From 61779fa072fea906410eca3e29ba54fe1ee347d3 Mon Sep 17 00:00:00 2001
From: bunnei <bunneidev@gmail.com>
Date: Sun, 17 Jun 2018 23:50:44 -0400
Subject: [PATCH] gl_rasterizer: Implement texture format ASTC_2D_4X4.

---
 src/video_core/CMakeLists.txt                 |    2 +
 .../renderer_opengl/gl_rasterizer_cache.cpp   |   28 +-
 .../renderer_opengl/gl_rasterizer_cache.h     |   16 +
 src/video_core/textures/astc.cpp              | 1646 +++++++++++++++++
 src/video_core/textures/astc.h                |   15 +
 src/video_core/textures/decoders.cpp          |    3 +
 6 files changed, 1709 insertions(+), 1 deletion(-)
 create mode 100644 src/video_core/textures/astc.cpp
 create mode 100644 src/video_core/textures/astc.h

diff --git a/src/video_core/CMakeLists.txt b/src/video_core/CMakeLists.txt
index 6e193e7e11..c6431e722c 100644
--- a/src/video_core/CMakeLists.txt
+++ b/src/video_core/CMakeLists.txt
@@ -41,6 +41,8 @@ add_library(video_core STATIC
     renderer_opengl/maxwell_to_gl.h
     renderer_opengl/renderer_opengl.cpp
     renderer_opengl/renderer_opengl.h
+    textures/astc.cpp
+    textures/astc.h
     textures/decoders.cpp
     textures/decoders.h
     textures/texture.h
diff --git a/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp b/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp
index e61960cc03..b2a61024e4 100644
--- a/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp
+++ b/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp
@@ -28,6 +28,7 @@
 #include "video_core/engines/maxwell_3d.h"
 #include "video_core/renderer_opengl/gl_rasterizer_cache.h"
 #include "video_core/renderer_opengl/gl_state.h"
+#include "video_core/textures/astc.h"
 #include "video_core/textures/decoders.h"
 #include "video_core/utils.h"
 #include "video_core/video_core.h"
@@ -55,6 +56,7 @@ static constexpr std::array<FormatTuple, SurfaceParams::MaxPixelFormat> tex_form
     {GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true}, // DXT23
     {GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true}, // DXT45
     {GL_COMPRESSED_RED_RGTC1, GL_RED, GL_UNSIGNED_INT_8_8_8_8, true},           // DXN1
+    {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, false},                               // ASTC_2D_4X4
 }};
 
 static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) {
@@ -86,6 +88,23 @@ static u16 GetResolutionScaleFactor() {
                                 : Settings::values.resolution_factor);
 }
 
+static void ConvertASTCToRGBA8(std::vector<u8>& data, PixelFormat format, u32 width, u32 height) {
+    u32 block_width{};
+    u32 block_height{};
+
+    switch (format) {
+    case PixelFormat::ASTC_2D_4X4:
+        block_width = 4;
+        block_height = 4;
+        break;
+    default:
+        NGLOG_CRITICAL(HW_GPU, "Unhandled format: {}", static_cast<u32>(format));
+        UNREACHABLE();
+    }
+
+    data = Tegra::Texture::ASTC::Decompress(data, width, height, block_width, block_height);
+}
+
 template <bool morton_to_gl, PixelFormat format>
 void MortonCopy(u32 stride, u32 block_height, u32 height, u8* gl_buffer, Tegra::GPUVAddr base,
                 Tegra::GPUVAddr start, Tegra::GPUVAddr end) {
@@ -97,6 +116,12 @@ void MortonCopy(u32 stride, u32 block_height, u32 height, u8* gl_buffer, Tegra::
         auto data = Tegra::Texture::UnswizzleTexture(
             *gpu.memory_manager->GpuToCpuAddress(base),
             SurfaceParams::TextureFormatFromPixelFormat(format), stride, height, block_height);
+
+        if (SurfaceParams::IsFormatASTC(format)) {
+            // ASTC formats are converted to RGBA8 in software, as most PC GPUs do not support this
+            ConvertASTCToRGBA8(data, format, stride, height);
+        }
+
         std::memcpy(gl_buffer, data.data(), data.size());
     } else {
         // TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should check
@@ -118,7 +143,7 @@ static constexpr std::array<void (*)(u32, u32, u32, u8*, Tegra::GPUVAddr, Tegra:
         MortonCopy<true, PixelFormat::R8>,           MortonCopy<true, PixelFormat::RGBA16F>,
         MortonCopy<true, PixelFormat::R11FG11FB10F>, MortonCopy<true, PixelFormat::DXT1>,
         MortonCopy<true, PixelFormat::DXT23>,        MortonCopy<true, PixelFormat::DXT45>,
-        MortonCopy<true, PixelFormat::DXN1>,
+        MortonCopy<true, PixelFormat::DXN1>,         MortonCopy<true, PixelFormat::ASTC_2D_4X4>,
 };
 
 static constexpr std::array<void (*)(u32, u32, u32, u8*, Tegra::GPUVAddr, Tegra::GPUVAddr,
