mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2025-01-10 08:40:06 +00:00
1413 lines
55 KiB
C++
1413 lines
55 KiB
C++
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <bitset>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/microprofile.h"
|
|
#include "common/scope_exit.h"
|
|
#include "common/thread.h"
|
|
#include "common/thread_worker.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/arm/exclusive_monitor.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/cpu_manager.h"
|
|
#include "core/hardware_properties.h"
|
|
#include "core/hle/kernel/init/init_slab_setup.h"
|
|
#include "core/hle/kernel/k_client_port.h"
|
|
#include "core/hle/kernel/k_dynamic_resource_manager.h"
|
|
#include "core/hle/kernel/k_handle_table.h"
|
|
#include "core/hle/kernel/k_hardware_timer.h"
|
|
#include "core/hle/kernel/k_memory_layout.h"
|
|
#include "core/hle/kernel/k_memory_manager.h"
|
|
#include "core/hle/kernel/k_object_name.h"
|
|
#include "core/hle/kernel/k_page_buffer.h"
|
|
#include "core/hle/kernel/k_process.h"
|
|
#include "core/hle/kernel/k_resource_limit.h"
|
|
#include "core/hle/kernel/k_scheduler.h"
|
|
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
|
#include "core/hle/kernel/k_shared_memory.h"
|
|
#include "core/hle/kernel/k_system_resource.h"
|
|
#include "core/hle/kernel/k_thread.h"
|
|
#include "core/hle/kernel/k_worker_task_manager.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/physical_core.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/hle/service/server_manager.h"
|
|
#include "core/hle/service/sm/sm.h"
|
|
#include "core/memory.h"
|
|
|
|
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
|
|
|
|
namespace Kernel {
|
|
|
|
struct KernelCore::Impl {
|
|
static constexpr size_t ApplicationMemoryBlockSlabHeapSize = 20000;
|
|
static constexpr size_t SystemMemoryBlockSlabHeapSize = 10000;
|
|
static constexpr size_t BlockInfoSlabHeapSize = 4000;
|
|
static constexpr size_t ReservedDynamicPageCount = 64;
|
|
|
|
explicit Impl(Core::System& system_, KernelCore& kernel_) : system{system_} {}
|
|
|
|
void SetMulticore(bool is_multi) {
|
|
is_multicore = is_multi;
|
|
}
|
|
|
|
void Initialize(KernelCore& kernel) {
|
|
hardware_timer = std::make_unique<Kernel::KHardwareTimer>(kernel);
|
|
hardware_timer->Initialize();
|
|
|
|
global_object_list_container = std::make_unique<KAutoObjectWithListContainer>(kernel);
|
|
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
|
|
global_handle_table = std::make_unique<Kernel::KHandleTable>(kernel);
|
|
global_handle_table->Initialize(KHandleTable::MaxTableSize);
|
|
|
|
is_phantom_mode_for_singlecore = false;
|
|
|
|
// Derive the initial memory layout from the emulated board
|
|
Init::InitializeSlabResourceCounts(kernel);
|
|
DeriveInitialMemoryLayout();
|
|
Init::InitializeSlabHeaps(system, *memory_layout);
|
|
|
|
// Initialize kernel memory and resources.
|
|
InitializeSystemResourceLimit(kernel, system.CoreTiming());
|
|
InitializeMemoryLayout();
|
|
InitializeShutdownThreads();
|
|
InitializePhysicalCores();
|
|
InitializePreemption(kernel);
|
|
InitializeGlobalData(kernel);
|
|
|
|
// Initialize the Dynamic Slab Heaps.
|
|
{
|
|
const auto& pt_heap_region = memory_layout->GetPageTableHeapRegion();
|
|
ASSERT(pt_heap_region.GetEndAddress() != 0);
|
|
|
|
InitializeResourceManagers(kernel, pt_heap_region.GetAddress(),
|
|
pt_heap_region.GetSize());
|
|
}
|
|
|
|
InitializeHackSharedMemory();
|
|
RegisterHostThread(nullptr);
|
|
}
|
|
|
|
void InitializeCores() {
|
|
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
|
cores[core_id]->Initialize((*application_process).Is64BitProcess());
|
|
system.ApplicationMemory().SetCurrentPageTable(*application_process, core_id);
|
|
}
|
|
}
|
|
|
|
void CloseApplicationProcess() {
|
|
KProcess* old_process = application_process.exchange(nullptr);
|
|
if (old_process == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// old_process->Close();
|
|
// TODO: The process should be destroyed based on accurate ref counting after
|
|
// calling Close(). Adding a manual Destroy() call instead to avoid a memory leak.
|
|
old_process->Finalize();
|
|
old_process->Destroy();
|
|
}
|
|
|
|
void Shutdown() {
|
|
is_shutting_down.store(true, std::memory_order_relaxed);
|
|
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
|
|
|
|
process_list.clear();
|
|
|
|
CloseServices();
|
|
|
|
next_object_id = 0;
|
|
next_kernel_process_id = KProcess::InitialKIPIDMin;
|
|
next_user_process_id = KProcess::ProcessIDMin;
|
|
next_thread_id = 1;
|
|
|
|
global_handle_table->Finalize();
|
|
global_handle_table.reset();
|
|
|
|
preemption_event = nullptr;
|
|
|
|
exclusive_monitor.reset();
|
|
|
|
// Cleanup persistent kernel objects
|
|
auto CleanupObject = [](KAutoObject* obj) {
|
|
if (obj) {
|
|
obj->Close();
|
|
obj = nullptr;
|
|
}
|
|
};
|
|
CleanupObject(hid_shared_mem);
|
|
CleanupObject(font_shared_mem);
|
|
CleanupObject(irs_shared_mem);
|
|
CleanupObject(time_shared_mem);
|
|
CleanupObject(hidbus_shared_mem);
|
|
CleanupObject(system_resource_limit);
|
|
|
|
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
|
if (shutdown_threads[core_id]) {
|
|
shutdown_threads[core_id]->Close();
|
|
shutdown_threads[core_id] = nullptr;
|
|
}
|
|
|
|
schedulers[core_id].reset();
|
|
}
|
|
|
|
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
|
|
next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
|
|
|
|
// Close kernel objects that were not freed on shutdown
|
|
{
|
|
std::scoped_lock lk{registered_in_use_objects_lock};
|
|
if (registered_in_use_objects.size()) {
|
|
for (auto& object : registered_in_use_objects) {
|
|
object->Close();
|
|
}
|
|
registered_in_use_objects.clear();
|
|
}
|
|
}
|
|
|
|
CloseApplicationProcess();
|
|
|
|
// Track kernel objects that were not freed on shutdown
|
|
{
|
|
std::scoped_lock lk{registered_objects_lock};
|
|
if (registered_objects.size()) {
|
|
LOG_DEBUG(Kernel, "{} kernel objects were dangling on shutdown!",
|
|
registered_objects.size());
|
|
registered_objects.clear();
|
|
}
|
|
}
|
|
|
|
object_name_global_data.reset();
|
|
|
|
// Ensure that the object list container is finalized and properly shutdown.
|
|
global_object_list_container->Finalize();
|
|
global_object_list_container.reset();
|
|
|
|
hardware_timer->Finalize();
|
|
hardware_timer.reset();
|
|
}
|
|
|
|
void CloseServices() {
|
|
// Ensures all servers gracefully shutdown.
