Avoids waiting idle while the GPU finishes to do work, and fixes an
issue where we'd wait forever if a single command buffer (logic tick)
all the data.
Ports from OpenGL the optimization to skip small 3D uniform buffer
uploads. This will take advantage of the previously introduced stream
buffer.
Fixes instances where the staging buffer offset was being ignored.
This uses a ring buffer similar to OpenGL's stream buffer for small
uploads. This stops us from allocating several small buffers, reducing
memory fragmentation and cache locality.
It uses dedicated allocations when possible.
Reimplement the buffer cache using cached bindings and page level
granularity for modification tracking. This also drops the usage of
shared pointers and virtual functions from the cache.
- Bindings are cached, allowing to skip work when the game changes few
bits between draws.
- OpenGL Assembly shaders no longer copy when a region has been modified
from the GPU to emulate constant buffers, instead GL_EXT_memory_object
is used to alias sub-buffers within the same allocation.
- OpenGL Assembly shaders stream constant buffer data using
glProgramBufferParametersIuivNV, from NV_parameter_buffer_object. In
theory this should save one hash table resolve inside the driver
compared to glBufferSubData.
- A new OpenGL stream buffer is implemented based on fences for drivers
that are not Nvidia's proprietary, due to their low performance on
partial glBufferSubData calls synchronized with 3D rendering (that
some games use a lot).
- Most optimizations are shared between APIs now, allowing Vulkan to
cache more bindings than before, skipping unnecesarry work.
This commit adds the necessary infrastructure to use Vulkan object from
OpenGL. Overall, it improves performance and fixes some bugs present on
the old cache. There are still some edge cases hit by some games that
harm performance on some vendors, this are planned to be fixed in later
commits.
Instead of using a two step initialization to report errors, initialize
the GPU renderer and rasterizer on the constructor and report errors
through std::runtime_error.
Vulkan 1.0 didn't support creating sRGB image views on an ABGR8 VkImage
with storage usage bits. VK_KHR_maintenance2 addressed this allowing to
reduce the usage bits on a VkImageView.
To allow image store on non-sRGB image views when the VkImage is created
with sRGB, always create VkImages without sRGB and add the sRGB format
on the view.
The VertexA stage is not yet implemented, but Vulkan is adding its
descriptors, causing a discrepancy in the pushed descriptors and the
template. This generally ends up in a driver side crash.
Bypass the VertexA stage for now.
Silence the new validation layer error about SPIR-V not allowing OpUndef
on a OpTypeVoid, even when the SPIR-V spec doesn't say anything against
it.
They will be inserted as an undefined int to avoid SPIRV-Cross and
validation errors, but only when a debugging tool is attached.
Allow users of the allocator to hint memory usage for downloads. This
removes the non-descriptive boolean passed for "host visible" or not
host visible memory commits, and uses an enum to hint device local,
upload and download usages.
Fix a bug where the memory allocator could leave gaps between commits.
To fix this the allocation algorithm was reworked, although it's still
short in number of lines of code.
Rework the allocation API to self-contained movable objects instead of
naively using an unique_ptr to do the job for us. Remove the VK prefix.
With timeline semaphores we can avoid creating objects. Instead of
creating an event, grab the current tick from the scheduler and flush
the current command buffer. When the fence has to be queried/waited, we
can do so against the master semaphore instead of spinning on an event.
If Vulkan supported NVN like events or fences, we could signal from the
command buffer and wait for that without splitting things in two
separate command buffers.
Intel and AMD proprietary drivers are incapable of rendering to texture
views of different formats than the original texture. Avoid creating
these at a cache level. This will consume more memory, emulating them
with copies.
The "VK" prefix predates the "Vulkan" namespace. It was carried around
the codebase for consistency. "VKDevice" currently is a bad alias with
"VkDevice" (only an upcase character of difference) that can cause
confusion. Rename all instances of it.
For listing the available physical devices we can use Vulkan 1.0.
Now that MoltenVK supports 1.1 we can require it for running games.
Add missing documentation.
VKDevice::IsSuitable was not being called. To address this issue, check
suitability before initialization and throw an exception if it fails.
By doing this, we can deduplicate some code on queue searches.
Previosuly we would first search if a present and graphics queue
existed, then on initialization we would search again to find the index.
Report device enumeration errors with exceptions to be consistent with
other initialization related function calls. Reduces the amount of code
to maintain.
Move surface initialization code to a separate file. It's unlikely to
use this code outside of Vulkan, but keeping platform-specific code
(Win32, Xlib, Wayland) in its own translation unit keeps things cleaner.
Move more Vulkan code to report errors with exceptions and report them
through a log before notifying it with an error boolean for backwards
compatibility. In the future we can replace the rasterizer two-step
initialization to always use exceptions.
Initialize debug callbacks (messenger) from a separate file. This allows
sharing code with different backends.
Change our Vulkan error handling to use exceptions instead of error
codes, simplifying the initialization process.
The current texture cache has several points that hurt maintainability
and performance. It's easy to break unrelated parts of the cache
when doing minor changes. The cache can easily forget valuable
information about the cached textures by CPU writes or simply by its
normal usage.The current texture cache has several points that hurt
maintainability and performance. It's easy to break unrelated parts
of the cache when doing minor changes. The cache can easily forget
valuable information about the cached textures by CPU writes or simply
by its normal usage.
This commit aims to address those issues.
Without using VK_EXT_robustness2, we can't consider the 'enabled' (not
null) vertex buffers as dynamic state, as this leads to invalid Vulkan
state. Move this to static state that is always hashed and compared in
the pipeline key.
The bits for enabled vertex buffers are moved into the attribute state
bitfield. This is not 'correct' as it's not an attribute state, but that
struct has bits to spare, and it's used in an array of 32 elements (the
exact same number of vertex buffer bindings).