mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2024-12-26 03:20:06 +00:00
7ada357b2d
memory.cpp/h contains definitions related to acessing memory and configuring the address space mem_map.cpp/h contains higher-level definitions related to configuring the address space accoording to the kernel and allocating memory.
888 lines
38 KiB
C++
888 lines
38 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
|
|
#include "common/common_types.h"
|
|
#include "common/math_util.h"
|
|
#include "common/profiler.h"
|
|
|
|
#include "core/hw/gpu.h"
|
|
#include "core/memory.h"
|
|
|
|
#include "debug_utils/debug_utils.h"
|
|
#include "math.h"
|
|
#include "color.h"
|
|
#include "pica.h"
|
|
#include "rasterizer.h"
|
|
#include "vertex_shader.h"
|
|
#include "video_core/utils.h"
|
|
|
|
namespace Pica {
|
|
|
|
namespace Rasterizer {
|
|
|
|
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
|
|
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
|
|
|
|
// Similarly to textures, the render framebuffer is laid out from bottom to top, too.
|
|
// NOTE: The framebuffer height register contains the actual FB height minus one.
|
|
y = (registers.framebuffer.height - y);
|
|
|
|
const u32 coarse_y = y & ~7;
|
|
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(registers.framebuffer.color_format.Value()));
|
|
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * registers.framebuffer.width * bytes_per_pixel;
|
|
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
|
|
|
|
switch (registers.framebuffer.color_format) {
|
|
case registers.framebuffer.RGBA8:
|
|
Color::EncodeRGBA8(color, dst_pixel);
|
|
break;
|
|
|
|
case registers.framebuffer.RGB8:
|
|
Color::EncodeRGB8(color, dst_pixel);
|
|
break;
|
|
|
|
case registers.framebuffer.RGB5A1:
|
|
Color::EncodeRGB5A1(color, dst_pixel);
|
|
break;
|
|
|
|
case registers.framebuffer.RGB565:
|
|
Color::EncodeRGB565(color, dst_pixel);
|
|
break;
|
|
|
|
case registers.framebuffer.RGBA4:
|
|
Color::EncodeRGBA4(color, dst_pixel);
|
|
break;
|
|
|
|
default:
|
|
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format.Value());
|
|
UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
static const Math::Vec4<u8> GetPixel(int x, int y) {
|
|
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
|
|
|
|
y = (registers.framebuffer.height - y);
|
|
|
|
const u32 coarse_y = y & ~7;
|
|
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(registers.framebuffer.color_format.Value()));
|
|
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * registers.framebuffer.width * bytes_per_pixel;
|
|
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
|
|
|
|
switch (registers.framebuffer.color_format) {
|
|
case registers.framebuffer.RGBA8:
|
|
return Color::DecodeRGBA8(src_pixel);
|
|
|
|
case registers.framebuffer.RGB8:
|
|
return Color::DecodeRGB8(src_pixel);
|
|
|
|
case registers.framebuffer.RGB5A1:
|
|
return Color::DecodeRGB5A1(src_pixel);
|
|
|
|
case registers.framebuffer.RGB565:
|
|
return Color::DecodeRGB565(src_pixel);
|
|
|
|
case registers.framebuffer.RGBA4:
|
|
return Color::DecodeRGBA4(src_pixel);
|
|
|
|
default:
|
|
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format.Value());
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
return {0, 0, 0, 0};
|
|
}
|
|
|
|
static u32 GetDepth(int x, int y) {
|
|
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
|
|
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
|
|
|
|
y = (registers.framebuffer.height - y);
|
|
|
|
const u32 coarse_y = y & ~7;
|
|
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(registers.framebuffer.depth_format);
|
|
u32 stride = registers.framebuffer.width * bytes_per_pixel;
|
|
|
|
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
|
u8* src_pixel = depth_buffer + src_offset;
|
|
|
|
switch (registers.framebuffer.depth_format) {
|
|
case Pica::Regs::DepthFormat::D16:
|
|
return Color::DecodeD16(src_pixel);
|
|
case Pica::Regs::DepthFormat::D24:
|
|
return Color::DecodeD24(src_pixel);
|
|
case Pica::Regs::DepthFormat::D24S8:
|
|
return Color::DecodeD24S8(src_pixel).x;
|
|
default:
|
|
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", registers.framebuffer.depth_format);
|
|
UNIMPLEMENTED();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void SetDepth(int x, int y, u32 value) {
|
|
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
|
|
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
|
|
|
|
y = (registers.framebuffer.height - y);
|
|
|
|
const u32 coarse_y = y & ~7;
|
|
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(registers.framebuffer.depth_format);
|
|
u32 stride = registers.framebuffer.width * bytes_per_pixel;
|
|
|
|
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
|
|
u8* dst_pixel = depth_buffer + dst_offset;
|
|
|
|
switch (registers.framebuffer.depth_format) {
|
|
case Pica::Regs::DepthFormat::D16:
|
|
Color::EncodeD16(value, dst_pixel);
|
|
break;
|
|
case Pica::Regs::DepthFormat::D24:
|
|
Color::EncodeD24(value, dst_pixel);
|
|
break;
|
|
case Pica::Regs::DepthFormat::D24S8:
|
|
// TODO(Subv): Implement the stencil buffer
|
|
Color::EncodeD24S8(value, 0, dst_pixel);
|
|
break;
|
|
default:
|
|
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", registers.framebuffer.depth_format);
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
|
struct Fix12P4 {
|
|
Fix12P4() {}
|
|
Fix12P4(u16 val) : val(val) {}
|
|
|
|
static u16 FracMask() { return 0xF; }
|
|
static u16 IntMask() { return (u16)~0xF; }
|
|
|
|
operator u16() const {
|
|
return val;
|
|
}
|
|
|
|
bool operator < (const Fix12P4& oth) const {
|
|
return (u16)*this < (u16)oth;
|
|
}
|
|
|
|
private:
|
|
u16 val;
|
|
};
|
|
|
|
/**
|
|
* Calculate signed area of the triangle spanned by the three argument vertices.
|
|
* The sign denotes an orientation.
|
|
*
|
|
* @todo define orientation concretely.
|
|
*/
|
|
static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
|
|
const Math::Vec2<Fix12P4>& vtx2,
|
|
const Math::Vec2<Fix12P4>& vtx3) {
|
|
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
|
|
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
|
|
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
|
return Math::Cross(vec1, vec2).z;
|
|
};
|
|
|
|
static Common::Profiling::TimingCategory rasterization_category("Rasterization");
|
|
|
|
/**
|
|
* Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
|
|
* culling via recursion.
|
|
*/
|
|
static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
|
|
const VertexShader::OutputVertex& v1,
|
|
const VertexShader::OutputVertex& v2,
|
|
bool reversed = false)
|
|
{
|
|
Common::Profiling::ScopeTimer timer(rasterization_category);
|
|
|
|
// vertex positions in rasterizer coordinates
|
|
static auto FloatToFix = [](float24 flt) {
|
|
// TODO: Rounding here is necessary to prevent garbage pixels at
|
|
// triangle borders. Is it that the correct solution, though?
|
|
return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
|
|
};
|
|
static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
|
|
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
|
|
};
|
|
|
|
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
|
|
ScreenToRasterizerCoordinates(v1.screenpos),
|
|
ScreenToRasterizerCoordinates(v2.screenpos) };
|
|
|
|
if (registers.cull_mode == Regs::CullMode::KeepAll) {
|
|
// Make sure we always end up with a triangle wound counter-clockwise
|
|
if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
|
|
ProcessTriangleInternal(v0, v2, v1, true);
|
|
return;
|
|
}
|
|
} else {
|
|
if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) {
|
|
// Reverse vertex order and use the CCW code path.
|
|
ProcessTriangleInternal(v0, v2, v1, true);
|
|
return;
|
|
}
|
|
|
|
// Cull away triangles which are wound clockwise.
|
|
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
|
|
return;
|
|
}
|
|
|
|
// TODO: Proper scissor rect test!