@@ -137,6 +162,7 @@ static constexpr std::array<void (*)(u32, u32, u32, u8*, Tegra::GPUVAddr, Tegra:
         nullptr,
         nullptr,
         nullptr,
+        MortonCopy<false, PixelFormat::ABGR8>,
 };
 
 // Allocate an uninitialized texture of appropriate size and format for the surface
diff --git a/src/video_core/renderer_opengl/gl_rasterizer_cache.h b/src/video_core/renderer_opengl/gl_rasterizer_cache.h
index 0f43e863d0..9da945e19d 100644
--- a/src/video_core/renderer_opengl/gl_rasterizer_cache.h
+++ b/src/video_core/renderer_opengl/gl_rasterizer_cache.h
@@ -65,6 +65,7 @@ struct SurfaceParams {
         DXT23 = 8,
         DXT45 = 9,
         DXN1 = 10, // This is also known as BC4
+        ASTC_2D_4X4 = 11,
 
         Max,
         Invalid = 255,
@@ -111,6 +112,7 @@ struct SurfaceParams {
             4, // DXT23
             4, // DXT45
             4, // DXN1
+            1, // ASTC_2D_4X4
         }};
 
         ASSERT(static_cast<size_t>(format) < compression_factor_table.size());
@@ -136,6 +138,7 @@ struct SurfaceParams {
             128, // DXT23
             128, // DXT45
             64,  // DXN1
+            32,  // ASTC_2D_4X4
         }};
 
         ASSERT(static_cast<size_t>(format) < bpp_table.size());
@@ -162,6 +165,15 @@ struct SurfaceParams {
         }
     }
 
+    static bool IsFormatASTC(PixelFormat format) {
+        switch (format) {
+        case PixelFormat::ASTC_2D_4X4:
+            return true;
+        default:
+            return false;
+        }
+    }
+
     static PixelFormat PixelFormatFromGPUPixelFormat(Tegra::FramebufferConfig::PixelFormat format) {
         switch (format) {
         case Tegra::FramebufferConfig::PixelFormat::ABGR8:
@@ -197,6 +209,8 @@ struct SurfaceParams {
             return PixelFormat::DXT45;
         case Tegra::Texture::TextureFormat::DXN1:
             return PixelFormat::DXN1;
+        case Tegra::Texture::TextureFormat::ASTC_2D_4X4:
+            return PixelFormat::ASTC_2D_4X4;
         default:
             NGLOG_CRITICAL(HW_GPU, "Unimplemented format={}", static_cast<u32>(format));
             UNREACHABLE();
@@ -228,6 +242,8 @@ struct SurfaceParams {
             return Tegra::Texture::TextureFormat::DXT45;
         case PixelFormat::DXN1:
             return Tegra::Texture::TextureFormat::DXN1;
+        case PixelFormat::ASTC_2D_4X4:
+            return Tegra::Texture::TextureFormat::ASTC_2D_4X4;
         default:
             UNREACHABLE();
         }
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
new file mode 100644
index 0000000000..3c4ad1c9d9
--- /dev/null
+++ b/src/video_core/textures/astc.cpp
@@ -0,0 +1,1646 @@
+// Copyright 2016 The University of North Carolina at Chapel Hill
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//    http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
+// <http://gamma.cs.unc.edu/FasTC/>
+
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <vector>
+
+#include "video_core/textures/astc.h"
+
+class BitStream {
+public:
+    BitStream(unsigned char* ptr, int nBits = 0, int start_offset = 0)
+        : m_BitsWritten(0), m_BitsRead(0), m_NumBits(nBits), m_CurByte(ptr),
+          m_NextBit(start_offset % 8), done(false) {}
+
+    int GetBitsWritten() const {
+        return m_BitsWritten;
+    }
+
+    ~BitStream() {}
+
+    void WriteBitsR(unsigned int val, unsigned int nBits) {
+        for (unsigned int i = 0; i < nBits; i++) {
+            WriteBit((val >> (nBits - i - 1)) & 1);
+        }
+    }
+
+    void WriteBits(unsigned int val, unsigned int nBits) {
+        for (unsigned int i = 0; i < nBits; i++) {
+            WriteBit((val >> i) & 1);
+        }
+    }
+
+    int GetBitsRead() const {
+        return m_BitsRead;
+    }
+
+    int ReadBit() {
+
+        int bit = *m_CurByte >> m_NextBit++;
+        while (m_NextBit >= 8) {
+            m_NextBit -= 8;
+            m_CurByte++;
+        }
+
+        m_BitsRead++;
+        return bit & 1;
+    }
+
+    unsigned int ReadBits(unsigned int nBits) {
+        unsigned int ret = 0;
+        for (unsigned int i = 0; i < nBits; i++) {
+            ret |= (ReadBit() & 1) << i;
+        }
+        return ret;
+    }
+
+private:
+    void WriteBit(int b) {
+
+        if (done)
+            return;
+
+        const unsigned int mask = 1 << m_NextBit++;
+
+        // clear the bit
+        *m_CurByte &= ~mask;
+
+        // Write the bit, if necessary
+        if (b)
+            *m_CurByte |= mask;
+
+        // Next byte?