|
|
std::scoped_lock lk{server_lock};
|
|
server_managers.clear();
|
|
}
|
|
|
|
void InitializePhysicalCores() {
|
|
exclusive_monitor =
|
|
Core::MakeExclusiveMonitor(system.ApplicationMemory(), Core::Hardware::NUM_CPU_CORES);
|
|
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
|
|
const s32 core{static_cast<s32>(i)};
|
|
|
|
schedulers[i] = std::make_unique<Kernel::KScheduler>(system.Kernel());
|
|
cores[i] = std::make_unique<Kernel::PhysicalCore>(i, system, *schedulers[i]);
|
|
|
|
auto* main_thread{Kernel::KThread::Create(system.Kernel())};
|
|
main_thread->SetCurrentCore(core);
|
|
ASSERT(Kernel::KThread::InitializeMainThread(system, main_thread, core).IsSuccess());
|
|
|
|
auto* idle_thread{Kernel::KThread::Create(system.Kernel())};
|
|
idle_thread->SetCurrentCore(core);
|
|
ASSERT(Kernel::KThread::InitializeIdleThread(system, idle_thread, core).IsSuccess());
|
|
|
|
schedulers[i]->Initialize(main_thread, idle_thread, core);
|
|
}
|
|
}
|
|
|
|
// Creates the default system resource limit
|
|
void InitializeSystemResourceLimit(KernelCore& kernel,
|
|
const Core::Timing::CoreTiming& core_timing) {
|
|
system_resource_limit = KResourceLimit::Create(system.Kernel());
|
|
system_resource_limit->Initialize(&core_timing);
|
|
|
|
const auto sizes{memory_layout->GetTotalAndKernelMemorySizes()};
|
|
const auto total_size{sizes.first};
|
|
const auto kernel_size{sizes.second};
|
|
|
|
// If setting the default system values fails, then something seriously wrong has occurred.
|
|
ASSERT(
|
|
system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemoryMax, total_size)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::ThreadCountMax, 800)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::EventCountMax, 900)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::TransferMemoryCountMax, 200)
|
|
.IsSuccess());
|
|
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::SessionCountMax, 1133)
|
|
.IsSuccess());
|
|
system_resource_limit->Reserve(LimitableResource::PhysicalMemoryMax, kernel_size);
|
|
|
|
// Reserve secure applet memory, introduced in firmware 5.0.0
|
|
constexpr u64 secure_applet_memory_size{4_MiB};
|
|
ASSERT(system_resource_limit->Reserve(LimitableResource::PhysicalMemoryMax,
|
|
secure_applet_memory_size));
|
|
}
|
|
|
|
void InitializePreemption(KernelCore& kernel) {
|
|
preemption_event = Core::Timing::CreateEvent(
|
|
"PreemptionCallback",
|
|
[this, &kernel](std::uintptr_t, s64 time,
|
|
std::chrono::nanoseconds) -> std::optional<std::chrono::nanoseconds> {
|
|
{
|
|
KScopedSchedulerLock lock(kernel);
|
|
global_scheduler_context->PreemptThreads();
|
|
}
|
|
return std::nullopt;
|
|
});
|
|
|
|
const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
|
|
system.CoreTiming().ScheduleLoopingEvent(time_interval, time_interval, preemption_event);
|
|
}
|
|
|
|
void InitializeResourceManagers(KernelCore& kernel, KVirtualAddress address, size_t size) {
|
|
// Ensure that the buffer is suitable for our use.
|
|
ASSERT(Common::IsAligned(GetInteger(address), PageSize));
|
|
ASSERT(Common::IsAligned(size, PageSize));
|
|
|
|
// Ensure that we have space for our reference counts.
|
|
const size_t rc_size =
|
|
Common::AlignUp(KPageTableSlabHeap::CalculateReferenceCountSize(size), PageSize);
|
|
ASSERT(rc_size < size);
|
|
size -= rc_size;
|
|
|
|
// Initialize the resource managers' shared page manager.
|
|
resource_manager_page_manager = std::make_unique<KDynamicPageManager>();
|
|
resource_manager_page_manager->Initialize(
|
|
address, size, std::max<size_t>(PageSize, KPageBufferSlabHeap::BufferSize));
|
|
|
|
// Initialize the KPageBuffer slab heap.
|
|
page_buffer_slab_heap.Initialize(system);
|
|
|
|
// Initialize the fixed-size slabheaps.
|
|
app_memory_block_heap = std::make_unique<KMemoryBlockSlabHeap>();
|
|
sys_memory_block_heap = std::make_unique<KMemoryBlockSlabHeap>();
|
|
block_info_heap = std::make_unique<KBlockInfoSlabHeap>();
|
|
app_memory_block_heap->Initialize(resource_manager_page_manager.get(),
|
|
ApplicationMemoryBlockSlabHeapSize);
|
|
sys_memory_block_heap->Initialize(resource_manager_page_manager.get(),
|
|
SystemMemoryBlockSlabHeapSize);
|
|
block_info_heap->Initialize(resource_manager_page_manager.get(), BlockInfoSlabHeapSize);
|
|
|
|
// Reserve all but a fixed number of remaining pages for the page table heap.
|
|
const size_t num_pt_pages = resource_manager_page_manager->GetCount() -
|
|
resource_manager_page_manager->GetUsed() -
|
|
ReservedDynamicPageCount;
|
|
page_table_heap = std::make_unique<KPageTableSlabHeap>();
|
|
|
|
// TODO(bunnei): Pass in address once we support kernel virtual memory allocations.
|
|
page_table_heap->Initialize(
|
|
resource_manager_page_manager.get(), num_pt_pages,
|
|
/*GetPointer<KPageTableManager::RefCount>(address + size)*/ nullptr);
|
|
|
|
// Setup the slab managers.
|
|
KDynamicPageManager* const app_dynamic_page_manager = nullptr;
|
|
KDynamicPageManager* const sys_dynamic_page_manager =
|
|
/*KTargetSystem::IsDynamicResourceLimitsEnabled()*/ true
|
|
? resource_manager_page_manager.get()
|
|
: nullptr;
|
|
app_memory_block_manager = std::make_unique<KMemoryBlockSlabManager>();
|
|
sys_memory_block_manager = std::make_unique<KMemoryBlockSlabManager>();
|
|
app_block_info_manager = std::make_unique<KBlockInfoManager>();
|
|
sys_block_info_manager = std::make_unique<KBlockInfoManager>();
|
|
app_page_table_manager = std::make_unique<KPageTableManager>();
|
|
sys_page_table_manager = std::make_unique<KPageTableManager>();
|
|
|
|
app_memory_block_manager->Initialize(app_dynamic_page_manager, app_memory_block_heap.get());
|
|
sys_memory_block_manager->Initialize(sys_dynamic_page_manager, sys_memory_block_heap.get());
|
|
|
|
app_block_info_manager->Initialize(app_dynamic_page_manager, block_info_heap.get());
|
|
sys_block_info_manager->Initialize(sys_dynamic_page_manager, block_info_heap.get());
|
|
|
|
app_page_table_manager->Initialize(app_dynamic_page_manager, page_table_heap.get());
|
|
sys_page_table_manager->Initialize(sys_dynamic_page_manager, page_table_heap.get());
|
|
|
|
// Check that we have the correct number of dynamic pages available.
|
|
ASSERT(resource_manager_page_manager->GetCount() -
|
|
resource_manager_page_manager->GetUsed() ==
|
|
ReservedDynamicPageCount);
|
|
|
|
// Create the system page table managers.
