Emit code compatible with NV_gpu_program5.
This should emit code compatible with Fermi, but it wasn't tested on
that architecture. Pascal has some issues not present on Turing GPUs.
This allows rendering to 3D textures with more than one slice.
Applications are allowed to render to more than one slice of a texture
using gl_Layer from a VTG shader.
This also requires reworking how 3D texture collisions are handled, for
now, this commit allows rendering to slices but not to miplevels. When a
render target attempts to write to a mipmap, we fallback to the previous
implementation (copying or flushing as needed).
- Fixes color correction 3D textures on UE4 games (rainbow effects).
- Allows Xenoblade games to render to 3D textures directly.
Skip fast buffer uploads on Nvidia 443.24 Vulkan beta driver on OpenGL.
This driver throws the following error when calling BufferSubData or
BufferData on buffers that are candidates for fast constant buffer
uploads. This is the equivalens to push constants on Vulkan, except that
they can access the full buffer. The error:
Unknown internal debug message. The NVIDIA OpenGL driver has encountered
an out of memory error. This application might
behave inconsistently and fail.
If this error persists on future drivers, we might have to look deeper
into this issue. For now, we can black list it and log it as a temporary
solution.
NV_transform_feedback, NV_transform_feedback2 and
ARB_transform_feedback3 with NV_transform_feedback interactions allows
implementing transform feedbacks as dynamic state.
Maxwell implements transform feedbacks as dynamic state, so using these
extensions with TransformFeedbackStreamAttribsNV allows us to properly
emulate transform feedbacks without having to recompile shaders when the
state changes.
On Intel's proprietary drivers, gl_Layer and gl_ViewportIndex are not allowed members of gl_PerVertex block, causing the shader to fail to compile. Fix this by declaring these variables outside of gl_PerVertex.
This avoids using Nvidia's ASTC decoder on OpenGL.
The last time it was profiled, it was slower than yuzu's decoder.
While we are at it, fix a bug in the texture cache when native ASTC is
not supported.
Previously we were disabling compute shaders on Intel's proprietary driver due to broken compute. This has been fixed in the latest Intel drivers. Re-enable compute for Intel proprietary drivers and remove the check for broken compute.
Stop ignoring image swizzles on depth and stencil images.
This doesn't fix a known issue on Xenoblade Chronicles 2 where an OpenGL
texture changes swizzles twice before being used. A proper fix would be
having a small texture view cache for this like we do on Vulkan.
While Vulkan was assuming we had no negative viewports, OpenGL code
was assuming we had them. Port the old code from Vulkan to OpenGL,
checking if the first viewport is negative before flipping faces.
This is not a complete implementation since we only check for the first
viewport to be negative. That said, unless a game is using Vulkan,
OpenGL and NVN games should be fine here, and we can always compare with
our Vulkan backend to see if there's a difference.
Hardware S2R special registers match gl_Thread*MaskNV. We can trivially
implement these using Nvidia's extension on OpenGL or naively stubbing
them with the ARB instructions to match. This might cause issues if the
host device warp size doesn't match Nvidia's. That said, this is
unlikely on proper shaders.
Refer to the attached url for more documentation about these flags.
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt
Some operations like atomicMin were ignored because they returned were
being stored to RZ. This operations have a side effect and it was being
ignored.
Instead of using boost::icl::interval_map for caching, use
boost::intrusive::set. interval_map is intended as a container where the
keys can overlap with one another; we don't need this for caching
buffers and a std::set-like data structure that allows us to search with
lower_bound is enough.
Add code required to use OpenGL assembly programs based on
NV_gpu_program5. Decompilation for ARB programs is intended to be added
in a follow up commit. This does **not** include ARB decompilation and
it's not in an usable state.
The intention behind assembly programs is to reduce shader stutter
significantly on drivers supporting NV_gpu_program5 (and other required
extensions). Currently only Nvidia's proprietary driver supports these
extensions.
Add a UI option hidden for now to avoid people enabling this option
accidentally.
This code path has some limitations that OpenGL compatibility doesn't
have:
- NV_shader_storage_buffer_object is limited to 16 entries for a single
OpenGL context state (I don't know if this is an intended limitation, an
specification issue or I am missing something). Currently causes issues
on The Legend of Zelda: Link's Awakening.
- NV_parameter_buffer_object can't bind buffers using an offset
different to zero. The used workaround is to copy to a temporary buffer
(this doesn't happen often so it's not an issue).
On the other hand, it has the following advantages:
- Shaders build a lot faster.
- We have control over how floating point rounding is done over
individual instructions (SPIR-V on Vulkan can't do this).
- Operations on shared memory can be unsigned and signed.
- Transform feedbacks are dynamic state (not yet implemented).
- Parameter buffers (uniform buffers) are per stage, matching NVN and
hardware's behavior.
- The API to bind and create assembly programs makes sense, unlike
ARB_separate_shader_objects.
"Not equal" operators on GLSL seem to behave as unordered when we expect
an ordered comparison.
Manually emulate this checking for LGE values (numbers, not-NaNs).