|
|
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
|
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
|
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
|
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
|
|
|
min_x &= Fix12P4::IntMask();
|
|
min_y &= Fix12P4::IntMask();
|
|
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
|
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
|
|
|
|
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
|
|
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
|
|
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
|
|
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
|
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
|
|
const Math::Vec2<Fix12P4>& line1,
|
|
const Math::Vec2<Fix12P4>& line2)
|
|
{
|
|
if (line1.y == line2.y) {
|
|
// just check if vertex is above us => bottom line parallel to x-axis
|
|
return vtx.y < line1.y;
|
|
} else {
|
|
// check if vertex is on our left => right side
|
|
// TODO: Not sure how likely this is to overflow
|
|
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
|
|
}
|
|
};
|
|
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
|
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
|
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
|
|
|
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
|
|
|
|
auto textures = registers.GetTextures();
|
|
auto tev_stages = registers.GetTevStages();
|
|
|
|
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
|
|
// TODO: Not sure if looping through x first might be faster
|
|
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
|
|
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
|
|
|
|
// Calculate the barycentric coordinates w0, w1 and w2
|
|
int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
|
|
int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
|
|
int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
|
|
int wsum = w0 + w1 + w2;
|
|
|
|
// If current pixel is not covered by the current primitive
|
|
if (w0 < 0 || w1 < 0 || w2 < 0)
|
|
continue;
|
|
|
|
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
|
|
float24::FromFloat32(static_cast<float>(w1)),
|
|
float24::FromFloat32(static_cast<float>(w2)));
|
|
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
|
|
|
|
// Perspective correct attribute interpolation:
|
|
// Attribute values cannot be calculated by simple linear interpolation since
|
|
// they are not linear in screen space. For example, when interpolating a
|
|
// texture coordinate across two vertices, something simple like
|
|
// u = (u0*w0 + u1*w1)/(w0+w1)
|
|
// will not work. However, the attribute value divided by the
|
|
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
|
|
// in screenspace. Hence, we can linearly interpolate these two independently and
|
|
// calculate the interpolated attribute by dividing the results.
|
|
// I.e.
|
|
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
|
|
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
|
|
// u = u_over_w / one_over_w
|
|
//
|
|
// The generalization to three vertices is straightforward in baricentric coordinates.
|
|
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
|
|
auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
|
|
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
|
|
return interpolated_attr_over_w * interpolated_w_inverse;
|
|
};
|
|
|
|
Math::Vec4<u8> primary_color{
|
|
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
|
|
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
|
|
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
|
|
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
|
|
};
|
|
|
|
Math::Vec2<float24> uv[3];
|
|
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
|
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
|
uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
|
|
uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
|
|
uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
|
|
uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
|
|
|
|
Math::Vec4<u8> texture_color[3]{};
|
|
for (int i = 0; i < 3; ++i) {
|
|
const auto& texture = textures[i];
|
|
if (!texture.enabled)
|
|
continue;
|
|
|
|
DEBUG_ASSERT(0 != texture.config.address);
|
|
|
|
int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
|
|
int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
|
|
static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
|
|
switch (mode) {
|
|
case Regs::TextureConfig::ClampToEdge:
|
|
val = std::max(val, 0);
|
|
val = std::min(val, (int)size - 1);
|
|
return val;
|
|
|
|
case Regs::TextureConfig::Repeat:
|
|
return (int)((unsigned)val % size);
|
|
|
|
case Regs::TextureConfig::MirroredRepeat:
|
|
{
|
|
unsigned int coord = ((unsigned)val % (2 * size));
|
|
if (coord >= size)
|
|
coord = 2 * size - 1 - coord;
|
|
return (int)coord;
|
|
}
|
|
|
|
default:
|
|
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode);
|
|
UNIMPLEMENTED();
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// Textures are laid out from bottom to top, hence we invert the t coordinate.
|
|
// NOTE: This may not be the right place for the inversion.
|
|
// TODO: Check if this applies to ETC textures, too.
|
|
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
|
|
t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
|
|
|
|
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
|
|
auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
|
|
|
|
texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info);
|
|
DebugUtils::DumpTexture(texture.config, texture_data);
|
|
}
|
|
|
|
// Texture environment - consists of 6 stages of color and alpha combining.
|
|
//
|
|
// Color combiners take three input color values from some source (e.g. interpolated
|
|
// vertex color, texture color, previous stage, etc), perform some very simple
|
|
// operations on each of them (e.g. inversion) and then calculate the output color
|
|
// with some basic arithmetic. Alpha combiners can be configured separately but work
|
|
// analogously.