|
|
app_system_resource = std::make_unique<KSystemResource>(kernel);
|
|
sys_system_resource = std::make_unique<KSystemResource>(kernel);
|
|
|
|
// Set the managers for the system resources.
|
|
app_system_resource->SetManagers(*app_memory_block_manager, *app_block_info_manager,
|
|
*app_page_table_manager);
|
|
sys_system_resource->SetManagers(*sys_memory_block_manager, *sys_block_info_manager,
|
|
*sys_page_table_manager);
|
|
}
|
|
|
|
void InitializeShutdownThreads() {
|
|
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
|
|
shutdown_threads[core_id] = KThread::Create(system.Kernel());
|
|
ASSERT(KThread::InitializeHighPriorityThread(system, shutdown_threads[core_id], {}, {},
|
|
core_id)
|
|
.IsSuccess());
|
|
}
|
|
}
|
|
|
|
void InitializeGlobalData(KernelCore& kernel) {
|
|
object_name_global_data = std::make_unique<KObjectNameGlobalData>(kernel);
|
|
}
|
|
|
|
void MakeApplicationProcess(KProcess* process) {
|
|
application_process = process;
|
|
}
|
|
|
|
static inline thread_local u8 host_thread_id = UINT8_MAX;
|
|
|
|
/// Sets the host thread ID for the caller.
|
|
u32 SetHostThreadId(std::size_t core_id) {
|
|
// This should only be called during core init.
|
|
ASSERT(host_thread_id == UINT8_MAX);
|
|
|
|
// The first four slots are reserved for CPU core threads
|
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
|
host_thread_id = static_cast<u8>(core_id);
|
|
return host_thread_id;
|
|
}
|
|
|
|
/// Gets the host thread ID for the caller
|
|
u32 GetHostThreadId() const {
|
|
return host_thread_id;
|
|
}
|
|
|
|
// Gets the dummy KThread for the caller, allocating a new one if this is the first time
|
|
KThread* GetHostDummyThread(KThread* existing_thread) {
|
|
const auto initialize{[](KThread* thread) {
|
|
ASSERT(KThread::InitializeDummyThread(thread, nullptr).IsSuccess());
|
|
return thread;
|
|
}};
|
|
|
|
thread_local KThread raw_thread{system.Kernel()};
|
|
thread_local KThread* thread = existing_thread ? existing_thread : initialize(&raw_thread);
|
|
return thread;
|
|
}
|
|
|
|
/// Registers a CPU core thread by allocating a host thread ID for it
|
|
void RegisterCoreThread(std::size_t core_id) {
|
|
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
|
|
const auto this_id = SetHostThreadId(core_id);
|
|
if (!is_multicore) {
|
|
single_core_thread_id = this_id;
|
|
}
|
|
}
|
|
|
|
/// Registers a new host thread by allocating a host thread ID for it
|
|
void RegisterHostThread(KThread* existing_thread) {
|
|
[[maybe_unused]] const auto dummy_thread = GetHostDummyThread(existing_thread);
|
|
}
|
|
|
|
[[nodiscard]] u32 GetCurrentHostThreadID() {
|
|
const auto this_id = GetHostThreadId();
|
|
if (!is_multicore && single_core_thread_id == this_id) {
|
|
return static_cast<u32>(system.GetCpuManager().CurrentCore());
|
|
}
|
|
return this_id;
|
|
}
|
|
|
|
static inline thread_local bool is_phantom_mode_for_singlecore{false};
|
|
|
|
bool IsPhantomModeForSingleCore() const {
|
|
return is_phantom_mode_for_singlecore;
|
|
}
|
|
|
|
void SetIsPhantomModeForSingleCore(bool value) {
|
|
ASSERT(!is_multicore);
|
|
is_phantom_mode_for_singlecore = value;
|
|
}
|
|
|
|
bool IsShuttingDown() const {
|
|
return is_shutting_down.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
static inline thread_local KThread* current_thread{nullptr};
|
|
|
|
KThread* GetCurrentEmuThread() {
|
|
if (!current_thread) {
|
|
current_thread = GetHostDummyThread(nullptr);
|
|
}
|
|
return current_thread;
|
|
}
|
|
|
|
void SetCurrentEmuThread(KThread* thread) {
|
|
current_thread = thread;
|
|
}
|
|
|
|
void DeriveInitialMemoryLayout() {
|
|
memory_layout = std::make_unique<KMemoryLayout>();
|
|
|
|
// Insert the root region for the virtual memory tree, from which all other regions will
|
|
// derive.
|
|
memory_layout->GetVirtualMemoryRegionTree().InsertDirectly(
|
|
KernelVirtualAddressSpaceBase,
|
|
KernelVirtualAddressSpaceBase + KernelVirtualAddressSpaceSize - 1);
|
|
|
|
// Insert the root region for the physical memory tree, from which all other regions will
|
|
// derive.
|
|
memory_layout->GetPhysicalMemoryRegionTree().InsertDirectly(
|
|
KernelPhysicalAddressSpaceBase,
|
|
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceSize - 1);
|
|
|
|
// Save start and end for ease of use.
|
|
constexpr KVirtualAddress code_start_virt_addr = KernelVirtualAddressCodeBase;
|
|
constexpr KVirtualAddress code_end_virt_addr = KernelVirtualAddressCodeEnd;
|
|
|
|
// Setup the containing kernel region.
|
|
constexpr size_t KernelRegionSize = 1_GiB;
|
|
constexpr size_t KernelRegionAlign = 1_GiB;
|
|
constexpr KVirtualAddress kernel_region_start =
|
|
Common::AlignDown(GetInteger(code_start_virt_addr), KernelRegionAlign);
|
|
size_t kernel_region_size = KernelRegionSize;
|
|
if (!(kernel_region_start + KernelRegionSize - 1 <= KernelVirtualAddressSpaceLast)) {
|
|
kernel_region_size = KernelVirtualAddressSpaceEnd - GetInteger(kernel_region_start);
|
|
}
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(kernel_region_start), kernel_region_size, KMemoryRegionType_Kernel));
|
|
|
|
// Setup the code region.
|
|
constexpr size_t CodeRegionAlign = PageSize;
|
|
constexpr KVirtualAddress code_region_start =
|
|
Common::AlignDown(GetInteger(code_start_virt_addr), CodeRegionAlign);
|
|
constexpr KVirtualAddress code_region_end =
|
|
Common::AlignUp(GetInteger(code_end_virt_addr), CodeRegionAlign);
|
|
constexpr size_t code_region_size = code_region_end - code_region_start;
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(code_region_start), code_region_size, KMemoryRegionType_KernelCode));
|
|
|
|
// Setup board-specific device physical regions.
|
|
Init::SetupDevicePhysicalMemoryRegions(*memory_layout);
|
|
|
|
// Determine the amount of space needed for the misc region.
|
|
size_t misc_region_needed_size;
|
|
{
|
|
// Each core has a one page stack for all three stack types (Main, Idle, Exception).
|
|
misc_region_needed_size = Core::Hardware::NUM_CPU_CORES * (3 * (PageSize + PageSize));
|
|
|
|
// Account for each auto-map device.
|
|
for (const auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
|
|
if (region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
|
|
// Check that the region is valid.
|
|
ASSERT(region.GetEndAddress() != 0);
|
|
|
|
// Account for the region.
|
|
misc_region_needed_size +=
|
|
PageSize + (Common::AlignUp(region.GetLastAddress(), PageSize) -
|
|
Common::AlignDown(region.GetAddress(), PageSize));
|
|
}
|
|
}
|
|
|
|
// Multiply the needed size by three, to account for the need for guard space.
