Commit Graph

13 Commits

Author SHA1 Message Date
Liam
83eee1d226 ssl: remove ResultVal use 2023-08-08 11:09:37 -04:00
Liam
3e3294e1c2 core: implement GetGaiStringErrorRequest, IContextRegistrar 2023-07-22 23:29:45 -04:00
Liam
8f1d48fda6 nsd: add GetApplicationServerEnvironmentType 2023-07-17 21:34:23 -04:00
comex
d885dd5b64 PR feedback + constification 2023-06-25 19:24:49 -07:00
comex
8e703e08df Implement SSL service
This implements some missing network APIs including a large chunk of the SSL
service, enough for Mario Maker (with an appropriate mod applied) to connect to
the fan server [Open Course World](https://opencourse.world/).

Connecting to first-party servers is out of scope of this PR and is a
minefield I'd rather not step into.

 ## TLS

TLS is implemented with multiple backends depending on the system's 'native'
TLS library.  Currently there are two backends: Schannel for Windows, and
OpenSSL for Linux.  (In reality Linux is a bit of a free-for-all where there's
no one 'native' library, but OpenSSL is the closest it gets.)  On macOS the
'native' library is SecureTransport but that isn't implemented in this PR.
(Instead, all non-Windows OSes will use OpenSSL unless disabled with
`-DENABLE_OPENSSL=OFF`.)

Why have multiple backends instead of just using a single library, especially
given that Yuzu already embeds mbedtls for cryptographic algorithms?  Well, I
tried implementing this on mbedtls first, but the problem is TLS policies -
mainly trusted certificate policies, and to a lesser extent trusted algorithms,
SSL versions, etc.

...In practice, the chance that someone is going to conduct a man-in-the-middle
attack on a third-party game server is pretty low, but I'm a security nerd so I
like to do the right security things.

My base assumption is that we want to use the host system's TLS policies.  An
alternative would be to more closely emulate the Switch's TLS implementation
(which is based on NSS).  But for one thing, I don't feel like reverse
engineering it.  And I'd argue that for third-party servers such as Open Course
World, it's theoretically preferable to use the system's policies rather than
the Switch's, for two reasons

1. Someday the Switch will stop being updated, and the trusted cert list,
   algorithms, etc. will start to go stale, but users will still want to
   connect to third-party servers, and there's no reason they shouldn't have
   up-to-date security when doing so.  At that point, homebrew users on actual
   hardware may patch the TLS implementation, but for emulators it's simpler to
   just use the host's stack.

2. Also, it's good to respect any custom certificate policies the user may have
   added systemwide.  For example, they may have added custom trusted CAs in
   order to use TLS debugging tools or pass through corporate MitM middleboxes.
   Or they may have removed some CAs that are normally trusted out of paranoia.

Note that this policy wouldn't work as-is for connecting to first-party
servers, because some of them serve certificates based on Nintendo's own CA
rather than a publicly trusted one.  However, this could probably be solved
easily by using appropriate APIs to adding Nintendo's CA as an alternate
trusted cert for Yuzu's connections.  That is not implemented in this PR
because, again, first-party servers are out of scope.

(If anything I'd rather have an option to _block_ connections to Nintendo
servers, but that's not implemented here.)

To use the host's TLS policies, there are three theoretical options:

a) Import the host's trusted certificate list into a cross-platform TLS
   library (presumably mbedtls).

b) Use the native TLS library to verify certificates but use a cross-platform
   TLS library for everything else.

c) Use the native TLS library for everything.

Two problems with option a).  First, importing the trusted certificate list at
minimum requires a bunch of platform-specific code, which mbedtls does not have
built in.  Interestingly, OpenSSL recently gained the ability to import the
Windows certificate trust store... but that leads to the second problem, which
is that a list of trusted certificates is [not expressive
enough](https://bugs.archlinux.org/task/41909) to express a modern certificate
trust policy.  For example, Windows has the concept of [explicitly distrusted
certificates](https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn265983(v=ws.11)),
and macOS requires Certificate Transparency validation for some certificates
with complex rules for when it's required.

Option b) (using native library just to verify certs) is probably feasible, but
it would miss aspects of TLS policy other than trusted certs (like allowed
algorithms), and in any case it might well require writing more code, not less,
compared to using the native library for everything.

