_value) {
rasterizer->ReleaseFences();
continue;
}
} else if (op == GpuSemaphoreOperation::AcquireMask) {
if (word && regs.semaphore_sequence == 0) {
rasterizer->ReleaseFences();
continue;
}
} else {
LOG_ERROR(HW_GPU, "Invalid semaphore operation");
}
} while (false);
}
}
void Puller::ProcessSemaphoreRelease() {
const GPUVAddr sequence_address{regs.semaphore_address.SemaphoreAddress()};
const u32 payload = regs.semaphore_release;
std::function<void()> operation([this, sequence_address, payload] {
memory_manager.Write<u32>(sequence_address, payload);
});
rasterizer->SyncOperation(std::move(operation));
}
void Puller::ProcessSemaphoreAcquire() {
u32 word = memory_manager.Read<u32>(regs.semaphore_address.SemaphoreAddress());
const auto value = regs.semaphore_acquire;
while (word != value) {
regs.acquire_active = true;
regs.acquire_value = value;
std::this_thread::sleep_for(std::chrono::milliseconds(1));
rasterizer->ReleaseFences();
word = memory_manager.Read<u32>(regs.semaphore_address.SemaphoreAddress());
// TODO(kemathe73) figure out how to do the acquire_timeout
regs.acquire_mode = false;
regs.acquire_source = false;
}
}
/// Calls a GPU puller method.
void Puller::CallPullerMethod(const MethodCall& method_call) {
regs.reg_array[method_call.method] = method_call.argument;
const auto method = static_cast<BufferMethods>(method_call.method);
switch (method) {
case BufferMethods::BindObject: {
ProcessBindMethod(method_call);
break;
}
case BufferMethods::Nop:
case BufferMethods::SemaphoreAddressHigh:
case BufferMethods::SemaphoreAddressLow:
case BufferMethods::SemaphoreSequencePayload:
case BufferMethods::SyncpointPayload:
break;
case BufferMethods::WrcacheFlush:
case BufferMethods::RefCnt:
rasterizer->SignalReference();
break;
case BufferMethods::SyncpointOperation:
ProcessFenceActionMethod();
break;
case BufferMethods::WaitForIdle:
rasterizer->WaitForIdle();
break;
case BufferMethods::SemaphoreOperation: {
ProcessSemaphoreTriggerMethod();
break;
}
case BufferMethods::NonStallInterrupt: {
LOG_ERROR(HW_GPU, "Special puller engine method NonStallInterrupt not implemented");
break;
}
case BufferMethods::MemOpA: {
LOG_ERROR(HW_GPU, "Memory Operation A");
break;
}
case BufferMethods::MemOpB: {
// Implement this better.
rasterizer->InvalidateGPUCache();
break;
}
case BufferMethods::MemOpC:
case BufferMethods::MemOpD: {
LOG_ERROR(HW_GPU, "Memory Operation C,D");
break;
}
case BufferMethods::SemaphoreAcquire: {
ProcessSemaphoreAcquire();
break;
}
case BufferMethods::SemaphoreRelease: {
ProcessSemaphoreRelease();
break;
}
case BufferMethods::Yield: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented");
break;
}
default:
LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", method);
break;
}
}
/// Calls a GPU engine method.
void Puller::CallEngineMethod(const MethodCall& method_call) {
const EngineID engine = bound_engines[method_call.subchannel];
switch (engine) {
case EngineID::FERMI_TWOD_A:
channel_state.fermi_2d->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
case EngineID::MAXWELL_B:
channel_state.maxwell_3d->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
case EngineID::KEPLER_COMPUTE_B:
channel_state.kepler_compute->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
case EngineID::MAXWELL_DMA_COPY_A:
channel_state.maxwell_dma->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
channel_state.kepler_memory->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine");
}
}
/// Calls a GPU engine multivalue method.
void Puller::CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
u32 methods_pending) {
const EngineID engine = bound_engines[subchannel];
switch (engine) {
case EngineID::FERMI_TWOD_A:
channel_state.fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::MAXWELL_B:
channel_state.maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::KEPLER_COMPUTE_B:
channel_state.kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::MAXWELL_DMA_COPY_A:
channel_state.maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
channel_state.kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine");
}
}
/// Calls a GPU method.
void Puller::CallMethod(const MethodCall& method_call) {
LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method,
method_call.subchannel);
ASSERT(method_call.subchannel < bound_engines.size());
if (ExecuteMethodOnEngine(method_call.method)) {
CallEngineMethod(method_call);
} else {
CallPullerMethod(method_call);
}
}
/// Calls a GPU multivalue method.
void Puller::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
u32 methods_pending) {
LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel);
ASSERT(subchannel < bound_engines.size());
if (ExecuteMethodOnEngine(method)) {
CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending);
} else {
for (std::size_t i = 0; i < amount; i++) {
CallPullerMethod(MethodCall{
method,
base_start[i],
subchannel,
methods_pending - static_cast<u32>(i),
});
}
}
}
void Puller::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
/// Determines where the method should be executed.
[[nodiscard]] bool Puller::ExecuteMethodOnEngine(u32 method) {
const auto buffer_method = static_cast<BufferMethods>(method);
return buffer_method >= BufferMethods::NonPullerMethods;
}
} // namespace Tegra::Engines