|
|
misc_region_needed_size *= 3;
|
|
}
|
|
|
|
// Decide on the actual size for the misc region.
|
|
constexpr size_t MiscRegionAlign = KernelAslrAlignment;
|
|
constexpr size_t MiscRegionMinimumSize = 32_MiB;
|
|
const size_t misc_region_size = Common::AlignUp(
|
|
std::max(misc_region_needed_size, MiscRegionMinimumSize), MiscRegionAlign);
|
|
ASSERT(misc_region_size > 0);
|
|
|
|
// Setup the misc region.
|
|
const KVirtualAddress misc_region_start =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
|
|
misc_region_size, MiscRegionAlign, KMemoryRegionType_Kernel);
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(misc_region_start), misc_region_size, KMemoryRegionType_KernelMisc));
|
|
|
|
// Determine if we'll use extra thread resources.
|
|
const bool use_extra_resources = KSystemControl::Init::ShouldIncreaseThreadResourceLimit();
|
|
|
|
// Setup the stack region.
|
|
constexpr size_t StackRegionSize = 14_MiB;
|
|
constexpr size_t StackRegionAlign = KernelAslrAlignment;
|
|
const KVirtualAddress stack_region_start =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
|
|
StackRegionSize, StackRegionAlign, KMemoryRegionType_Kernel);
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(stack_region_start), StackRegionSize, KMemoryRegionType_KernelStack));
|
|
|
|
// Determine the size of the resource region.
|
|
const size_t resource_region_size =
|
|
memory_layout->GetResourceRegionSizeForInit(use_extra_resources);
|
|
|
|
// Determine the size of the slab region.
|
|
const size_t slab_region_size =
|
|
Common::AlignUp(Init::CalculateTotalSlabHeapSize(system.Kernel()), PageSize);
|
|
ASSERT(slab_region_size <= resource_region_size);
|
|
|
|
// Setup the slab region.
|
|
const KPhysicalAddress code_start_phys_addr = KernelPhysicalAddressCodeBase;
|
|
const KPhysicalAddress code_end_phys_addr = code_start_phys_addr + code_region_size;
|
|
const KPhysicalAddress slab_start_phys_addr = code_end_phys_addr;
|
|
const KPhysicalAddress slab_end_phys_addr = slab_start_phys_addr + slab_region_size;
|
|
constexpr size_t SlabRegionAlign = KernelAslrAlignment;
|
|
const size_t slab_region_needed_size =
|
|
Common::AlignUp(GetInteger(code_end_phys_addr) + slab_region_size, SlabRegionAlign) -
|
|
Common::AlignDown(GetInteger(code_end_phys_addr), SlabRegionAlign);
|
|
const KVirtualAddress slab_region_start =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
|
|
slab_region_needed_size, SlabRegionAlign, KMemoryRegionType_Kernel) +
|
|
(GetInteger(code_end_phys_addr) % SlabRegionAlign);
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(slab_region_start), slab_region_size, KMemoryRegionType_KernelSlab));
|
|
|
|
// Setup the temp region.
|
|
constexpr size_t TempRegionSize = 128_MiB;
|
|
constexpr size_t TempRegionAlign = KernelAslrAlignment;
|
|
const KVirtualAddress temp_region_start =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
|
|
TempRegionSize, TempRegionAlign, KMemoryRegionType_Kernel);
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(temp_region_start), TempRegionSize, KMemoryRegionType_KernelTemp));
|
|
|
|
// Automatically map in devices that have auto-map attributes.
|
|
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
|
|
// We only care about kernel regions.
|
|
if (!region.IsDerivedFrom(KMemoryRegionType_Kernel)) {
|
|
continue;
|
|
}
|
|
|
|
// Check whether we should map the region.
|
|
if (!region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
|
|
continue;
|
|
}
|
|
|
|
// If this region has already been mapped, no need to consider it.
|
|
if (region.HasTypeAttribute(KMemoryRegionAttr_DidKernelMap)) {
|
|
continue;
|
|
}
|
|
|
|
// Check that the region is valid.
|
|
ASSERT(region.GetEndAddress() != 0);
|
|
|
|
// Set the attribute to note we've mapped this region.
|
|
region.SetTypeAttribute(KMemoryRegionAttr_DidKernelMap);
|
|
|
|
// Create a virtual pair region and insert it into the tree.
|
|
const KPhysicalAddress map_phys_addr = Common::AlignDown(region.GetAddress(), PageSize);
|
|
const size_t map_size =
|
|
Common::AlignUp(region.GetEndAddress(), PageSize) - GetInteger(map_phys_addr);
|
|
const KVirtualAddress map_virt_addr =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
|
|
map_size, PageSize, KMemoryRegionType_KernelMisc, PageSize);
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(map_virt_addr), map_size, KMemoryRegionType_KernelMiscMappedDevice));
|
|
region.SetPairAddress(GetInteger(map_virt_addr) + region.GetAddress() -
|
|
GetInteger(map_phys_addr));
|
|
}
|
|
|
|
Init::SetupDramPhysicalMemoryRegions(*memory_layout);
|
|
|
|
// Insert a physical region for the kernel code region.
|
|
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
|
|
GetInteger(code_start_phys_addr), code_region_size, KMemoryRegionType_DramKernelCode));
|
|
|
|
// Insert a physical region for the kernel slab region.
|
|
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
|
|
GetInteger(slab_start_phys_addr), slab_region_size, KMemoryRegionType_DramKernelSlab));
|
|
|
|
// Determine size available for kernel page table heaps, requiring > 8 MB.
|
|
const KPhysicalAddress resource_end_phys_addr = slab_start_phys_addr + resource_region_size;
|
|
const size_t page_table_heap_size = resource_end_phys_addr - slab_end_phys_addr;
|
|
ASSERT(page_table_heap_size / 4_MiB > 2);
|
|
|
|
// Insert a physical region for the kernel page table heap region
|
|
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
|
|
GetInteger(slab_end_phys_addr), page_table_heap_size,
|
|
KMemoryRegionType_DramKernelPtHeap));
|
|
|
|
// All DRAM regions that we haven't tagged by this point will be mapped under the linear
|
|
// mapping. Tag them.
|
|
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
|
|
if (region.GetType() == KMemoryRegionType_Dram) {
|
|
// Check that the region is valid.
|
|
ASSERT(region.GetEndAddress() != 0);
|
|
|
|
// Set the linear map attribute.
|
|
region.SetTypeAttribute(KMemoryRegionAttr_LinearMapped);
|
|
}
|
|
}
|
|
|
|
// Get the linear region extents.
|
|
const auto linear_extents =
|
|
memory_layout->GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
|
|
KMemoryRegionAttr_LinearMapped);
|
|
ASSERT(linear_extents.GetEndAddress() != 0);
|
|
|
|
// Setup the linear mapping region.
|
|
constexpr size_t LinearRegionAlign = 1_GiB;
|
|
const KPhysicalAddress aligned_linear_phys_start =
|
|
Common::AlignDown(linear_extents.GetAddress(), LinearRegionAlign);
|
|
const size_t linear_region_size =
|
|
Common::AlignUp(linear_extents.GetEndAddress(), LinearRegionAlign) -
|
|
GetInteger(aligned_linear_phys_start);
|
|
const KVirtualAddress linear_region_start =
|
|
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
|
|
linear_region_size, LinearRegionAlign, KMemoryRegionType_None, LinearRegionAlign);
|
|
|
|
const u64 linear_region_phys_to_virt_diff =
|
|
GetInteger(linear_region_start) - GetInteger(aligned_linear_phys_start);
|
|
|
|
// Map and create regions for all the linearly-mapped data.