+        if (m_NextBit >= 8) {
+            m_CurByte += 1;
+            m_NextBit = 0;
+        }
+
+        done = done || ++m_BitsWritten >= m_NumBits;
+    }
+
+    int m_BitsWritten;
+    const int m_NumBits;
+    unsigned char* m_CurByte;
+    int m_NextBit;
+    int m_BitsRead;
+
+    bool done;
+};
+
+template <typename IntType>
+class Bits {
+private:
+    const IntType& m_Bits;
+
+    // Don't copy
+    Bits() {}
+    Bits(const Bits&) {}
+    Bits& operator=(const Bits&) {}
+
+public:
+    explicit Bits(IntType& v) : m_Bits(v) {}
+
+    uint8_t operator[](uint32_t bitPos) {
+        return static_cast<uint8_t>((m_Bits >> bitPos) & 1);
+    }
+
+    IntType operator()(uint32_t start, uint32_t end) {
+        if (start == end) {
+            return (*this)[start];
+        } else if (start > end) {
+            uint32_t t = start;
+            start = end;
+            end = t;
+        }
+
+        uint64_t mask = (1 << (end - start + 1)) - 1;
+        return (m_Bits >> start) & mask;
+    }
+};
+
+enum EIntegerEncoding { eIntegerEncoding_JustBits, eIntegerEncoding_Quint, eIntegerEncoding_Trit };
+
+class IntegerEncodedValue {
+private:
+    const EIntegerEncoding m_Encoding;
+    const uint32_t m_NumBits;
+    uint32_t m_BitValue;
+    union {
+        uint32_t m_QuintValue;
+        uint32_t m_TritValue;
+    };
+
+public:
+    // Jank, but we're not doing any heavy lifting in this class, so it's
+    // probably OK. It allows us to use these in std::vectors...
+    IntegerEncodedValue& operator=(const IntegerEncodedValue& other) {
+        new (this) IntegerEncodedValue(other);
+        return *this;
+    }
+
+    IntegerEncodedValue(EIntegerEncoding encoding, uint32_t numBits)
+        : m_Encoding(encoding), m_NumBits(numBits) {}
+
+    EIntegerEncoding GetEncoding() const {
+        return m_Encoding;
+    }
+    uint32_t BaseBitLength() const {
+        return m_NumBits;
+    }
+
+    uint32_t GetBitValue() const {
+        return m_BitValue;
+    }
+    void SetBitValue(uint32_t val) {
+        m_BitValue = val;
+    }
+
+    uint32_t GetTritValue() const {
+        return m_TritValue;
+    }
+    void SetTritValue(uint32_t val) {
+        m_TritValue = val;
+    }
+
+    uint32_t GetQuintValue() const {
+        return m_QuintValue;
+    }
+    void SetQuintValue(uint32_t val) {
+        m_QuintValue = val;
+    }
+
+    bool MatchesEncoding(const IntegerEncodedValue& other) {
+        return m_Encoding == other.m_Encoding && m_NumBits == other.m_NumBits;
+    }
+
+    // Returns the number of bits required to encode nVals values.
+    uint32_t GetBitLength(uint32_t nVals) {
+        uint32_t totalBits = m_NumBits * nVals;
+        if (m_Encoding == eIntegerEncoding_Trit) {
+            totalBits += (nVals * 8 + 4) / 5;
+        } else if (m_Encoding == eIntegerEncoding_Quint) {
+            totalBits += (nVals * 7 + 2) / 3;
+        }
+        return totalBits;
+    }
+
+    // Count the number of bits set in a number.
+    static inline uint32_t Popcnt(uint32_t n) {
+        uint32_t c;
+        for (c = 0; n; c++) {
+            n &= n - 1;
+        }
+        return c;
+    }
+
+    // Returns a new instance of this struct that corresponds to the
+    // can take no more than maxval values
+    static IntegerEncodedValue CreateEncoding(uint32_t maxVal) {
+        while (maxVal > 0) {
+            uint32_t check = maxVal + 1;
+
+            // Is maxVal a power of two?
