// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include "common/assert.h" #include "common/settings.h" #include "video_core/gpu.h" #include "video_core/host1x/codecs/codec.h" #include "video_core/host1x/codecs/h264.h" #include "video_core/host1x/codecs/vp8.h" #include "video_core/host1x/codecs/vp9.h" #include "video_core/memory_manager.h" extern "C" { #include #ifdef LIBVA_FOUND // for querying VAAPI driver information #include #endif } namespace Tegra { namespace { constexpr AVPixelFormat PREFERRED_GPU_FMT = AV_PIX_FMT_NV12; constexpr AVPixelFormat PREFERRED_CPU_FMT = AV_PIX_FMT_YUV420P; constexpr std::array PREFERRED_GPU_DECODERS = { AV_HWDEVICE_TYPE_CUDA, #ifdef _WIN32 AV_HWDEVICE_TYPE_D3D11VA, AV_HWDEVICE_TYPE_DXVA2, #elif defined(__unix__) AV_HWDEVICE_TYPE_VAAPI, AV_HWDEVICE_TYPE_VDPAU, #endif // last resort for Linux Flatpak (w/ NVIDIA) AV_HWDEVICE_TYPE_VULKAN, }; void AVPacketDeleter(AVPacket* ptr) { av_packet_free(&ptr); } using AVPacketPtr = std::unique_ptr; AVPixelFormat GetGpuFormat(AVCodecContext* av_codec_ctx, const AVPixelFormat* pix_fmts) { for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) { if (*p == av_codec_ctx->pix_fmt) { return av_codec_ctx->pix_fmt; } } LOG_INFO(Service_NVDRV, "Could not find compatible GPU AV format, falling back to CPU"); av_buffer_unref(&av_codec_ctx->hw_device_ctx); av_codec_ctx->pix_fmt = PREFERRED_CPU_FMT; return PREFERRED_CPU_FMT; } // List all the currently available hwcontext in ffmpeg std::vector ListSupportedContexts() { std::vector contexts{}; AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE; do { current_device_type = av_hwdevice_iterate_types(current_device_type); contexts.push_back(current_device_type); } while (current_device_type != AV_HWDEVICE_TYPE_NONE); return contexts; } } // namespace void AVFrameDeleter(AVFrame* ptr) { av_frame_free(&ptr); } Codec::Codec(GPU& gpu_, const Host1x::NvdecCommon::NvdecRegisters& regs) : gpu(gpu_), state{regs}, h264_decoder(std::make_unique(gpu)), vp8_decoder(std::make_unique(gpu)), vp9_decoder(std::make_unique(gpu)) {} Codec::~Codec() { if (!initialized) { return; } // Free libav memory avcodec_free_context(&av_codec_ctx); av_buffer_unref(&av_gpu_decoder); } bool Codec::CreateGpuAvDevice() { static constexpr auto HW_CONFIG_METHOD = AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX; static const auto supported_contexts = ListSupportedContexts(); for (const auto& type : PREFERRED_GPU_DECODERS) { if (std::none_of(supported_contexts.begin(), supported_contexts.end(), [&type](const auto& context) { return context == type; })) { LOG_DEBUG(Service_NVDRV, "{} explicitly unsupported", av_hwdevice_get_type_name(type)); continue; } // Avoid memory leak from not cleaning up after av_hwdevice_ctx_create av_buffer_unref(&av_gpu_decoder); const int hwdevice_res = av_hwdevice_ctx_create(&av_gpu_decoder, type, nullptr, nullptr, 0); if (hwdevice_res < 0) { LOG_DEBUG(Service_NVDRV, "{} av_hwdevice_ctx_create failed {}", av_hwdevice_get_type_name(type), hwdevice_res); continue; } #ifdef LIBVA_FOUND if (type == AV_HWDEVICE_TYPE_VAAPI) { // we need to determine if this is an impersonated VAAPI driver AVHWDeviceContext* hwctx = static_cast(static_cast(av_gpu_decoder->data)); AVVAAPIDeviceContext* vactx = static_cast(hwctx->hwctx); const char* vendor_name = vaQueryVendorString(vactx->display); if (strstr(vendor_name, "VDPAU backend")) { // VDPAU impersonated VAAPI impl's are super buggy, we need to skip them LOG_DEBUG(Service_NVDRV, "Skipping vdapu impersonated VAAPI driver"); continue; } else { // according to some user testing, certain vaapi driver (Intel?) could be buggy // so let's log the driver name which may help the developers/supporters LOG_DEBUG(Service_NVDRV, "Using VAAPI driver: {}", vendor_name); } } #endif for (int i = 0;; i++) { const AVCodecHWConfig* config = avcodec_get_hw_config(av_codec, i); if (!config) { LOG_DEBUG(Service_NVDRV, "{} decoder does not support device type {}.", av_codec->name, av_hwdevice_get_type_name(type)); break; } if ((config->methods & HW_CONFIG_METHOD) != 0 && config->device_type == type) { #if defined(__unix__) // Some linux decoding backends are reported to crash with this config method // TODO(ameerj): Properly support this method if ((config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_FRAMES_CTX) != 0) { // skip zero-copy decoders, we don't currently support them LOG_DEBUG(Service_NVDRV, "Skipping decoder {} with unsupported capability {}.", av_hwdevice_get_type_name(type), config->methods); continue; } #endif LOG_INFO(Service_NVDRV, "Using {} GPU decoder", av_hwdevice_get_type_name(type)); av_codec_ctx->pix_fmt = config->pix_fmt; return true; } } } return false; } void Codec::InitializeAvCodecContext() { av_codec_ctx = avcodec_alloc_context3(av_codec); av_opt_set(av_codec_ctx->priv_data, "tune", "zerolatency", 0); } void Codec::InitializeGpuDecoder() { if (!CreateGpuAvDevice()) { av_buffer_unref(&av_gpu_decoder); return; } auto* hw_device_ctx = av_buffer_ref(av_gpu_decoder); ASSERT_MSG(hw_device_ctx, "av_buffer_ref failed"); av_codec_ctx->hw_device_ctx = hw_device_ctx; av_codec_ctx->get_format = GetGpuFormat; } void Codec::Initialize() { const AVCodecID codec = [&] { switch (current_codec) { case Host1x::NvdecCommon::VideoCodec::H264: return AV_CODEC_ID_H264; case Host1x::NvdecCommon::VideoCodec::VP8: return AV_CODEC_ID_VP8; case Host1x::NvdecCommon::VideoCodec::VP9: return AV_CODEC_ID_VP9; default: UNIMPLEMENTED_MSG("Unknown codec {}", current_codec); return AV_CODEC_ID_NONE; } }(); av_codec = avcodec_find_decoder(codec); InitializeAvCodecContext(); if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::GPU) { InitializeGpuDecoder(); } if (const int res = avcodec_open2(av_codec_ctx, av_codec, nullptr); res < 0) { LOG_ERROR(Service_NVDRV, "avcodec_open2() Failed with result {}", res); avcodec_free_context(&av_codec_ctx); av_buffer_unref(&av_gpu_decoder); return; } if (!av_codec_ctx->hw_device_ctx) { LOG_INFO(Service_NVDRV, "Using FFmpeg software decoding"); } initialized = true; } void Codec::SetTargetCodec(Host1x::NvdecCommon::VideoCodec codec) { if (current_codec != codec) { current_codec = codec; LOG_INFO(Service_NVDRV, "NVDEC video codec initialized to {}", GetCurrentCodecName()); } } void Codec::Decode() { const bool is_first_frame = !initialized; if (is_first_frame) { Initialize(); } if (!initialized) { return; } bool vp9_hidden_frame = false; const auto& frame_data = [&]() { switch (current_codec) { case Tegra::Host1x::NvdecCommon::VideoCodec::H264: return h264_decoder->ComposeFrame(state, is_first_frame); case Tegra::Host1x::NvdecCommon::VideoCodec::VP8: return vp8_decoder->ComposeFrame(state); case Tegra::Host1x::NvdecCommon::VideoCodec::VP9: vp9_decoder->ComposeFrame(state); vp9_hidden_frame = vp9_decoder->WasFrameHidden(); return vp9_decoder->GetFrameBytes(); default: ASSERT(false); return std::vector{}; } }(); AVPacketPtr packet{av_packet_alloc(), AVPacketDeleter}; if (!packet) { LOG_ERROR(Service_NVDRV, "av_packet_alloc failed"); return; } packet->data = const_cast(frame_data.data()); packet->size = static_cast(frame_data.size()); if (const int res = avcodec_send_packet(av_codec_ctx, packet.get()); res != 0) { LOG_DEBUG(Service_NVDRV, "avcodec_send_packet error {}", res); return; } // Only receive/store visible frames if (vp9_hidden_frame) { return; } AVFramePtr initial_frame{av_frame_alloc(), AVFrameDeleter}; AVFramePtr final_frame{nullptr, AVFrameDeleter}; ASSERT_MSG(initial_frame, "av_frame_alloc initial_frame failed"); if (const int ret = avcodec_receive_frame(av_codec_ctx, initial_frame.get()); ret) { LOG_DEBUG(Service_NVDRV, "avcodec_receive_frame error {}", ret); return; } if (initial_frame->width == 0 || initial_frame->height == 0) { LOG_WARNING(Service_NVDRV, "Zero width or height in frame"); return; } if (av_codec_ctx->hw_device_ctx) { final_frame = AVFramePtr{av_frame_alloc(), AVFrameDeleter}; ASSERT_MSG(final_frame, "av_frame_alloc final_frame failed"); // Can't use AV_PIX_FMT_YUV420P and share code with software decoding in vic.cpp // because Intel drivers crash unless using AV_PIX_FMT_NV12 final_frame->format = PREFERRED_GPU_FMT; const int ret = av_hwframe_transfer_data(final_frame.get(), initial_frame.get(), 0); ASSERT_MSG(!ret, "av_hwframe_transfer_data error {}", ret); } else { final_frame = std::move(initial_frame); } if (final_frame->format != PREFERRED_CPU_FMT && final_frame->format != PREFERRED_GPU_FMT) { UNIMPLEMENTED_MSG("Unexpected video format: {}", final_frame->format); return; } av_frames.push(std::move(final_frame)); if (av_frames.size() > 10) { LOG_TRACE(Service_NVDRV, "av_frames.push overflow dropped frame"); av_frames.pop(); } } AVFramePtr Codec::GetCurrentFrame() { // Sometimes VIC will request more frames than have been decoded. // in this case, return a nullptr and don't overwrite previous frame data if (av_frames.empty()) { return AVFramePtr{nullptr, AVFrameDeleter}; } AVFramePtr frame = std::move(av_frames.front()); av_frames.pop(); return frame; } Host1x::NvdecCommon::VideoCodec Codec::GetCurrentCodec() const { return current_codec; } std::string_view Codec::GetCurrentCodecName() const { switch (current_codec) { case Host1x::NvdecCommon::VideoCodec::None: return "None"; case Host1x::NvdecCommon::VideoCodec::H264: return "H264"; case Host1x::NvdecCommon::VideoCodec::VP8: return "VP8"; case Host1x::NvdecCommon::VideoCodec::H265: return "H265"; case Host1x::NvdecCommon::VideoCodec::VP9: return "VP9"; default: return "Unknown"; } } } // namespace Tegra