|
|
{
|
|
KPhysicalAddress cur_phys_addr = 0;
|
|
u64 cur_size = 0;
|
|
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
|
|
if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
|
|
continue;
|
|
}
|
|
|
|
ASSERT(region.GetEndAddress() != 0);
|
|
|
|
if (cur_size == 0) {
|
|
cur_phys_addr = region.GetAddress();
|
|
cur_size = region.GetSize();
|
|
} else if (cur_phys_addr + cur_size == region.GetAddress()) {
|
|
cur_size += region.GetSize();
|
|
} else {
|
|
cur_phys_addr = region.GetAddress();
|
|
cur_size = region.GetSize();
|
|
}
|
|
|
|
const KVirtualAddress region_virt_addr =
|
|
region.GetAddress() + linear_region_phys_to_virt_diff;
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(region_virt_addr), region.GetSize(),
|
|
GetTypeForVirtualLinearMapping(region.GetType())));
|
|
region.SetPairAddress(GetInteger(region_virt_addr));
|
|
|
|
KMemoryRegion* virt_region =
|
|
memory_layout->GetVirtualMemoryRegionTree().FindModifiable(
|
|
GetInteger(region_virt_addr));
|
|
ASSERT(virt_region != nullptr);
|
|
virt_region->SetPairAddress(region.GetAddress());
|
|
}
|
|
}
|
|
|
|
// Insert regions for the initial page table region.
|
|
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
|
|
GetInteger(resource_end_phys_addr), KernelPageTableHeapSize,
|
|
KMemoryRegionType_DramKernelInitPt));
|
|
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
|
|
GetInteger(resource_end_phys_addr) + linear_region_phys_to_virt_diff,
|
|
KernelPageTableHeapSize, KMemoryRegionType_VirtualDramKernelInitPt));
|
|
|
|
// All linear-mapped DRAM regions that we haven't tagged by this point will be allocated to
|
|
// some pool partition. Tag them.
|
|
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
|
|
if (region.GetType() == (KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped)) {
|
|
region.SetType(KMemoryRegionType_DramPoolPartition);
|
|
}
|
|
}
|
|
|
|
// Setup all other memory regions needed to arrange the pool partitions.
|
|
Init::SetupPoolPartitionMemoryRegions(*memory_layout);
|
|
|
|
// Cache all linear regions in their own trees for faster access, later.
|
|
memory_layout->InitializeLinearMemoryRegionTrees(aligned_linear_phys_start,
|
|
linear_region_start);
|
|
}
|
|
|
|
void InitializeMemoryLayout() {
|
|
// Initialize the memory manager.
|
|
memory_manager = std::make_unique<KMemoryManager>(system);
|
|
const auto& management_region = memory_layout->GetPoolManagementRegion();
|
|
ASSERT(management_region.GetEndAddress() != 0);
|
|
memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize());
|
|
}
|
|
|
|
void InitializeHackSharedMemory() {
|
|
// Setup memory regions for emulated processes
|
|
// TODO(bunnei): These should not be hardcoded regions initialized within the kernel
|
|
constexpr std::size_t hid_size{0x40000};
|
|
constexpr std::size_t font_size{0x1100000};
|
|
constexpr std::size_t irs_size{0x8000};
|
|
constexpr std::size_t time_size{0x1000};
|
|
constexpr std::size_t hidbus_size{0x1000};
|
|
|
|
hid_shared_mem = KSharedMemory::Create(system.Kernel());
|
|
font_shared_mem = KSharedMemory::Create(system.Kernel());
|
|
irs_shared_mem = KSharedMemory::Create(system.Kernel());
|
|
time_shared_mem = KSharedMemory::Create(system.Kernel());
|
|
hidbus_shared_mem = KSharedMemory::Create(system.Kernel());
|
|
|
|
hid_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
|
|
Svc::MemoryPermission::Read, hid_size);
|
|
font_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
|
|
Svc::MemoryPermission::Read, font_size);
|
|
irs_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
|
|
Svc::MemoryPermission::Read, irs_size);
|
|
time_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
|
|
Svc::MemoryPermission::Read, time_size);
|
|
hidbus_shared_mem->Initialize(system.DeviceMemory(), nullptr, Svc::MemoryPermission::None,
|
|
Svc::MemoryPermission::Read, hidbus_size);
|
|
}
|
|
|
|
std::mutex registered_objects_lock;
|
|
std::mutex registered_in_use_objects_lock;
|
|
|
|
std::atomic<u32> next_object_id{0};
|
|
std::atomic<u64> next_kernel_process_id{KProcess::InitialKIPIDMin};
|
|
std::atomic<u64> next_user_process_id{KProcess::ProcessIDMin};
|
|
std::atomic<u64> next_thread_id{1};
|
|
|
|
// Lists all processes that exist in the current session.
|
|
std::vector<KProcess*> process_list;
|
|
std::atomic<KProcess*> application_process{};
|
|
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
|
|
std::unique_ptr<Kernel::KHardwareTimer> hardware_timer;
|
|
|
|
Init::KSlabResourceCounts slab_resource_counts{};
|
|
KResourceLimit* system_resource_limit{};
|
|
|
|
KPageBufferSlabHeap page_buffer_slab_heap;
|
|
|
|
std::shared_ptr<Core::Timing::EventType> preemption_event;
|
|
|
|
// This is the kernel's handle table or supervisor handle table which
|
|
// stores all the objects in place.