+            if (!(check & (check - 1))) {
+                return IntegerEncodedValue(eIntegerEncoding_JustBits, Popcnt(maxVal));
+            }
+
+            // Is maxVal of the type 3*2^n - 1?
+            if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
+                return IntegerEncodedValue(eIntegerEncoding_Trit, Popcnt(check / 3 - 1));
+            }
+
+            // Is maxVal of the type 5*2^n - 1?
+            if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
+                return IntegerEncodedValue(eIntegerEncoding_Quint, Popcnt(check / 5 - 1));
+            }
+
+            // Apparently it can't be represented with a bounded integer sequence...
+            // just iterate.
+            maxVal--;
+        }
+        return IntegerEncodedValue(eIntegerEncoding_JustBits, 0);
+    }
+
+    // Fills result with the values that are encoded in the given
+    // bitstream. We must know beforehand what the maximum possible
+    // value is, and how many values we're decoding.
+    static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result, BitStream& bits,
+                                      uint32_t maxRange, uint32_t nValues) {
+        // Determine encoding parameters
+        IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
+
+        // Start decoding
+        uint32_t nValsDecoded = 0;
+        while (nValsDecoded < nValues) {
+            switch (val.GetEncoding()) {
+            case eIntegerEncoding_Quint:
+                DecodeQuintBlock(bits, result, val.BaseBitLength());
+                nValsDecoded += 3;
+                break;
+
+            case eIntegerEncoding_Trit:
+                DecodeTritBlock(bits, result, val.BaseBitLength());
+                nValsDecoded += 5;
+                break;
+
+            case eIntegerEncoding_JustBits:
+                val.SetBitValue(bits.ReadBits(val.BaseBitLength()));
+                result.push_back(val);
+                nValsDecoded++;
+                break;
+            }
+        }
+    }
+
+private:
+    static void DecodeTritBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
+                                uint32_t nBitsPerValue) {
+        // Implement the algorithm in section C.2.12
+        uint32_t m[5];
+        uint32_t t[5];
+        uint32_t T;
+
+        // Read the trit encoded block according to
+        // table C.2.14
+        m[0] = bits.ReadBits(nBitsPerValue);
+        T = bits.ReadBits(2);
+        m[1] = bits.ReadBits(nBitsPerValue);
+        T |= bits.ReadBits(2) << 2;
+        m[2] = bits.ReadBits(nBitsPerValue);
+        T |= bits.ReadBit() << 4;
+        m[3] = bits.ReadBits(nBitsPerValue);
+        T |= bits.ReadBits(2) << 5;
+        m[4] = bits.ReadBits(nBitsPerValue);
+        T |= bits.ReadBit() << 7;
+
+        uint32_t C = 0;
+
+        Bits<uint32_t> Tb(T);
+        if (Tb(2, 4) == 7) {
+            C = (Tb(5, 7) << 2) | Tb(0, 1);
+            t[4] = t[3] = 2;
+        } else {
+            C = Tb(0, 4);
+            if (Tb(5, 6) == 3) {
+                t[4] = 2;
+                t[3] = Tb[7];
+            } else {
+                t[4] = Tb[7];
+                t[3] = Tb(5, 6);
+            }
+        }
+
+        Bits<uint32_t> Cb(C);
+        if (Cb(0, 1) == 3) {
+            t[2] = 2;
+            t[1] = Cb[4];
+            t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
+        } else if (Cb(2, 3) == 3) {
+            t[2] = 2;
+            t[1] = 2;
+            t[0] = Cb(0, 1);
+        } else {
+            t[2] = Cb[4];
+            t[1] = Cb(2, 3);
+            t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
+        }
+
+        for (uint32_t i = 0; i < 5; i++) {
+            IntegerEncodedValue val(eIntegerEncoding_Trit, nBitsPerValue);
+            val.SetBitValue(m[i]);
+            val.SetTritValue(t[i]);
+            result.push_back(val);
+        }
+    }
+
+    static void DecodeQuintBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
+                                 uint32_t nBitsPerValue) {
+        // Implement the algorithm in section C.2.12
+        uint32_t m[3];
+        uint32_t q[3];
+        uint32_t Q;
+
+        // Read the trit encoded block according to
+        // table C.2.15
+        m[0] = bits.ReadBits(nBitsPerValue);
+        Q = bits.ReadBits(3);
+        m[1] = bits.ReadBits(nBitsPerValue);
+        Q |= bits.ReadBits(2) << 3;
+        m[2] = bits.ReadBits(nBitsPerValue);
+        Q |= bits.ReadBits(2) << 5;
+
+        Bits<uint32_t> Qb(Q);
+        if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
+            q[0] = q[1] = 4;
+            q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
+        } else {
+            uint32_t C = 0;
+            if (Qb(1, 2) == 3) {
+                q[2] = 4;
+                C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
+            } else {
+                q[2] = Qb(5, 6);
+                C = Qb(0, 4);
+            }
+
+            Bits<uint32_t> Cb(C);
+            if (Cb(0, 2) == 5) {
+                q[1] = 4;
+                q[0] = Cb(3, 4);
+            } else {
+                q[1] = Cb(3, 4);
+                q[0] = Cb(0, 2);
+            }
+        }
+
+        for (uint32_t i = 0; i < 3; i++) {
+            IntegerEncodedValue val(eIntegerEncoding_Quint, nBitsPerValue);
+            val.m_BitValue = m[i];
+            val.m_QuintValue = q[i];
+            result.push_back(val);
+        }
+    }
+};
+
+namespace ASTCC {
+
+struct TexelWeightParams {
+    uint32_t m_Width;
+    uint32_t m_Height;
+    bool m_bDualPlane;
+    uint32_t m_MaxWeight;
+    bool m_bError;
+    bool m_bVoidExtentLDR;
+    bool m_bVoidExtentHDR;
+
+    TexelWeightParams() {
+        memset(this, 0, sizeof(*this));
+    }
+
+    uint32_t GetPackedBitSize() {
+        // How many indices do we have?