|
|
Math::Vec4<u8> combiner_output;
|
|
Math::Vec4<u8> combiner_buffer = {
|
|
registers.tev_combiner_buffer_color.r, registers.tev_combiner_buffer_color.g,
|
|
registers.tev_combiner_buffer_color.b, registers.tev_combiner_buffer_color.a
|
|
};
|
|
|
|
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
|
|
const auto& tev_stage = tev_stages[tev_stage_index];
|
|
using Source = Regs::TevStageConfig::Source;
|
|
using ColorModifier = Regs::TevStageConfig::ColorModifier;
|
|
using AlphaModifier = Regs::TevStageConfig::AlphaModifier;
|
|
using Operation = Regs::TevStageConfig::Operation;
|
|
|
|
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
|
|
switch (source) {
|
|
// TODO: What's the difference between these two?
|
|
case Source::PrimaryColor:
|
|
case Source::PrimaryFragmentColor:
|
|
return primary_color;
|
|
|
|
case Source::Texture0:
|
|
return texture_color[0];
|
|
|
|
case Source::Texture1:
|
|
return texture_color[1];
|
|
|
|
case Source::Texture2:
|
|
return texture_color[2];
|
|
|
|
case Source::PreviousBuffer:
|
|
return combiner_buffer;
|
|
|
|
case Source::Constant:
|
|
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a};
|
|
|
|
case Source::Previous:
|
|
return combiner_output;
|
|
|
|
default:
|
|
LOG_ERROR(HW_GPU, "Unknown color combiner source %d\n", (int)source);
|
|
UNIMPLEMENTED();
|
|
return {0, 0, 0, 0};
|
|
}
|
|
};
|
|
|
|
static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
|
|
switch (factor) {
|
|
case ColorModifier::SourceColor:
|
|
return values.rgb();
|
|
|
|
case ColorModifier::OneMinusSourceColor:
|
|
return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>();
|
|
|
|
case ColorModifier::SourceAlpha:
|
|
return values.aaa();
|
|
|
|
case ColorModifier::OneMinusSourceAlpha:
|
|
return (Math::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>();
|
|
|
|
case ColorModifier::SourceRed:
|
|
return values.rrr();
|
|
|
|
case ColorModifier::OneMinusSourceRed:
|
|
return (Math::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>();
|
|
|
|
case ColorModifier::SourceGreen:
|
|
return values.ggg();
|
|
|
|
case ColorModifier::OneMinusSourceGreen:
|
|
return (Math::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>();
|
|
|
|
case ColorModifier::SourceBlue:
|
|
return values.bbb();
|
|
|
|
case ColorModifier::OneMinusSourceBlue:
|
|
return (Math::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>();
|
|
}
|
|
};
|
|
|
|
static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 {
|
|
switch (factor) {
|
|
case AlphaModifier::SourceAlpha:
|
|
return values.a();
|
|
|
|
case AlphaModifier::OneMinusSourceAlpha:
|
|
return 255 - values.a();
|
|
|
|
case AlphaModifier::SourceRed:
|
|
return values.r();
|
|
|
|
case AlphaModifier::OneMinusSourceRed:
|
|
return 255 - values.r();
|
|
|
|
case AlphaModifier::SourceGreen:
|
|
return values.g();
|
|
|
|
case AlphaModifier::OneMinusSourceGreen:
|
|
return 255 - values.g();
|
|
|
|
case AlphaModifier::SourceBlue:
|
|
return values.b();
|
|
|
|
case AlphaModifier::OneMinusSourceBlue:
|
|
return 255 - values.b();
|
|
}
|
|
};
|
|
|
|
static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
|
|
switch (op) {
|
|
case Operation::Replace:
|
|
return input[0];
|
|
|
|
case Operation::Modulate:
|
|
return ((input[0] * input[1]) / 255).Cast<u8>();
|
|
|
|
case Operation::Add:
|
|
{
|
|
auto result = input[0] + input[1];
|
|
result.r() = std::min(255, result.r());
|
|
result.g() = std::min(255, result.g());
|
|
result.b() = std::min(255, result.b());
|
|
return result.Cast<u8>();
|
|
}
|
|
|
|
case Operation::AddSigned:
|
|
{
|
|
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
|
|
auto result = input[0].Cast<int>() + input[1].Cast<int>() - Math::MakeVec<int>(128, 128, 128);
|
|
result.r() = MathUtil::Clamp<int>(result.r(), 0, 255);
|
|
result.g() = MathUtil::Clamp<int>(result.g(), 0, 255);
|
|
result.b() = MathUtil::Clamp<int>(result.b(), 0, 255);
|
|
return result.Cast<u8>();
|
|
}
|
|
|
|
case Operation::Lerp:
|
|
return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
|
|
|
|
case Operation::Subtract:
|
|
{
|
|
auto result = input[0].Cast<int>() - input[1].Cast<int>();
|
|
result.r() = std::max(0, result.r());
|
|
result.g() = std::max(0, result.g());
|
|
result.b() = std::max(0, result.b());
|
|
return result.Cast<u8>();
|
|
}
|
|
|
|