|
|
std::unique_ptr<KHandleTable> global_handle_table;
|
|
|
|
std::unique_ptr<KAutoObjectWithListContainer> global_object_list_container;
|
|
|
|
std::unique_ptr<KObjectNameGlobalData> object_name_global_data;
|
|
|
|
std::unordered_set<KAutoObject*> registered_objects;
|
|
std::unordered_set<KAutoObject*> registered_in_use_objects;
|
|
|
|
std::mutex server_lock;
|
|
std::vector<std::unique_ptr<Service::ServerManager>> server_managers;
|
|
|
|
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
|
|
std::array<std::unique_ptr<Kernel::PhysicalCore>, Core::Hardware::NUM_CPU_CORES> cores;
|
|
|
|
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
|
|
std::atomic<u32> next_host_thread_id{Core::Hardware::NUM_CPU_CORES};
|
|
|
|
// Kernel memory management
|
|
std::unique_ptr<KMemoryManager> memory_manager;
|
|
|
|
// Resource managers
|
|
std::unique_ptr<KDynamicPageManager> resource_manager_page_manager;
|
|
std::unique_ptr<KPageTableSlabHeap> page_table_heap;
|
|
std::unique_ptr<KMemoryBlockSlabHeap> app_memory_block_heap;
|
|
std::unique_ptr<KMemoryBlockSlabHeap> sys_memory_block_heap;
|
|
std::unique_ptr<KBlockInfoSlabHeap> block_info_heap;
|
|
std::unique_ptr<KPageTableManager> app_page_table_manager;
|
|
std::unique_ptr<KPageTableManager> sys_page_table_manager;
|
|
std::unique_ptr<KMemoryBlockSlabManager> app_memory_block_manager;
|
|
std::unique_ptr<KMemoryBlockSlabManager> sys_memory_block_manager;
|
|
std::unique_ptr<KBlockInfoManager> app_block_info_manager;
|
|
std::unique_ptr<KBlockInfoManager> sys_block_info_manager;
|
|
std::unique_ptr<KSystemResource> app_system_resource;
|
|
std::unique_ptr<KSystemResource> sys_system_resource;
|
|
|
|
// Shared memory for services
|
|
Kernel::KSharedMemory* hid_shared_mem{};
|
|
Kernel::KSharedMemory* font_shared_mem{};
|
|
Kernel::KSharedMemory* irs_shared_mem{};
|
|
Kernel::KSharedMemory* time_shared_mem{};
|
|
Kernel::KSharedMemory* hidbus_shared_mem{};
|
|
|
|
// Memory layout
|
|
std::unique_ptr<KMemoryLayout> memory_layout;
|
|
|
|
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> shutdown_threads{};
|
|
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
|
|
|
|
bool is_multicore{};
|
|
std::atomic_bool is_shutting_down{};
|
|
u32 single_core_thread_id{};
|
|
|
|
std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{};
|
|
|
|
KWorkerTaskManager worker_task_manager;
|
|
|
|
// System context
|
|
Core::System& system;
|
|
};
|
|
|
|
KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {}
|
|
KernelCore::~KernelCore() = default;
|
|
|
|
void KernelCore::SetMulticore(bool is_multicore) {
|
|
impl->SetMulticore(is_multicore);
|
|
}
|
|
|
|
void KernelCore::Initialize() {
|
|
slab_heap_container = std::make_unique<SlabHeapContainer>();
|
|
impl->Initialize(*this);
|
|
}
|
|
|
|
void KernelCore::InitializeCores() {
|
|
impl->InitializeCores();
|
|
}
|
|
|
|
void KernelCore::Shutdown() {
|
|
impl->Shutdown();
|
|
}
|
|
|
|
void KernelCore::CloseServices() {
|
|
impl->CloseServices();
|
|
}
|
|
|
|
const KResourceLimit* KernelCore::GetSystemResourceLimit() const {
|
|
return impl->system_resource_limit;
|
|
}
|
|
|
|
KResourceLimit* KernelCore::GetSystemResourceLimit() {
|
|
return impl->system_resource_limit;
|
|
}
|
|
|
|
KScopedAutoObject<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
|
|
return impl->global_handle_table->GetObject<KThread>(handle);
|
|
}
|
|
|
|
void KernelCore::AppendNewProcess(KProcess* process) {
|
|
impl->process_list.push_back(process);
|
|
}
|
|
|
|
void KernelCore::MakeApplicationProcess(KProcess* process) {
|
|
impl->MakeApplicationProcess(process);
|
|
}
|
|
|
|
KProcess* KernelCore::ApplicationProcess() {
|
|
return impl->application_process;
|
|
}
|
|
|
|
const KProcess* KernelCore::ApplicationProcess() const {
|
|
return impl->application_process;
|
|
}
|
|
|
|
void KernelCore::CloseApplicationProcess() {
|
|
impl->CloseApplicationProcess();
|
|
}
|
|
|
|
const std::vector<KProcess*>& KernelCore::GetProcessList() const {
|
|
return impl->process_list;
|
|
}
|
|
|
|
Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() {
|
|
return *impl->global_scheduler_context;
|
|
}
|
|
|
|
const Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() const {
|
|
return *impl->global_scheduler_context;
|
|
}
|
|
|
|
Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) {
|
|
return *impl->schedulers[id];
|
|
}
|
|
|
|
const Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) const {
|
|
return *impl->schedulers[id];
|
|
}
|
|
|
|
Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
|
|
return *impl->cores[id];
|
|
}
|
|
|
|
const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
|
|
return *impl->cores[id];
|
|
}
|
|
|
|
size_t KernelCore::CurrentPhysicalCoreIndex() const {
|
|
const u32 core_id = impl->GetCurrentHostThreadID();
|
|
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
|
|
return Core::Hardware::NUM_CPU_CORES - 1;
|
|
}
|
|
return core_id;
|
|
}
|
|
|
|
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
|
|
return *impl->cores[CurrentPhysicalCoreIndex()];
|
|
}
|
|
|
|
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
|
|
return *impl->cores[CurrentPhysicalCoreIndex()];
|
|
}
|
|
|
|
Kernel::KScheduler* KernelCore::CurrentScheduler() {
|
|
const u32 core_id = impl->GetCurrentHostThreadID();
|
|
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
|
|
// This is expected when called from not a guest thread
|
|
return {};
|
|
}
|
|
return impl->schedulers[core_id].get();
|
|
}
|
|
|
|
Kernel::KHardwareTimer& KernelCore::HardwareTimer() {
|
|
return *impl->hardware_timer;
|
|
}
|
|
|
|
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
|
|
return *impl->exclusive_monitor;
|
|
}
|
|
|
|
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
|
|
return *impl->exclusive_monitor;
|
|
}
|
|
|
|
KAutoObjectWithListContainer& KernelCore::ObjectListContainer() {
|
|
return *impl->global_object_list_container;
|
|
}
|
|
|
|
const KAutoObjectWithListContainer& KernelCore::ObjectListContainer() const {
|
|
return *impl->global_object_list_container;
|
|
}
|
|
|
|
void KernelCore::InvalidateAllInstructionCaches() {
|
|
for (auto& physical_core : impl->cores) {
|
|
physical_core->ArmInterface().ClearInstructionCache();
|
|
}
|
|
}
|
|
|
|
void KernelCore::InvalidateCpuInstructionCacheRange(KProcessAddress addr, std::size_t size) {
|
|
for (auto& physical_core : impl->cores) {
|
|
if (!physical_core->IsInitialized()) {
|
|
continue;
|
|
}
|
|
physical_core->ArmInterface().InvalidateCacheRange(GetInteger(addr), size);
|
|
}
|
|
}
|
|
|
|
void KernelCore::PrepareReschedule(std::size_t id) {
|
|
// TODO: Reimplement, this
|
|
}
|
|
|
|
void KernelCore::RegisterKernelObject(KAutoObject* object) {
|
|
std::scoped_lock lk{impl->registered_objects_lock};
|
|
impl->registered_objects.insert(object);
|
|
}
|
|
|
|
void KernelCore::UnregisterKernelObject(KAutoObject* object) {
|
|
std::scoped_lock lk{impl->registered_objects_lock};
|
|
impl->registered_objects.erase(object);
|
|
}
|
|
|
|
void KernelCore::RegisterInUseObject(KAutoObject* object) {
|
|
std::scoped_lock lk{impl->registered_in_use_objects_lock};
|
|
impl->registered_in_use_objects.insert(object);
|
|
}
|
|
|
|
void KernelCore::UnregisterInUseObject(KAutoObject* object) {
|
|
std::scoped_lock lk{impl->registered_in_use_objects_lock};
|
|
impl->registered_in_use_objects.erase(object);
|
|
}
|
|
|
|
void KernelCore::RunServer(std::unique_ptr<Service::ServerManager>&& server_manager) {
|
|
auto* manager = server_manager.get();
|
|
|
|
{
|
|
std::scoped_lock lk{impl->server_lock};
|
|
if (impl->is_shutting_down) {
|
|
return;
|
|
}
|
|
|
|
impl->server_managers.emplace_back(std::move(server_manager));
|
|
}
|
|
|
|
manager->LoopProcess();
|
|
}
|
|
|
|
u32 KernelCore::CreateNewObjectID() {
|
|
return impl->next_object_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewThreadID() {
|
|
return impl->next_thread_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewKernelProcessID() {
|
|
return impl->next_kernel_process_id++;
|
|
}
|
|
|
|
u64 KernelCore::CreateNewUserProcessID() {
|
|
return impl->next_user_process_id++;
|
|
}
|
|
|
|
KHandleTable& KernelCore::GlobalHandleTable() {
|
|
return *impl->global_handle_table;
|
|
}
|
|
|
|
const KHandleTable& KernelCore::GlobalHandleTable() const {
|
|
return *impl->global_handle_table;
|
|
}
|
|
|
|
void KernelCore::RegisterCoreThread(std::size_t core_id) {
|
|
impl->RegisterCoreThread(core_id);
|
|
}
|
|
|
|
void KernelCore::RegisterHostThread(KThread* existing_thread) {
|
|
impl->RegisterHostThread(existing_thread);
|
|
|
|
if (existing_thread != nullptr) {
|
|
ASSERT(GetCurrentEmuThread() == existing_thread);
|
|
}
|
|
}
|
|
|
|
static std::jthread RunHostThreadFunc(KernelCore& kernel, KProcess* process,
|
|
std::string&& thread_name, std::function<void()>&& func) {
|
|
// Reserve a new thread from the process resource limit.