+        uint32_t nIdxs = m_Height * m_Width;
+        if (m_bDualPlane) {
+            nIdxs *= 2;
+        }
+
+        return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
+    }
+
+    uint32_t GetNumWeightValues() const {
+        uint32_t ret = m_Width * m_Height;
+        if (m_bDualPlane) {
+            ret *= 2;
+        }
+        return ret;
+    }
+};
+
+TexelWeightParams DecodeBlockInfo(BitStream& strm) {
+    TexelWeightParams params;
+
+    // Read the entire block mode all at once
+    uint16_t modeBits = strm.ReadBits(11);
+
+    // Does this match the void extent block mode?
+    if ((modeBits & 0x01FF) == 0x1FC) {
+        if (modeBits & 0x200) {
+            params.m_bVoidExtentHDR = true;
+        } else {
+            params.m_bVoidExtentLDR = true;
+        }
+
+        // Next two bits must be one.
+        if (!(modeBits & 0x400) || !strm.ReadBit()) {
+            params.m_bError = true;
+        }
+
+        return params;
+    }
+
+    // First check if the last four bits are zero
+    if ((modeBits & 0xF) == 0) {
+        params.m_bError = true;
+        return params;
+    }
+
+    // If the last two bits are zero, then if bits
+    // [6-8] are all ones, this is also reserved.
+    if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
+        params.m_bError = true;
+        return params;
+    }
+
+    // Otherwise, there is no error... Figure out the layout
+    // of the block mode. Layout is determined by a number
+    // between 0 and 9 corresponding to table C.2.8 of the
+    // ASTC spec.
+    uint32_t layout = 0;
+
+    if ((modeBits & 0x1) || (modeBits & 0x2)) {
+        // layout is in [0-4]
+        if (modeBits & 0x8) {
+            // layout is in [2-4]
+            if (modeBits & 0x4) {
+                // layout is in [3-4]
+                if (modeBits & 0x100) {
+                    layout = 4;
+                } else {
+                    layout = 3;
+                }
+            } else {
+                layout = 2;
+            }
+        } else {
+            // layout is in [0-1]
+            if (modeBits & 0x4) {
+                layout = 1;
+            } else {
+                layout = 0;
+            }
+        }
+    } else {
+        // layout is in [5-9]
+        if (modeBits & 0x100) {
+            // layout is in [7-9]
+            if (modeBits & 0x80) {
+                // layout is in [7-8]
+                assert((modeBits & 0x40) == 0U);
+                if (modeBits & 0x20) {
+                    layout = 8;
+                } else {
+                    layout = 7;
+                }
+            } else {
+                layout = 9;
+            }
+        } else {
+            // layout is in [5-6]
+            if (modeBits & 0x80) {
+                layout = 6;
+            } else {
+                layout = 5;
+            }
+        }
+    }
+
+    assert(layout < 10);
+
+    // Determine R
+    uint32_t R = !!(modeBits & 0x10);
+    if (layout < 5) {
+        R |= (modeBits & 0x3) << 1;
+    } else {
+        R |= (modeBits & 0xC) >> 1;
+    }
+    assert(2 <= R && R <= 7);
+
+    // Determine width & height
+    switch (layout) {
+    case 0: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 7) & 0x3;
+        params.m_Width = B + 4;
+        params.m_Height = A + 2;
+        break;
+    }
+
+    case 1: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 7) & 0x3;
+        params.m_Width = B + 8;
+        params.m_Height = A + 2;
+        break;
+    }
+
+    case 2: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 7) & 0x3;
+        params.m_Width = A + 2;
+        params.m_Height = B + 8;
+        break;
+    }
+
+    case 3: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 7) & 0x1;
+        params.m_Width = A + 2;
+        params.m_Height = B + 6;
+        break;
+    }
+
+    case 4: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 7) & 0x1;
+        params.m_Width = B + 2;
+        params.m_Height = A + 2;
+        break;