case Operation::MultiplyThenAdd:
|
|
{
|
|
auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
|
|
result.r() = std::min(255, result.r());
|
|
result.g() = std::min(255, result.g());
|
|
result.b() = std::min(255, result.b());
|
|
return result.Cast<u8>();
|
|
}
|
|
|
|
case Operation::AddThenMultiply:
|
|
{
|
|
auto result = input[0] + input[1];
|
|
result.r() = std::min(255, result.r());
|
|
result.g() = std::min(255, result.g());
|
|
result.b() = std::min(255, result.b());
|
|
result = (result * input[2].Cast<int>()) / 255;
|
|
return result.Cast<u8>();
|
|
}
|
|
|
|
default:
|
|
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op);
|
|
UNIMPLEMENTED();
|
|
return {0, 0, 0};
|
|
}
|
|
};
|
|
|
|
static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
|
|
switch (op) {
|
|
case Operation::Replace:
|
|
return input[0];
|
|
|
|
case Operation::Modulate:
|
|
return input[0] * input[1] / 255;
|
|
|
|
case Operation::Add:
|
|
return std::min(255, input[0] + input[1]);
|
|
|
|
case Operation::Lerp:
|
|
return (input[0] * input[2] + input[1] * (255 - input[2])) / 255;
|
|
|
|
case Operation::Subtract:
|
|
return std::max(0, (int)input[0] - (int)input[1]);
|
|
|
|
case Operation::MultiplyThenAdd:
|
|
return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255);
|
|
|
|
case Operation::AddThenMultiply:
|
|
return (std::min(255, (input[0] + input[1])) * input[2]) / 255;
|
|
|
|
default:
|
|
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op);
|
|
UNIMPLEMENTED();
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// color combiner
|
|
// NOTE: Not sure if the alpha combiner might use the color output of the previous
|
|
// stage as input. Hence, we currently don't directly write the result to
|
|
// combiner_output.rgb(), but instead store it in a temporary variable until
|
|
// alpha combining has been done.
|
|
Math::Vec3<u8> color_result[3] = {
|
|
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
|
|
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
|
|
GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3))
|
|
};
|
|
auto color_output = ColorCombine(tev_stage.color_op, color_result);
|
|
|
|
// alpha combiner
|
|
std::array<u8,3> alpha_result = {
|
|
GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
|
|
GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
|
|
GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3))
|
|
};
|
|
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
|
|
|
|
combiner_output[0] = std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
|
|
combiner_output[1] = std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
|
|
combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
|
|
combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
|
|
|
|
if (registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) {
|
|
combiner_buffer.r() = combiner_output.r();
|
|
combiner_buffer.g() = combiner_output.g();
|
|
combiner_buffer.b() = combiner_output.b();
|
|
}
|
|
|
|
if (registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) {
|
|
combiner_buffer.a() = combiner_output.a();
|
|
}
|
|
}
|
|
|
|
if (registers.output_merger.alpha_test.enable) {
|
|
bool pass = false;
|
|
|
|
switch (registers.output_merger.alpha_test.func) {
|
|
case registers.output_merger.Never:
|
|
pass = false;
|
|
break;
|
|
|
|
case registers.output_merger.Always:
|
|
pass = true;
|
|
break;
|
|
|
|
case registers.output_merger.Equal:
|
|
pass = combiner_output.a() == registers.output_merger.alpha_test.ref;
|
|
break;
|
|
|
|
case registers.output_merger.NotEqual:
|
|
pass = combiner_output.a() != registers.output_merger.alpha_test.ref;
|
|
break;
|
|
|
|
case registers.output_merger.LessThan:
|
|
pass = combiner_output.a() < registers.output_merger.alpha_test.ref;
|
|
break;
|
|
|
|
case registers.output_merger.LessThanOrEqual:
|
|
pass = combiner_output.a() <= registers.output_merger.alpha_test.ref;
|
|
break;
|
|
|
|
case registers.output_merger.GreaterThan:
|
|
pass = combiner_output.a() > registers.output_merger.alpha_test.ref;
|
|
break;
|
|
|
|
case registers.output_merger.GreaterThanOrEqual:
|
|
pass = combiner_output.a() >= registers.output_merger.alpha_test.ref;
|
|
break;
|
|
}
|
|
|
|
if (!pass)
|
|
continue;
|
|
}
|
|
|
|
// TODO: Does depth indeed only get written even if depth testing is enabled?
