// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <span> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "shader_recompiler/backend/spirv/emit_spirv.h" #include "shader_recompiler/backend/spirv/emit_spirv_instructions.h" #include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/program.h" namespace Shader::Backend::SPIRV { namespace { template <class Func> struct FuncTraits {}; template <class ReturnType_, class... Args> struct FuncTraits<ReturnType_ (*)(Args...)> { using ReturnType = ReturnType_; static constexpr size_t NUM_ARGS = sizeof...(Args); template <size_t I> using ArgType = std::tuple_element_t<I, std::tuple<Args...>>; }; template <auto func, typename... Args> void SetDefinition(EmitContext& ctx, IR::Inst* inst, Args... args) { inst->SetDefinition<Id>(func(ctx, std::forward<Args>(args)...)); } template <typename ArgType> ArgType Arg(EmitContext& ctx, const IR::Value& arg) { if constexpr (std::is_same_v<ArgType, Id>) { return ctx.Def(arg); } else if constexpr (std::is_same_v<ArgType, const IR::Value&>) { return arg; } else if constexpr (std::is_same_v<ArgType, u32>) { return arg.U32(); } else if constexpr (std::is_same_v<ArgType, IR::Attribute>) { return arg.Attribute(); } else if constexpr (std::is_same_v<ArgType, IR::Patch>) { return arg.Patch(); } else if constexpr (std::is_same_v<ArgType, IR::Reg>) { return arg.Reg(); } } template <auto func, bool is_first_arg_inst, size_t... I> void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) { using Traits = FuncTraits<decltype(func)>; if constexpr (std::is_same_v<typename Traits::ReturnType, Id>) { if constexpr (is_first_arg_inst) { SetDefinition<func>( ctx, inst, inst, Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...); } else { SetDefinition<func>( ctx, inst, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...); } } else { if constexpr (is_first_arg_inst) { func(ctx, inst, Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...); } else { func(ctx, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...); } } } template <auto func> void Invoke(EmitContext& ctx, IR::Inst* inst) { using Traits = FuncTraits<decltype(func)>; static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments"); if constexpr (Traits::NUM_ARGS == 1) { Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{}); } else { using FirstArgType = typename Traits::template ArgType<1>; static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst*>; using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>; Invoke<func, is_first_arg_inst>(ctx, inst, Indices{}); } } void EmitInst(EmitContext& ctx, IR::Inst* inst) { switch (inst->GetOpcode()) { #define OPCODE(name, result_type, ...) \ case IR::Opcode::name: \ return Invoke<&Emit##name>(ctx, inst); #include "shader_recompiler/frontend/ir/opcodes.inc" #undef OPCODE } throw LogicError("Invalid opcode {}", inst->GetOpcode()); } Id TypeId(const EmitContext& ctx, IR::Type type) { switch (type) { case IR::Type::U1: return ctx.U1; case IR::Type::U32: return ctx.U32[1]; default: throw NotImplementedException("Phi node type {}", type); } } void Traverse(EmitContext& ctx, IR::Program& program) { IR::Block* current_block{}; for (const IR::AbstractSyntaxNode& node : program.syntax_list) { switch (node.type) { case IR::AbstractSyntaxNode::Type::Block: { const Id label{node.data.block->Definition<Id>()}; if (current_block) { ctx.OpBranch(label); } current_block = node.data.block; ctx.AddLabel(label); for (IR::Inst& inst : node.data.block->Instructions()) { EmitInst(ctx, &inst); } break; } case IR::AbstractSyntaxNode::Type::If: { const Id if_label{node.data.if_node.body->Definition<Id>()}; const Id endif_label{node.data.if_node.merge->Definition<Id>()}; ctx.OpSelectionMerge(endif_label, spv::SelectionControlMask::MaskNone); ctx.OpBranchConditional(ctx.Def(node.data.if_node.cond), if_label, endif_label); break; } case IR::AbstractSyntaxNode::Type::Loop: { const Id body_label{node.data.loop.body->Definition<Id>()}; const Id continue_label{node.data.loop.continue_block->Definition<Id>()}; const Id