+    }
+
+    case 5: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        params.m_Width = 12;
+        params.m_Height = A + 2;
+        break;
+    }
+
+    case 6: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        params.m_Width = A + 2;
+        params.m_Height = 12;
+        break;
+    }
+
+    case 7: {
+        params.m_Width = 6;
+        params.m_Height = 10;
+        break;
+    }
+
+    case 8: {
+        params.m_Width = 10;
+        params.m_Height = 6;
+        break;
+    }
+
+    case 9: {
+        uint32_t A = (modeBits >> 5) & 0x3;
+        uint32_t B = (modeBits >> 9) & 0x3;
+        params.m_Width = A + 6;
+        params.m_Height = B + 6;
+        break;
+    }
+
+    default:
+        assert(!"Don't know this layout...");
+        params.m_bError = true;
+        break;
+    }
+
+    // Determine whether or not we're using dual planes
+    // and/or high precision layouts.
+    bool D = (layout != 9) && (modeBits & 0x400);
+    bool H = (layout != 9) && (modeBits & 0x200);
+
+    if (H) {
+        const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31};
+        params.m_MaxWeight = maxWeights[R - 2];
+    } else {
+        const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7};
+        params.m_MaxWeight = maxWeights[R - 2];
+    }
+
+    params.m_bDualPlane = D;
+
+    return params;
+}
+
+void FillVoidExtentLDR(BitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
+                       uint32_t blockHeight) {
+    // Don't actually care about the void extent, just read the bits...
+    for (int i = 0; i < 4; ++i) {
+        strm.ReadBits(13);
+    }
+
+    // Decode the RGBA components and renormalize them to the range [0, 255]
+    uint16_t r = strm.ReadBits(16);
+    uint16_t g = strm.ReadBits(16);
+    uint16_t b = strm.ReadBits(16);
+    uint16_t a = strm.ReadBits(16);
+
+    uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast<uint32_t>(b) & 0xFF00) << 8 |
+                    (static_cast<uint32_t>(a) & 0xFF00) << 16;
+
+    for (uint32_t j = 0; j < blockHeight; j++)
+        for (uint32_t i = 0; i < blockWidth; i++) {
+            outBuf[j * blockWidth + i] = rgba;
+        }
+}
+
+void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) {
+    for (uint32_t j = 0; j < blockHeight; j++)
+        for (uint32_t i = 0; i < blockWidth; i++) {
+            outBuf[j * blockWidth + i] = 0xFFFF00FF;
+        }
+}
+
+// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
+// is the same as [(numBits - 1):0] and repeats all the way down.
+template <typename IntType>
+IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
+    if (numBits == 0)
+        return 0;
+    if (toBit == 0)
+        return 0;
+    IntType v = val & ((1 << numBits) - 1);
+    IntType res = v;
+    uint32_t reslen = numBits;
+    while (reslen < toBit) {
+        uint32_t comp = 0;
+        if (numBits > toBit - reslen) {
+            uint32_t newshift = toBit - reslen;
+            comp = numBits - newshift;
+            numBits = newshift;
+        }
+        res <<= numBits;
+        res |= v >> comp;
+        reslen += numBits;
+    }
+    return res;
+}
+
+class Pixel {
+protected:
+    typedef int16_t ChannelType;
+    uint8_t m_BitDepth[4];
+    int16_t color[4];
+
+public:
+    Pixel() {
+        for (int i = 0; i < 4; i++) {
+            m_BitDepth[i] = 8;
+            color[i] = 0;
+        }
+    }
+
+    Pixel(ChannelType a, ChannelType r, ChannelType g, ChannelType b, unsigned bitDepth = 8) {
+        for (int i = 0; i < 4; i++)
+            m_BitDepth[i] = bitDepth;
+
+        color[0] = a;
+        color[1] = r;
+        color[2] = g;
+        color[3] = b;
+    }
+
+    // Changes the depth of each pixel. This scales the values to
+    // the appropriate bit depth by either truncating the least
+    // significant bits when going from larger to smaller bit depth
+    // or by repeating the most significant bits when going from
+    // smaller to larger bit depths.