|
|
if (registers.output_merger.depth_test_enable) {
|
|
unsigned num_bits = Pica::Regs::DepthBitsPerPixel(registers.framebuffer.depth_format);
|
|
u32 z = (u32)((v0.screenpos[2].ToFloat32() * w0 +
|
|
v1.screenpos[2].ToFloat32() * w1 +
|
|
v2.screenpos[2].ToFloat32() * w2) * ((1 << num_bits) - 1) / wsum);
|
|
u32 ref_z = GetDepth(x >> 4, y >> 4);
|
|
|
|
bool pass = false;
|
|
|
|
switch (registers.output_merger.depth_test_func) {
|
|
case registers.output_merger.Never:
|
|
pass = false;
|
|
break;
|
|
|
|
case registers.output_merger.Always:
|
|
pass = true;
|
|
break;
|
|
|
|
case registers.output_merger.Equal:
|
|
pass = z == ref_z;
|
|
break;
|
|
|
|
case registers.output_merger.NotEqual:
|
|
pass = z != ref_z;
|
|
break;
|
|
|
|
case registers.output_merger.LessThan:
|
|
pass = z < ref_z;
|
|
break;
|
|
|
|
case registers.output_merger.LessThanOrEqual:
|
|
pass = z <= ref_z;
|
|
break;
|
|
|
|
case registers.output_merger.GreaterThan:
|
|
pass = z > ref_z;
|
|
break;
|
|
|
|
case registers.output_merger.GreaterThanOrEqual:
|
|
pass = z >= ref_z;
|
|
break;
|
|
}
|
|
|
|
if (!pass)
|
|
continue;
|
|
|
|
if (registers.output_merger.depth_write_enable)
|
|
SetDepth(x >> 4, y >> 4, z);
|
|
}
|
|
|
|
auto dest = GetPixel(x >> 4, y >> 4);
|
|
Math::Vec4<u8> blend_output = combiner_output;
|
|
|
|
if (registers.output_merger.alphablend_enable) {
|
|
auto params = registers.output_merger.alpha_blending;
|
|
|
|
auto LookupFactorRGB = [&](decltype(params)::BlendFactor factor) -> Math::Vec3<u8> {
|
|
switch (factor) {
|
|
case params.Zero:
|
|
return Math::Vec3<u8>(0, 0, 0);
|
|
|
|
case params.One:
|
|
return Math::Vec3<u8>(255, 255, 255);
|
|
|
|
case params.SourceColor:
|
|
return combiner_output.rgb();
|
|
|
|
case params.OneMinusSourceColor:
|
|
return Math::Vec3<u8>(255 - combiner_output.r(), 255 - combiner_output.g(), 255 - combiner_output.b());
|
|
|
|
case params.DestColor:
|
|
return dest.rgb();
|
|
|
|
case params.OneMinusDestColor:
|
|
return Math::Vec3<u8>(255 - dest.r(), 255 - dest.g(), 255 - dest.b());
|
|
|
|
case params.SourceAlpha:
|
|
return Math::Vec3<u8>(combiner_output.a(), combiner_output.a(), combiner_output.a());
|
|
|
|
case params.OneMinusSourceAlpha:
|
|
return Math::Vec3<u8>(255 - combiner_output.a(), 255 - combiner_output.a(), 255 - combiner_output.a());
|
|
|
|
case params.DestAlpha:
|
|
return Math::Vec3<u8>(dest.a(), dest.a(), dest.a());
|
|
|
|
case params.OneMinusDestAlpha:
|
|
return Math::Vec3<u8>(255 - dest.a(), 255 - dest.a(), 255 - dest.a());
|
|
|
|
case params.ConstantColor:
|
|
return Math::Vec3<u8>(registers.output_merger.blend_const.r, registers.output_merger.blend_const.g, registers.output_merger.blend_const.b);
|
|
|
|
case params.OneMinusConstantColor:
|
|
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.r, 255 - registers.output_merger.blend_const.g, 255 - registers.output_merger.blend_const.b);
|
|
|
|
case params.ConstantAlpha:
|
|
return Math::Vec3<u8>(registers.output_merger.blend_const.a, registers.output_merger.blend_const.a, registers.output_merger.blend_const.a);
|
|
|
|
case params.OneMinusConstantAlpha:
|
|
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a);
|
|
|
|
default:
|
|
LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor);
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
};
|
|
|
|
auto LookupFactorA = [&](decltype(params)::BlendFactor factor) -> u8 {