So I ended up at option c), using the native library for everything.

What I'd *really* prefer would be to use a third-party library that does option
c) for me.  Rust has a good library for this,
[native-tls](https://docs.rs/native-tls/latest/native_tls/).  I did search, but
I couldn't find a good option in the C or C++ ecosystem, at least not any that
wasn't part of some much larger framework.  I was surprised - isn't this a
pretty common use case?  Well, many applications only need TLS for HTTPS, and they can
use libcurl, which has a TLS abstraction layer internally but doesn't expose
it.  Other applications only support a single TLS library, or use one of the
aforementioned larger frameworks, or are platform-specific to begin with, or of
course are written in a non-C/C++ language, most of which have some canonical
choice for TLS.  But there are also many applications that have a set of TLS
backends just like this; it's just that nobody has gone ahead and abstracted
the pattern into a library, at least not a widespread one.

Amusingly, there is one TLS abstraction layer that Yuzu already bundles: the
one in ffmpeg.  But it is missing some features that would be needed to use it
here (like reusing an existing socket rather than managing the socket itself).
Though, that does mean that the wiki's build instructions for Linux (and macOS
for some reason?) already recommend installing OpenSSL, so no need to update
those.

 ## Other APIs implemented

- Sockets:
    - GetSockOpt(`SO_ERROR`)
    - SetSockOpt(`SO_NOSIGPIPE`) (stub, I have no idea what this does on Switch)
    - `DuplicateSocket` (because the SSL sysmodule calls it internally)
    - More `PollEvents` values

- NSD:
    - `Resolve` and `ResolveEx` (stub, good enough for Open Course World and
      probably most third-party servers, but not first-party)

- SFDNSRES:
    - `GetHostByNameRequest` and `GetHostByNameRequestWithOptions`
    - `ResolverSetOptionRequest` (stub)

 ## Fixes

- Parts of the socket code were previously allocating a `sockaddr` object on
  the stack when calling functions that take a `sockaddr*` (e.g. `accept`).
  This might seem like the right thing to do to avoid illegal aliasing, but in
  fact `sockaddr` is not guaranteed to be large enough to hold any particular
  type of address, only the header.  This worked in practice because in
  practice `sockaddr` is the same size as `sockaddr_in`, but it's not how the
  API is meant to be used.  I changed this to allocate an `sockaddr_in` on the
  stack and `reinterpret_cast` it.  I could try to do something cleverer with
  `aligned_storage`, but casting is the idiomatic way to use these particular
  APIs, so it's really the system's responsibility to avoid any aliasing
  issues.

- I rewrote most of the `GetAddrInfoRequest[WithOptions]` implementation.  The
  old implementation invoked the host's getaddrinfo directly from sfdnsres.cpp,
  and directly passed through the host's socket type, protocol, etc. values
  rather than looking up the corresponding constants on the Switch.  To be
  fair, these constants don't tend to actually vary across systems, but
  still... I added a wrapper for `getaddrinfo` in
  `internal_network/network.cpp` similar to the ones for other socket APIs, and
  changed the `GetAddrInfoRequest` implementation to use it.  While I was at
  it, I rewrote the serialization to use the same approach I used to implement
  `GetHostByNameRequest`, because it reduces the number of size calculations.
  While doing so I removed `AF_INET6` support because the Switch doesn't
  support IPv6; it might be nice to support IPv6 anyway, but that would have to
  apply to all of the socket APIs.

  I also corrected the IPC wrappers for `GetAddrInfoRequest` and
  `GetAddrInfoRequestWithOptions` based on reverse engineering and hardware
  testing.  Every call to `GetAddrInfoRequestWithOptions` returns *four*
  different error codes (IPC status, getaddrinfo error code, netdb error code,
  and errno), and `GetAddrInfoRequest` returns three of those but in a
  different order, and it doesn't really matter but the existing implementation
  was a bit off, as I discovered while testing `GetHostByNameRequest`.

  - The new serialization code is based on two simple helper functions:

    ```cpp
    template <typename T> static void Append(std::vector<u8>& vec, T t);
    void AppendNulTerminated(std::vector<u8>& vec, std::string_view str);
    ```

    I was thinking there must be existing functions somewhere that assist with
    serialization/deserialization of binary data, but all I could find was the
    helper methods in `IOFile` and `HLERequestContext`, not anything that could
    be used with a generic byte buffer.  If I'm not missing something, then
    maybe I should move the above functions to a new header in `common`...
    right now they're just sitting in `sfdnsres.cpp` where they're used.