+    void ChangeBitDepth(const uint8_t (&depth)[4]) {
+        for (uint32_t i = 0; i < 4; i++) {
+            Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]);
+            m_BitDepth[i] = depth[i];
+        }
+    }
+
+    template <typename IntType>
+    static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) {
+        float denominator = static_cast<float>((1 << bitDepth) - 1);
+        return static_cast<float>(channel) / denominator;
+    }
+
+    // Changes the bit depth of a single component. See the comment
+    // above for how we do this.
+    static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) {
+        assert(newDepth <= 8);
+        assert(oldDepth <= 8);
+
+        if (oldDepth == newDepth) {
+            // Do nothing
+            return val;
+        } else if (oldDepth == 0 && newDepth != 0) {
+            return (1 << newDepth) - 1;
+        } else if (newDepth > oldDepth) {
+            return Replicate(val, oldDepth, newDepth);
+        } else {
+            // oldDepth > newDepth
+            if (newDepth == 0) {
+                return 0xFF;
+            } else {
+                uint8_t bitsWasted = oldDepth - newDepth;
+                uint16_t v = static_cast<uint16_t>(val);
+                v = (v + (1 << (bitsWasted - 1))) >> bitsWasted;
+                v = ::std::min<uint16_t>(::std::max<uint16_t>(0, v), (1 << newDepth) - 1);
+                return static_cast<uint8_t>(v);
+            }
+        }
+
+        assert(!"We shouldn't get here.");
+        return 0;
+    }
+
+    const ChannelType& A() const {
+        return color[0];
+    }
+    ChannelType& A() {
+        return color[0];
+    }
+    const ChannelType& R() const {
+        return color[1];
+    }
+    ChannelType& R() {
+        return color[1];
+    }
+    const ChannelType& G() const {
+        return color[2];
+    }
+    ChannelType& G() {
+        return color[2];
+    }
+    const ChannelType& B() const {
+        return color[3];
+    }
+    ChannelType& B() {
+        return color[3];
+    }
+    const ChannelType& Component(uint32_t idx) const {
+        return color[idx];
+    }
+    ChannelType& Component(uint32_t idx) {
+        return color[idx];
+    }
+
+    void GetBitDepth(uint8_t (&outDepth)[4]) const {
+        for (int i = 0; i < 4; i++) {
+            outDepth[i] = m_BitDepth[i];
+        }
+    }
+
+    // Take all of the components, transform them to their 8-bit variants,
+    // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
+    // that the architecture is little-endian, so the alpha channel will end
+    // up in the most-significant byte.
+    uint32_t Pack() const {
+        Pixel eightBit(*this);
+        const uint8_t eightBitDepth[4] = {8, 8, 8, 8};
+        eightBit.ChangeBitDepth(eightBitDepth);
+
+        uint32_t r = 0;
+        r |= eightBit.A();
+        r <<= 8;
+        r |= eightBit.B();
+        r <<= 8;
+        r |= eightBit.G();
+        r <<= 8;
+        r |= eightBit.R();
+        return r;
+    }
+
+    // Clamps the pixel to the range [0,255]
+    void ClampByte() {
+        for (uint32_t i = 0; i < 4; i++) {
+            color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
+        }
+    }
+
+    void MakeOpaque() {
+        A() = 255;
+    }
+};
+
+void DecodeColorValues(uint32_t* out, uint8_t* data, uint32_t* modes, const uint32_t nPartitions,
+                       const uint32_t nBitsForColorData) {
+    // First figure out how many color values we have
+    uint32_t nValues = 0;
+    for (uint32_t i = 0; i < nPartitions; i++) {
+        nValues += ((modes[i] >> 2) + 1) << 1;
+    }
+
+    // Then based on the number of values and the remaining number of bits,
+    // figure out the max value for each of them...
+    uint32_t range = 256;
+    while (--range > 0) {
+        IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
+        uint32_t bitLength = val.GetBitLength(nValues);
+        if (bitLength <= nBitsForColorData) {
+            // Find the smallest possible range that matches the given encoding
+            while (--range > 0) {
+                IntegerEncodedValue newval = IntegerEncodedValue::CreateEncoding(range);
+                if (!newval.MatchesEncoding(val)) {
+                    break;
+                }
+            }
+
+            // Return to last matching range.
+            range++;
+            break;
+        }
+    }
+
+    // We now have enough to decode our integer sequence.
+    std::vector<IntegerEncodedValue> decodedColorValues;
+    BitStream colorStream(data);
+    IntegerEncodedValue::DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
+
+    // Once we have the decoded values, we need to dequantize them to the 0-255 range
+    // This procedure is outlined in ASTC spec C.2.13
+    uint32_t outIdx = 0;
+    std::vector<IntegerEncodedValue>::const_iterator itr;
+    for (itr = decodedColorValues.begin(); itr != decodedColorValues.end(); itr++) {
+        // Have we already decoded all that we need?