|
|
switch (factor) {
|
|
case params.Zero:
|
|
return 0;
|
|
|
|
case params.One:
|
|
return 255;
|
|
|
|
case params.SourceAlpha:
|
|
return combiner_output.a();
|
|
|
|
case params.OneMinusSourceAlpha:
|
|
return 255 - combiner_output.a();
|
|
|
|
case params.DestAlpha:
|
|
return dest.a();
|
|
|
|
case params.OneMinusDestAlpha:
|
|
return 255 - dest.a();
|
|
|
|
case params.ConstantAlpha:
|
|
return registers.output_merger.blend_const.a;
|
|
|
|
case params.OneMinusConstantAlpha:
|
|
return 255 - registers.output_merger.blend_const.a;
|
|
|
|
default:
|
|
LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor);
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
};
|
|
|
|
using BlendEquation = decltype(params)::BlendEquation;
|
|
static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
|
|
const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
|
|
BlendEquation equation) {
|
|
Math::Vec4<int> result;
|
|
|
|
auto src_result = (src * srcfactor).Cast<int>();
|
|
auto dst_result = (dest * destfactor).Cast<int>();
|
|
|
|
switch (equation) {
|
|
case BlendEquation::Add:
|
|
result = (src_result + dst_result) / 255;
|
|
break;
|
|
|
|
case BlendEquation::Subtract:
|
|
result = (src_result - dst_result) / 255;
|
|
break;
|
|
|
|
case BlendEquation::ReverseSubtract:
|
|
result = (dst_result - src_result) / 255;
|
|
break;
|
|
|
|
// TODO: How do these two actually work?
|
|
// OpenGL doesn't include the blend factors in the min/max computations,
|
|
// but is this what the 3DS actually does?
|
|
case BlendEquation::Min:
|
|
result.r() = std::min(src.r(), dest.r());
|
|
result.g() = std::min(src.g(), dest.g());
|
|
result.b() = std::min(src.b(), dest.b());
|
|
result.a() = std::min(src.a(), dest.a());
|
|
break;
|
|
|
|
case BlendEquation::Max:
|
|
result.r() = std::max(src.r(), dest.r());
|
|
result.g() = std::max(src.g(), dest.g());
|
|
result.b() = std::max(src.b(), dest.b());
|
|
result.a() = std::max(src.a(), dest.a());
|
|
break;
|
|
|
|
default:
|
|
LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation);
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255),
|
|
MathUtil::Clamp(result.g(), 0, 255),
|
|
MathUtil::Clamp(result.b(), 0, 255),
|
|
MathUtil::Clamp(result.a(), 0, 255));
|
|
};
|
|
|
|
auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb),
|
|
LookupFactorA(params.factor_source_a));
|
|
auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb),
|
|
LookupFactorA(params.factor_dest_a));
|
|
|
|
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
|
|
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
|
|
} else {
|
|
LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op);
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
const Math::Vec4<u8> result = {
|
|
registers.output_merger.red_enable ? blend_output.r() : dest.r(),
|
|
registers.output_merger.green_enable ? blend_output.g() : dest.g(),
|
|
registers.output_merger.blue_enable ? blend_output.b() : dest.b(),
|
|
registers.output_merger.alpha_enable ? blend_output.a() : dest.a()
|
|
};
|
|
|
|
DrawPixel(x >> 4, y >> 4, result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
const VertexShader::OutputVertex& v1,
|
|
const VertexShader::OutputVertex& v2) {
|
|
ProcessTriangleInternal(v0, v1, v2);
|
|
}
|
|
|
|
} // namespace Rasterizer
|
|
|
|
} // namespace Pica
|