Now that literally every other API function is converted over to the
Memory class, we can just move the file-local page table into the Memory
implementation class, finally getting rid of global state within the
memory code.
Now that everything else is migrated over, this is essentially just code
relocation and conversion of a global accessor to the class member
variable.
All that remains is to migrate over the page table.
The Write functions are used slightly less than the Read functions,
which make these a bit nicer to move over.
The only adjustments we really need to make here are to Dynarmic's
exclusive monitor instance. We need to keep a reference to the currently
active memory instance to perform exclusive read/write operations.
With all of the trivial parts of the memory interface moved over, we can
get right into moving over the bits that are used.
Note that this does require the use of GetInstance from the global
system instance to be used within hle_ipc.cpp and the gdbstub. This is
fine for the time being, as they both already rely on the global system
instance in other functions. These will be removed in a change directed
at both of these respectively.
For now, it's sufficient, as it still accomplishes the goal of
de-globalizing the memory code.
Amends a few interfaces to be able to handle the migration over to the
new Memory class by passing the class by reference as a function
parameter where necessary.
Notably, within the filesystem services, this eliminates two ReadBlock()
calls by using the helper functions of HLERequestContext to do that for
us.
These will eventually be migrated into the main Memory class, but for
now, we put them in an anonymous namespace, so that the other functions
that use them, can be migrated over separately.
A fairly straightforward migration. These member functions can just be
mostly moved verbatim with minor changes. We already have the necessary
plumbing in places that they're used.
IsKernelVirtualAddress() can remain a non-member function, since it
doesn't rely on class state in any form.
Migrates all of the direct mapping facilities over to the new memory
class. In the process, this also obsoletes the need for memory_setup.h,
so we can remove it entirely from the project.
Currently, the main memory management code is one of the remaining
places where we have global state. The next series of changes will aim
to rectify this.
This change simply introduces the main skeleton of the class that will
contain all the necessary state.
* core_timing: Use better reference tracking for EventType.
- Moves ownership of the event to the caller, ensuring we don't fire events for destroyed objects.
- Removes need for unique names - we won't be using this for save states anyways.
This commit ensures cond var threads act exactly as they do in the real
console. The original implementation uses an RBTree and the behavior of
cond var threads is that at the same priority level they act like a
FIFO.
This commit corrects the behavior of cancel synchronization when the
thread is running/ready and ensures the next wait is cancelled as it's
suppose to.
Maintains implementation parity between QueryApplicationPlayStatistics
and QueryApplicationPlayStatisticsByUid.
These function the same behaviorally underneath the hood, with the only
difference being that one allows specifying a UID.
This properly handles unicode-based paths on Windows, while opening a
raw stream doesn't out-of-the-box.
Prevents file creation from potentially failing on Windows PCs that make
use of unicode characters in their save paths (e.g. writing to a user's
AppData folder, where the user has a name with non-ASCII characters).
Since the introduction of this library, numerous improvements have been
made. Notably, many of the warnings we would get by simply including the
library header have now been fixed. This makes it much easier to make
conversion warning an error.
Uncovered a bug within Thread's SetCoreAndAffinityMask() where an
unsigned variable (ideal_core) was being compared against "< 0", which
would always be a false condition.
We can also get rid of an unused function (GetNextProcessorId) which contained a sign
mismatch warning.
Quite frequently there have been cases where code has been merged into
the core that produces warning. In order to prevent this from occurring,
we can make the compiler flag these cases and allow our CI to flag down
any code that would generate these warnings.
This is beneficial given silent conversions from signed/unsigned can
result in logic bugs. This forces one writing changes to be explicit
about when signedness conversions are desirable, rather than leaving it
up to readers' interpretation.
Currently the codebase isn't in a state where it will build successfully
with this change applied, but this will be addressed in subsequent
follow-up changes. This set of changes will focus on making it build
properly with these changes for MSVC as a starting point for basic
coverage.