|
|
KScopedResourceReservation thread_reservation(process, LimitableResource::ThreadCountMax);
|
|
ASSERT(thread_reservation.Succeeded());
|
|
|
|
// Initialize the thread.
|
|
KThread* thread = KThread::Create(kernel);
|
|
ASSERT(R_SUCCEEDED(KThread::InitializeDummyThread(thread, process)));
|
|
|
|
// Commit the thread reservation.
|
|
thread_reservation.Commit();
|
|
|
|
return std::jthread(
|
|
[&kernel, thread, thread_name{std::move(thread_name)}, func{std::move(func)}] {
|
|
// Set the thread name.
|
|
Common::SetCurrentThreadName(thread_name.c_str());
|
|
|
|
// Register the thread.
|
|
kernel.RegisterHostThread(thread);
|
|
|
|
// Run the callback.
|
|
func();
|
|
|
|
// Close the thread.
|
|
// This will free the process if it is the last reference.
|
|
thread->Close();
|
|
});
|
|
}
|
|
|
|
std::jthread KernelCore::RunOnHostCoreProcess(std::string&& process_name,
|
|
std::function<void()> func) {
|
|
// Make a new process.
|
|
KProcess* process = KProcess::Create(*this);
|
|
ASSERT(R_SUCCEEDED(KProcess::Initialize(process, System(), "", KProcess::ProcessType::Userland,
|
|
GetSystemResourceLimit())));
|
|
|
|
// Ensure that we don't hold onto any extra references.
|
|
SCOPE_EXIT({ process->Close(); });
|
|
|
|
// Run the host thread.
|
|
return RunHostThreadFunc(*this, process, std::move(process_name), std::move(func));
|
|
}
|
|
|
|
std::jthread KernelCore::RunOnHostCoreThread(std::string&& thread_name,
|
|
std::function<void()> func) {
|
|
// Get the current process.
|
|
KProcess* process = GetCurrentProcessPointer(*this);
|
|
|
|
// Run the host thread.
|
|
return RunHostThreadFunc(*this, process, std::move(thread_name), std::move(func));
|
|
}
|
|
|
|
void KernelCore::RunOnGuestCoreProcess(std::string&& process_name, std::function<void()> func) {
|
|
constexpr s32 ServiceThreadPriority = 16;
|
|
constexpr s32 ServiceThreadCore = 3;
|
|
|
|
// Make a new process.
|
|
KProcess* process = KProcess::Create(*this);
|
|
ASSERT(R_SUCCEEDED(KProcess::Initialize(process, System(), "", KProcess::ProcessType::Userland,
|
|
GetSystemResourceLimit())));
|
|
|
|
// Ensure that we don't hold onto any extra references.
|
|
SCOPE_EXIT({ process->Close(); });
|
|
|
|
// Reserve a new thread from the process resource limit.
|
|
KScopedResourceReservation thread_reservation(process, LimitableResource::ThreadCountMax);
|
|
ASSERT(thread_reservation.Succeeded());
|
|
|
|
// Initialize the thread.
|
|
KThread* thread = KThread::Create(*this);
|
|
ASSERT(R_SUCCEEDED(KThread::InitializeServiceThread(
|
|
System(), thread, std::move(func), ServiceThreadPriority, ServiceThreadCore, process)));
|
|
|
|
// Commit the thread reservation.
|
|
thread_reservation.Commit();
|
|
|
|
// Begin running the thread.
|
|
ASSERT(R_SUCCEEDED(thread->Run()));
|
|
}
|
|
|
|
u32 KernelCore::GetCurrentHostThreadID() const {
|
|
return impl->GetCurrentHostThreadID();
|
|
}
|
|
|
|
KThread* KernelCore::GetCurrentEmuThread() const {
|
|
return impl->GetCurrentEmuThread();
|
|
}
|
|
|
|
void KernelCore::SetCurrentEmuThread(KThread* thread) {
|
|
impl->SetCurrentEmuThread(thread);
|
|
}
|
|
|
|
KObjectNameGlobalData& KernelCore::ObjectNameGlobalData() {
|
|
return *impl->object_name_global_data;
|
|
}
|
|
|
|
KMemoryManager& KernelCore::MemoryManager() {
|
|
return *impl->memory_manager;
|
|
}
|
|
|
|
const KMemoryManager& KernelCore::MemoryManager() const {
|
|
return *impl->memory_manager;
|
|
}
|
|
|
|
KSystemResource& KernelCore::GetAppSystemResource() {
|
|
return *impl->app_system_resource;
|
|
}
|
|
|
|
const KSystemResource& KernelCore::GetAppSystemResource() const {
|
|
return *impl->app_system_resource;
|
|
}
|
|
|
|
KSystemResource& KernelCore::GetSystemSystemResource() {
|
|
return *impl->sys_system_resource;
|
|
}
|
|
|
|
const KSystemResource& KernelCore::GetSystemSystemResource() const {
|
|
return *impl->sys_system_resource;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetHidSharedMem() {
|
|
return *impl->hid_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetHidSharedMem() const {
|
|
return *impl->hid_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetFontSharedMem() {
|
|
return *impl->font_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetFontSharedMem() const {
|
|
return *impl->font_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() {
|
|
return *impl->irs_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() const {
|
|
return *impl->irs_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() {
|
|
return *impl->time_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() const {
|
|
return *impl->time_shared_mem;
|
|
}
|
|
|
|
Kernel::KSharedMemory& KernelCore::GetHidBusSharedMem() {
|
|
return *impl->hidbus_shared_mem;
|
|
}
|
|
|
|
const Kernel::KSharedMemory& KernelCore::GetHidBusSharedMem() const {
|
|
return *impl->hidbus_shared_mem;
|
|
}
|
|
|
|
void KernelCore::SuspendApplication(bool suspended) {
|
|
const bool should_suspend{exception_exited || suspended};
|
|
const auto activity = should_suspend ? ProcessActivity::Paused : ProcessActivity::Runnable;
|
|
|
|
// Get the application process.
|
|
KScopedAutoObject<KProcess> process = ApplicationProcess();
|
|
if (process.IsNull()) {
|
|
return;
|
|
}
|
|
|
|
// Set the new activity.
|
|
process->SetActivity(activity);
|
|
|
|
// Wait for process execution to stop.
|
|
bool must_wait{should_suspend};
|
|
|
|
// KernelCore::SuspendApplication must be called from locked context,
|
|
// or we could race another call to SetActivity, interfering with waiting.