endloop_label{node.data.loop.merge->Definition<Id>()}; ctx.OpLoopMerge(endloop_label, continue_label, spv::LoopControlMask::MaskNone); ctx.OpBranch(body_label); break; } case IR::AbstractSyntaxNode::Type::Break: { const Id break_label{node.data.break_node.merge->Definition<Id>()}; const Id skip_label{node.data.break_node.skip->Definition<Id>()}; ctx.OpBranchConditional(ctx.Def(node.data.break_node.cond), break_label, skip_label); break; } case IR::AbstractSyntaxNode::Type::EndIf: if (current_block) { ctx.OpBranch(node.data.end_if.merge->Definition<Id>()); } break; case IR::AbstractSyntaxNode::Type::Repeat: { const Id loop_header_label{node.data.repeat.loop_header->Definition<Id>()}; const Id merge_label{node.data.repeat.merge->Definition<Id>()}; ctx.OpBranchConditional(ctx.Def(node.data.repeat.cond), loop_header_label, merge_label); break; } case IR::AbstractSyntaxNode::Type::Return: ctx.OpReturn(); break; case IR::AbstractSyntaxNode::Type::Unreachable: ctx.OpUnreachable(); break; } if (node.type != IR::AbstractSyntaxNode::Type::Block) { current_block = nullptr; } } } Id DefineMain(EmitContext& ctx, IR::Program& program) { const Id void_function{ctx.TypeFunction(ctx.void_id)}; const Id main{ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function)}; for (IR::Block* const block : program.blocks) { block->SetDefinition(ctx.OpLabel()); } Traverse(ctx, program); ctx.OpFunctionEnd(); return main; } spv::ExecutionMode ExecutionMode(TessPrimitive primitive) { switch (primitive) { case TessPrimitive::Isolines: return spv::ExecutionMode::Isolines; case TessPrimitive::Triangles: return spv::ExecutionMode::Triangles; case TessPrimitive::Quads: return spv::ExecutionMode::Quads; } throw InvalidArgument("Tessellation primitive {}", primitive); } spv::ExecutionMode ExecutionMode(TessSpacing spacing) { switch (spacing) { case TessSpacing::Equal: return spv::ExecutionMode::SpacingEqual; case TessSpacing::FractionalOdd: return spv::ExecutionMode::SpacingFractionalOdd; case TessSpacing::FractionalEven: return spv::ExecutionMode::SpacingFractionalEven; } throw InvalidArgument("Tessellation spacing {}", spacing); } void DefineEntryPoint(const IR::Program& program, EmitContext& ctx, Id main) { const std::span interfaces(ctx.interfaces.data(), ctx.interfaces.size()); spv::ExecutionModel execution_model{}; switch (program.stage) { case Stage::Compute: { const std::array<u32, 3> workgroup_size{program.workgroup_size}; execution_model = spv::ExecutionModel::GLCompute; ctx.AddExecutionMode(main, spv::ExecutionMode::LocalSize, workgroup_size[0], workgroup_size[1], workgroup_size[2]); break; } case Stage::VertexB: execution_model = spv::ExecutionModel::Vertex; break; case Stage::TessellationControl: execution_model = spv::ExecutionModel::TessellationControl; ctx.AddCapability(spv::Capability::Tessellation); ctx.AddExecutionMode(main, spv::ExecutionMode::OutputVertices, program.invocations); break; case Stage::TessellationEval: execution_model = spv::ExecutionModel::TessellationEvaluation; ctx.AddCapability(spv::Capability::Tessellation); ctx.AddExecutionMode(main, ExecutionMode(ctx.profile.tess_primitive)); ctx.AddExecutionMode(main, ExecutionMode(ctx.profile.tess_spacing)); ctx.AddExecutionMode(main, ctx.profile.tess_clockwise ? spv::ExecutionMode::VertexOrderCw : spv::ExecutionMode::VertexOrderCcw); break; case Stage::Geometry: execution_model = spv::ExecutionModel::Geometry; ctx.AddCapability(spv::Capability::Geometry); ctx.AddCapability(spv::Capability::GeometryStreams); switch (ctx.profile.input_topology) { case InputTopology::Points: ctx.AddExecutionMode(main, spv::ExecutionMode::InputPoints); break; case InputTopology::Lines: ctx.AddExecutionMode(main, spv::ExecutionMode::InputLines); break; case InputTopology::LinesAdjacency: ctx.AddExecutionMode(main, spv::ExecutionMode::InputLinesAdjacency); break; case InputTopology::Triangles: ctx.AddExecutionMode(main, spv::ExecutionMode::Triangles); break; case InputTopology::TrianglesAdjacency: ctx.AddExecutionMode(main, spv::ExecutionMode::InputTrianglesAdjacency); break; } switch (program.output_topology) { case OutputTopology::PointList: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputPoints); break; case