- Not a fix, but `SocketBase::Recv`/`Send` is changed to use `std::span<u8>`
  rather than `std::vector<u8>&` to avoid needing to copy the data to/from a
  vector when those methods are called from the TLS implementation.
2023-06-25 12:53:31 -07:00
Morph
99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00
german77
ff1201210c nsd: Update to 12.x 2021-04-08 19:40:25 -06:00
Lioncash
1a954b2a59 service: Eliminate usages of the global system instance
Completely removes all usages of the global system instance within the
services code by passing in the using system instance to the services.
2020-11-26 20:03:11 -05:00
VolcaEM
6a0010d0c6
service: Update function tables 2020-06-29 04:01:34 +02:00
Lioncash
e21b6ff79d service: Update function tables
Keeps the function tables up to date.

Updated based off information from Switchbrew.
2019-11-12 10:32:56 -05:00
Lioncash
6ac955a0b4 hle/service: Default constructors and destructors in the cpp file where applicable
When a destructor isn't defaulted into a cpp file, it can cause the use
of forward declarations to seemingly fail to compile for non-obvious
reasons. It also allows inlining of the construction/destruction logic
all over the place where a constructor or destructor is invoked, which
can lead to code bloat. This isn't so much a worry here, given the
services won't be created and destroyed frequently.

The cause of the above mentioned non-obvious errors can be demonstrated
as follows:

------- Demonstrative example, if you know how the described error happens, skip forwards -------

Assume we have the following in the header, which we'll call "thing.h":

\#include <memory>

// Forward declaration. For example purposes, assume the definition
// of Object is in some header named "object.h"
class Object;

class Thing {
public:
    // assume no constructors or destructors are specified here,
    // or the constructors/destructors are defined as:
    //
    // Thing() = default;
    // ~Thing() = default;
    //

    // ... Some interface member functions would be defined here

private:
    std::shared_ptr<Object> obj;
};

If this header is included in a cpp file, (which we'll call "main.cpp"),
this will result in a compilation error, because even though no
destructor is specified, the destructor will still need to be generated by
the compiler because std::shared_ptr's destructor is *not* trivial (in
other words, it does something other than nothing), as std::shared_ptr's
destructor needs to do two things:

1. Decrement the shared reference count of the object being pointed to,
   and if the reference count decrements to zero,

2. Free the Object instance's memory (aka deallocate the memory it's
   pointing to).

And so the compiler generates the code for the destructor doing this inside main.cpp.

Now, keep in mind, the Object forward declaration is not a complete type. All it
does is tell the compiler "a type named Object exists" and allows us to
use the name in certain situations to avoid a header dependency. So the
compiler needs to generate destruction code for Object, but the compiler
doesn't know *how* to destruct it. A forward declaration doesn't tell
the compiler anything about Object's constructor or destructor. So, the
compiler will issue an error in this case because it's undefined
behavior to try and deallocate (or construct) an incomplete type and
std::shared_ptr and std::unique_ptr make sure this isn't the case
internally.

Now, if we had defaulted the destructor in "thing.cpp", where we also
include "object.h", this would never be an issue, as the destructor
would only have its code generated in one place, and it would be in a
place where the full class definition of Object would be visible to the
compiler.

---------------------- End example ----------------------------

Given these service classes are more than certainly going to change in
the future, this defaults the constructors and destructors into the
relevant cpp files to make the construction and destruction of all of
the services consistent and unlikely to run into cases where forward
declarations are indirectly causing compilation errors. It also has the
plus of avoiding the need to rebuild several services if destruction
logic changes, since it would only be necessary to recompile the single
cpp file.
2018-09-10 23:55:31 -04:00
Lioncash
ccca5e7c28 service: Use nested namespace specifiers where applicable
Tidies up namespace declarations
2018-04-19 22:20:28 -04:00
mailwl
692639e9b7 Service/sockets: add bsd:s, nsd:a, nsd:u services 2018-03-25 12:41:00 +03:00