The FPS counter was based on metrics in the nvdisp swapbuffers call. This metric would be accurate if the gpu thread/renderer were synchronous with the nvdisp service, but that's no longer the case.
This commit moves the frame counting responsibility onto the concrete renderers after their frame draw calls. Resulting in more meaningful metrics.
The displayed FPS is now made up of the average framerate between the previous and most recent update, in order to avoid distracting FPS counter updates when framerate is oscillating between close values.
The status bar update frequency was also changed from 2 seconds to 500ms.
In order to force the BGRA8 conversion on Nvidia using OpenGL, we need to forbid texture copies and views with other formats.
This commit also adds a boolean relating to this, as this needs to be done only for the OpenGL api, Vulkan must remain unchanged.
Load the current tick to a local variable, moving it out of an atomic
and allowing us to compare the value without going through a pointer
each time. This should make the loop more optimizable.
Fix a tragic off-by-one condition that causes Vulkan's stream buffer to
think it's always full, using fallback memory. The OpenGL was also
affected by this bug to a lesser extent.
There was still a code path that could wait on a timeline semaphore tick
that would never be signalled.
While we are at it, make use of more STL algorithms.
Games can bind a null index buffer (size=0) where all indices are
evaluated as zero. VK_EXT_robustness2 doesn't support this and all
drivers segfault when a null index buffer is passed to
vkCmdBindIndexBuffer.
Workaround this by creating a 4 byte buffer and filling it with zeroes.
If it's read out of bounds, robustness takes care of returning zeroes as
indices.
Avoids waiting idle while the GPU finishes to do work, and fixes an
issue where we'd wait forever if a single command buffer (logic tick)
all the data.
Ports from OpenGL the optimization to skip small 3D uniform buffer
uploads. This will take advantage of the previously introduced stream
buffer.
Fixes instances where the staging buffer offset was being ignored.
This uses a ring buffer similar to OpenGL's stream buffer for small
uploads. This stops us from allocating several small buffers, reducing
memory fragmentation and cache locality.
It uses dedicated allocations when possible.
Reimplement the buffer cache using cached bindings and page level
granularity for modification tracking. This also drops the usage of
shared pointers and virtual functions from the cache.
- Bindings are cached, allowing to skip work when the game changes few
bits between draws.
- OpenGL Assembly shaders no longer copy when a region has been modified
from the GPU to emulate constant buffers, instead GL_EXT_memory_object
is used to alias sub-buffers within the same allocation.
- OpenGL Assembly shaders stream constant buffer data using
glProgramBufferParametersIuivNV, from NV_parameter_buffer_object. In
theory this should save one hash table resolve inside the driver
compared to glBufferSubData.
- A new OpenGL stream buffer is implemented based on fences for drivers
that are not Nvidia's proprietary, due to their low performance on
partial glBufferSubData calls synchronized with 3D rendering (that
some games use a lot).
- Most optimizations are shared between APIs now, allowing Vulkan to
cache more bindings than before, skipping unnecesarry work.
This commit adds the necessary infrastructure to use Vulkan object from
OpenGL. Overall, it improves performance and fixes some bugs present on
the old cache. There are still some edge cases hit by some games that
harm performance on some vendors, this are planned to be fixed in later
commits.
Instead of using a two step initialization to report errors, initialize
the GPU renderer and rasterizer on the constructor and report errors
through std::runtime_error.
Vulkan 1.0 didn't support creating sRGB image views on an ABGR8 VkImage
with storage usage bits. VK_KHR_maintenance2 addressed this allowing to
reduce the usage bits on a VkImageView.
To allow image store on non-sRGB image views when the VkImage is created
with sRGB, always create VkImages without sRGB and add the sRGB format
on the view.
The VertexA stage is not yet implemented, but Vulkan is adding its
descriptors, causing a discrepancy in the pushed descriptors and the
template. This generally ends up in a driver side crash.
Bypass the VertexA stage for now.