OutputTopology::LineStrip: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputLineStrip); break; case OutputTopology::TriangleStrip: ctx.AddExecutionMode(main, spv::ExecutionMode::OutputTriangleStrip); break; } if (program.info.stores_point_size) { ctx.AddCapability(spv::Capability::GeometryPointSize); } ctx.AddExecutionMode(main, spv::ExecutionMode::OutputVertices, program.output_vertices); ctx.AddExecutionMode(main, spv::ExecutionMode::Invocations, program.invocations); break; case Stage::Fragment: execution_model = spv::ExecutionModel::Fragment; if (ctx.profile.lower_left_origin_mode) { ctx.AddExecutionMode(main, spv::ExecutionMode::OriginLowerLeft); } else { ctx.AddExecutionMode(main, spv::ExecutionMode::OriginUpperLeft); } if (program.info.stores_frag_depth) { ctx.AddExecutionMode(main, spv::ExecutionMode::DepthReplacing); } if (ctx.profile.force_early_z) { ctx.AddExecutionMode(main, spv::ExecutionMode::EarlyFragmentTests); } break; default: throw NotImplementedException("Stage {}", program.stage); } ctx.AddEntryPoint(execution_model, main, "main", interfaces); } void SetupDenormControl(const Profile& profile, const IR::Program& program, EmitContext& ctx, Id main_func) { const Info& info{program.info}; if (info.uses_fp32_denorms_flush && info.uses_fp32_denorms_preserve) { // LOG_ERROR(HW_GPU, "Fp32 denorm flush and preserve on the same shader"); } else if (info.uses_fp32_denorms_flush) { if (profile.support_fp32_denorm_flush) { ctx.AddCapability(spv::Capability::DenormFlushToZero); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 32U); } else { // Drivers will most likely flush denorms by default, no need to warn } } else if (info.uses_fp32_denorms_preserve) { if (profile.support_fp32_denorm_preserve) { ctx.AddCapability(spv::Capability::DenormPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 32U); } else { // LOG_WARNING(HW_GPU, "Fp32 denorm preserve used in shader without host support"); } } if (!profile.support_separate_denorm_behavior) { // No separate denorm behavior return; } if (info.uses_fp16_denorms_flush && info.uses_fp16_denorms_preserve) { // LOG_ERROR(HW_GPU, "Fp16 denorm flush and preserve on the same shader"); } else if (info.uses_fp16_denorms_flush) { if (profile.support_fp16_denorm_flush) { ctx.AddCapability(spv::Capability::DenormFlushToZero); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 16U); } else { // Same as fp32, no need to warn as most drivers will flush by default } } else if (info.uses_fp16_denorms_preserve) { if (profile.support_fp16_denorm_preserve) { ctx.AddCapability(spv::Capability::DenormPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 16U); } else { // LOG_WARNING(HW_GPU, "Fp16 denorm preserve used in shader without host support"); } } } void SetupSignedNanCapabilities(const Profile& profile, const IR::Program& program, EmitContext& ctx, Id main_func) { if (program.info.uses_fp16 && profile.support_fp16_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 16U); } if (profile.support_fp32_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 32U); } if (program.info.uses_fp64 && profile.support_fp64_signed_zero_nan_preserve) { ctx.AddCapability(spv::Capability::SignedZeroInfNanPreserve); ctx.AddExecutionMode(main_func, spv::ExecutionMode::SignedZeroInfNanPreserve, 64U); } } void SetupCapabilities(const Profile& profile, const Info& info, EmitContext& ctx) { if (info.uses_sampled_1d) { ctx.AddCapability(spv::Capability::Sampled1D); } if (info.uses_sparse_residency) { ctx.AddCapability(spv::Capability::SparseResidency); } if (info.uses_demote_to_helper_invocation && profile.support_demote_to_helper_invocation) { ctx.AddExtension("SPV_EXT_demote_to_helper_invocation"); ctx.AddCapability(spv::Capability::DemoteToHelperInvocationEXT); } if (info.stores_viewport_index) { ctx.AddCapability(spv::Capability::MultiViewport); } if (info.stores_viewport_mask && profile.support_viewport_mask) { ctx.AddExtension("SPV_NV_viewport_array2"); ctx.AddCapability(spv::Capability::ShaderViewportMaskNV); } if (info.stores_layer || info.stores_viewport_index) { if (profile.support_viewport_index_layer_non_geometry && ctx.stage != Stage::Geometry) { ctx.AddExtension("SPV_EXT_shader_viewport_index_layer"); ctx.AddCapability(spv::Capability::ShaderViewportIndexLayerEXT); } } if (!profile.support_vertex_instance_id && (info.loads_instance_id || info.loads_vertex_id)) { ctx.AddExtension("SPV_KHR_shader_draw_parameters"); ctx.AddCapability(spv::Capability::DrawParameters); } if ((info.uses_subgroup_vote || info.uses_subgroup_invocation_id || info.uses_subgroup_shuffles) && profile.support_vote) { ctx.AddExtension("SPV_KHR_shader_ballot"); ctx.AddCapability(spv::Capability::SubgroupBallotKHR); if (!profile.warp_size_potentially_larger_than_guest) { // vote ops are only used when not taking the long path ctx.AddExtension("SPV_KHR_subgroup_vote"); ctx.AddCapability(spv::Capability::SubgroupVoteKHR); } } if (info.uses_int64_bit_atomics && profile.support_int64_atomics) { ctx.AddCapability(spv::Capability::Int64Atomics); } if (info.uses_typeless_image_reads && profile.support_typeless_image_loads) { ctx.AddCapability(spv::Capability::StorageImageReadWithoutFormat); } if (info.uses_typeless_image_writes) { ctx.AddCapability(spv::Capability::StorageImageWriteWithoutFormat); } if (info.uses_image_buffers) { ctx.AddCapability(spv::Capability::ImageBuffer); } if (info.uses_sample_id) { ctx.AddCapability(spv::Capability::SampleRateShading); } if (!ctx.profile.xfb_varyings.empty()) { ctx.AddCapability(spv::Capability::TransformFeedback); } if (info.uses_derivatives) { ctx.AddCapability(spv::Capability::DerivativeControl); } // TODO: Track this usage ctx.AddCapability(spv::Capability::ImageGatherExtended); ctx.AddCapability(spv::Capability::ImageQuery); ctx.AddCapability(spv::Capability::SampledBuffer); } void PatchPhiNodes(IR::Program& program, EmitContext& ctx) { auto inst{program.blocks.front()->begin()}; size_t block_index{0}; ctx.PatchDeferredPhi([&](size_t phi_arg) { if (phi_arg == 0) { ++inst; if (inst == program.blocks[block_index]->end() || inst->GetOpcode() != IR::Opcode::Phi) { do { ++block_index; inst = program.blocks[block_index]->begin(); } while (inst->GetOpcode() != IR::Opcode::Phi); } } return ctx.Def(inst->Arg(phi_arg)); }); } } // Anonymous namespace std::vector<u32> EmitSPIRV(const Profile& profile, IR::Program& program, Bindings& binding) { EmitContext ctx{profile, program, binding}; const Id main{DefineMain(ctx, program)}; DefineEntryPoint(program, ctx, main); if (profile.support_float_controls) { ctx.AddExtension("SPV_KHR_float_controls"); SetupDenormControl(profile, program, ctx, main); SetupSignedNanCapabilities(profile, program, ctx, main); } SetupCapabilities(profile, program.info, ctx); PatchPhiNodes(program, ctx); return ctx.Assemble(); } Id EmitPhi(EmitContext& ctx, IR::Inst* inst) { const size_t num_args{inst->NumArgs()}; boost::container::small_vector<Id, 32> blocks; blocks.reserve(num_args); for (size_t index = 0; index < num_args; ++index) { blocks.push_back(inst->PhiBlock(index)->Definition<Id>()); } // The type of a phi instruction is stored in its flags const Id result_type{TypeId(ctx, inst->Flags<IR::Type>())}; return ctx.DeferredOpPhi(result_type, std::span(blocks.data(), blocks.size())); } void EmitVoid(EmitContext&) {} Id EmitIdentity(EmitContext& ctx, const IR::Value& value) { const Id id{ctx.Def(value)}; if (!Sirit::ValidId(id)) { throw NotImplementedException("Forward identity declaration"); } return id; } Id EmitConditionRef(EmitContext& ctx, const IR::Value& value) { const Id id{ctx.Def(value)}; if (!Sirit::ValidId(id)) { throw NotImplementedException("Forward identity declaration"); } return id; } void EmitReference(EmitContext&) {} void EmitPhiMove(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetZeroFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetSignFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetCarryFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetOverflowFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetSparseFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } void EmitGetInBoundsFromOp(EmitContext&) { throw LogicError("Unreachable instruction"); } } // namespace Shader::Backend::SPIRV