|
|
while (must_wait) {
|
|
KScopedSchedulerLock sl{*this};
|
|
|
|
// Assume that all threads have finished running.
|
|
must_wait = false;
|
|
|
|
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
|
|
if (Scheduler(i).GetSchedulerCurrentThread()->GetOwnerProcess() ==
|
|
process.GetPointerUnsafe()) {
|
|
// A thread has not finished running yet.
|
|
// Continue waiting.
|
|
must_wait = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void KernelCore::ShutdownCores() {
|
|
KScopedSchedulerLock lk{*this};
|
|
|
|
for (auto* thread : impl->shutdown_threads) {
|
|
void(thread->Run());
|
|
}
|
|
}
|
|
|
|
bool KernelCore::IsMulticore() const {
|
|
return impl->is_multicore;
|
|
}
|
|
|
|
bool KernelCore::IsShuttingDown() const {
|
|
return impl->IsShuttingDown();
|
|
}
|
|
|
|
void KernelCore::ExceptionalExitApplication() {
|
|
exception_exited = true;
|
|
SuspendApplication(true);
|
|
}
|
|
|
|
void KernelCore::EnterSVCProfile() {
|
|
impl->svc_ticks[CurrentPhysicalCoreIndex()] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
|
|
}
|
|
|
|
void KernelCore::ExitSVCProfile() {
|
|
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[CurrentPhysicalCoreIndex()]);
|
|
}
|
|
|
|
Init::KSlabResourceCounts& KernelCore::SlabResourceCounts() {
|
|
return impl->slab_resource_counts;
|
|
}
|
|
|
|
const Init::KSlabResourceCounts& KernelCore::SlabResourceCounts() const {
|
|
return impl->slab_resource_counts;
|
|
}
|
|
|
|
KWorkerTaskManager& KernelCore::WorkerTaskManager() {
|
|
return impl->worker_task_manager;
|
|
}
|
|
|
|
const KWorkerTaskManager& KernelCore::WorkerTaskManager() const {
|
|
return impl->worker_task_manager;
|
|
}
|
|
|
|
const KMemoryLayout& KernelCore::MemoryLayout() const {
|
|
return *impl->memory_layout;
|
|
}
|
|
|
|
bool KernelCore::IsPhantomModeForSingleCore() const {
|
|
return impl->IsPhantomModeForSingleCore();
|
|
}
|
|
|
|
void KernelCore::SetIsPhantomModeForSingleCore(bool value) {
|
|
impl->SetIsPhantomModeForSingleCore(value);
|
|
}
|
|
|
|
Core::System& KernelCore::System() {
|
|
return impl->system;
|
|
}
|
|
|
|
const Core::System& KernelCore::System() const {
|
|
return impl->system;
|
|
}
|
|
|
|
struct KernelCore::SlabHeapContainer {
|
|
KSlabHeap<KClientSession> client_session;
|
|
KSlabHeap<KEvent> event;
|
|
KSlabHeap<KPort> port;
|
|
KSlabHeap<KProcess> process;
|
|
KSlabHeap<KResourceLimit> resource_limit;
|
|
KSlabHeap<KSession> session;
|
|
KSlabHeap<KSharedMemory> shared_memory;
|
|
KSlabHeap<KSharedMemoryInfo> shared_memory_info;
|
|
KSlabHeap<KThread> thread;
|
|
KSlabHeap<KTransferMemory> transfer_memory;
|
|
KSlabHeap<KCodeMemory> code_memory;
|
|
KSlabHeap<KDeviceAddressSpace> device_address_space;
|
|
KSlabHeap<KPageBuffer> page_buffer;
|
|
KSlabHeap<KThreadLocalPage> thread_local_page;
|
|
KSlabHeap<KObjectName> object_name;
|
|
KSlabHeap<KSessionRequest> session_request;
|
|
KSlabHeap<KSecureSystemResource> secure_system_resource;
|
|
KSlabHeap<KThread::LockWithPriorityInheritanceInfo> lock_info;
|
|
KSlabHeap<KEventInfo> event_info;
|
|
KSlabHeap<KDebug> debug;
|
|
};
|
|
|
|
template <typename T>
|
|
KSlabHeap<T>& KernelCore::SlabHeap() {
|
|
if constexpr (std::is_same_v<T, KClientSession>) {
|
|
return slab_heap_container->client_session;
|
|
} else if constexpr (std::is_same_v<T, KEvent>) {
|
|
return slab_heap_container->event;
|
|
} else if constexpr (std::is_same_v<T, KPort>) {
|
|
return slab_heap_container->port;
|
|
} else if constexpr (std::is_same_v<T, KProcess>) {
|
|
return slab_heap_container->process;
|
|
} else if constexpr (std::is_same_v<T, KResourceLimit>) {
|
|
return slab_heap_container->resource_limit;
|
|
} else if constexpr (std::is_same_v<T, KSession>) {
|
|
return slab_heap_container->session;
|
|
} else if constexpr (std::is_same_v<T, KSharedMemory>) {
|
|
return slab_heap_container->shared_memory;
|
|
} else if constexpr (std::is_same_v<T, KSharedMemoryInfo>) {
|
|
return slab_heap_container->shared_memory_info;
|
|
} else if constexpr (std::is_same_v<T, KThread>) {
|
|
return slab_heap_container->thread;
|
|
} else if constexpr (std::is_same_v<T, KTransferMemory>) {
|
|
return slab_heap_container->transfer_memory;
|
|
} else if constexpr (std::is_same_v<T, KCodeMemory>) {
|
|
return slab_heap_container->code_memory;
|
|
} else if constexpr (std::is_same_v<T, KDeviceAddressSpace>) {
|
|
return slab_heap_container->device_address_space;
|
|
} else if constexpr (std::is_same_v<T, KPageBuffer>) {
|
|
return slab_heap_container->page_buffer;
|
|
} else if constexpr (std::is_same_v<T, KThreadLocalPage>) {
|
|
return slab_heap_container->thread_local_page;
|
|
} else if constexpr (std::is_same_v<T, KObjectName>) {
|
|
return slab_heap_container->object_name;
|
|
} else if constexpr (std::is_same_v<T, KSessionRequest>) {
|
|
return slab_heap_container->session_request;
|
|
} else if constexpr (std::is_same_v<T, KSecureSystemResource>) {
|
|
return slab_heap_container->secure_system_resource;
|
|
} else if constexpr (std::is_same_v<T, KThread::LockWithPriorityInheritanceInfo>) {
|
|
return slab_heap_container->lock_info;
|
|
} else if constexpr (std::is_same_v<T, KEventInfo>) {
|
|
return slab_heap_container->event_info;
|
|
} else if constexpr (std::is_same_v<T, KDebug>) {
|
|
return slab_heap_container->debug;
|
|
}
|
|
}
|
|
|
|
template KSlabHeap<KClientSession>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KEvent>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KPort>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KProcess>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KResourceLimit>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KSession>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KSharedMemory>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KSharedMemoryInfo>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KThread>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KTransferMemory>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KCodeMemory>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KDeviceAddressSpace>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KPageBuffer>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KThreadLocalPage>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KObjectName>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KSessionRequest>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KSecureSystemResource>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KThread::LockWithPriorityInheritanceInfo>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KEventInfo>& KernelCore::SlabHeap();
|
|
template KSlabHeap<KDebug>& KernelCore::SlabHeap();
|
|
|
|
} // namespace Kernel
|