Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
While admirable as a means to ensure immutability, this has the
unfortunate downside of making the class non-movable. std::move cannot
actually perform a move operation if the provided operand has const data
members (std::move acts as an operation to "slide" resources out of an
object instance). Given Barrier contains move-only types such as
std::mutex, this can lead to confusing error messages if an object ever
contained a Barrier instance and said object was attempted to be moved.
This is also unused and superceded by standard functionality. The
standard library provides std::this_thread::sleep_for(), which provides
a much more flexible interface, as different time units can be used with
it.
This is an old function that's no longer necessary. C++11 introduced
proper threading support to the language and a thread ID can be
retrieved via std::this_thread::get_id() if it's ever needed.
This is an analog of BitSet from Dolphin that was introduced to allow
iterating over a set of bits. Given it's currently unused, and given
that std::bitset exists, we can remove this. If it's ever needed in the
future it can be brought back.
Xbyak is currently entirely unused. Rather than carting it along, remove
it and get rid of a dependency. If it's ever needed in the future, then
it can be re-added (and likely be more up to date at that point in
time).
The interface for shared memory was changed, but another commit was
merged that relied on the (previously public) internals of SharedMemory.
This amends that discrepancy.
The decision was made to name them LayeredExeFS instead of just LayeredFS to differentiate from normal RomFS-based mods. The name may be long/unweildy, but conveys the meaning well.
Currently, there's no way to specify if an assertion should
conditionally occur due to unimplemented behavior. This is useful when
something is only partially implemented (e.g. due to ongoing RE work).
In particular, this would be useful within the graphics code.
The rationale behind this is it allows a dev to disable unimplemented
feature assertions (which can occur in an unrelated work area), while
still enabling regular assertions, which act as behavior guards for
conditions or states which must not occur. Previously, the only way a
dev could temporarily disable asserts, was to disable the regular
assertion macros, which has the downside of also disabling, well, the
regular assertions which hold more sanitizing value, as opposed to
unimplemented feature assertions.
Currently, this was only performing a logging call, which doesn't
actually invoke any assertion behavior. This is unlike
UNIMPLEMENTED_MSG, which *does* assert.
This makes the expected behavior uniform across both macros.
This will scan the <mod>/exefs dir for all files and then layer those on top of the game's exefs and use this as the new exefs. This allows for overriding of the compressed NSOs or adding new files. This does use the same dir as IPS/IPSwitch patch, but since the loader will not look for those they are ignored.
<random> isn't necesary directly within the header and can be placed in
the cpp file where its needed. Avoids propagating random generation
utilities via a header file.
Uses Qt's built-in interface instead of rolling our own separate one on
top of it. This also fixes a bug in reject() where we were calling
accept() instead of reject().
Cleans out the citra/3DS-specific implementation details that don't
apply to the Switch. Sets the stage for implementing ResourceLimit
instances properly.
While we're at it, remove the erroneous checks within CreateThread() and
SetThreadPriority(). While these are indeed checked in some capacity,
they are not checked via a ResourceLimit instance.
In the process of moving out Citra-specifics, this also replaces the
system ResourceLimit instance's values with ones from the Switch.
This service function was likely intended to be a way to redirect where
the output of a log went. e.g. Firing a log over a network, dumping over
a tunneling session, etc.
Given we always want to see the log and not change its output. It's one
of the lucky service functions where the easiest implementation is to
just do nothing at all and return success.
Both member functions assume the passed in target process will not be
null. Instead of making this assumption implicit, we can change the
functions to be references and enforce this at the type-system level.
Makes the interface nicer to use in terms of 64-bit code, as it makes it
less likely for one to get truncation warnings (and also makes sense in
the context of the rest of the interface where 64-bit types are used for
sizes and offsets
The separate enum isn't particularly necessary here, and the values can
just be directly put into the ResultCode instances, given the names are
also self-documenting here.