+        if (outIdx >= nValues) {
+            break;
+        }
+
+        const IntegerEncodedValue& val = *itr;
+        uint32_t bitlen = val.BaseBitLength();
+        uint32_t bitval = val.GetBitValue();
+
+        assert(bitlen >= 1);
+
+        uint32_t A = 0, B = 0, C = 0, D = 0;
+        // A is just the lsb replicated 9 times.
+        A = Replicate(bitval & 1, 1, 9);
+
+        switch (val.GetEncoding()) {
+        // Replicate bits
+        case eIntegerEncoding_JustBits:
+            out[outIdx++] = Replicate(bitval, bitlen, 8);
+            break;
+
+        // Use algorithm in C.2.13
+        case eIntegerEncoding_Trit: {
+
+            D = val.GetTritValue();
+
+            switch (bitlen) {
+            case 1: {
+                C = 204;
+            } break;
+
+            case 2: {
+                C = 93;
+                // B = b000b0bb0
+                uint32_t b = (bitval >> 1) & 1;
+                B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
+            } break;
+
+            case 3: {
+                C = 44;
+                // B = cb000cbcb
+                uint32_t cb = (bitval >> 1) & 3;
+                B = (cb << 7) | (cb << 2) | cb;
+            } break;
+
+            case 4: {
+                C = 22;
+                // B = dcb000dcb
+                uint32_t dcb = (bitval >> 1) & 7;
+                B = (dcb << 6) | dcb;
+            } break;
+
+            case 5: {
+                C = 11;
+                // B = edcb000ed
+                uint32_t edcb = (bitval >> 1) & 0xF;
+                B = (edcb << 5) | (edcb >> 2);
+            } break;
+
+            case 6: {
+                C = 5;
+                // B = fedcb000f
+                uint32_t fedcb = (bitval >> 1) & 0x1F;
+                B = (fedcb << 4) | (fedcb >> 4);
+            } break;
+
+            default:
+                assert(!"Unsupported trit encoding for color values!");
+                break;
+            } // switch(bitlen)
+        }     // case eIntegerEncoding_Trit
+        break;
+
+        case eIntegerEncoding_Quint: {
+
+            D = val.GetQuintValue();
+
+            switch (bitlen) {
+            case 1: {
+                C = 113;
+            } break;
+
+            case 2: {
+                C = 54;
+                // B = b0000bb00
+                uint32_t b = (bitval >> 1) & 1;
+                B = (b << 8) | (b << 3) | (b << 2);
+            } break;
+
+            case 3: {
+                C = 26;
+                // B = cb0000cbc
+                uint32_t cb = (bitval >> 1) & 3;
+                B = (cb << 7) | (cb << 1) | (cb >> 1);
+            } break;
+
+            case 4: {
+                C = 13;
+                // B = dcb0000dc
+                uint32_t dcb = (bitval >> 1) & 7;
+                B = (dcb << 6) | (dcb >> 1);
+            } break;
+
+            case 5: {
+                C = 6;
+                // B = edcb0000e
+                uint32_t edcb = (bitval >> 1) & 0xF;
+                B = (edcb << 5) | (edcb >> 3);
+            } break;
+
+            default:
+                assert(!"Unsupported quint encoding for color values!");
+                break;
+            } // switch(bitlen)
+        }     // case eIntegerEncoding_Quint
+        break;
+        } // switch(val.GetEncoding())
+
+        if (val.GetEncoding() != eIntegerEncoding_JustBits) {
+            uint32_t T = D * C + B;
+            T ^= A;
+            T = (A & 0x80) | (T >> 2);
+            out[outIdx++] = T;
+        }
+    }
+
+    // Make sure that each of our values is in the proper range...
+    for (uint32_t i = 0; i < nValues; i++) {
+        assert(out[i] <= 255);
+    }
+}
+
+uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
+    uint32_t bitval = val.GetBitValue();
+    uint32_t bitlen = val.BaseBitLength();
+
+    uint32_t A = Replicate(bitval & 1, 1, 7);
+    uint32_t B = 0, C = 0, D = 0;
+
+    uint32_t result = 0;
+    switch (val.GetEncoding()) {
+    case eIntegerEncoding_JustBits:
+        result = Replicate(bitval, bitlen, 6);
+        break;
+
+    case eIntegerEncoding_Trit: {
+        D = val.GetTritValue();
+        assert(D < 3);
+
+        switch (bitlen) {
+        case 0: {
+            uint32_t results[3] = {0, 32, 63};
+            result = results[D];
+        } break;
+
+        case 1: {
+            C = 50;
+        } break;
+
+        case 2: {
+            C = 23;
+            uint32_t b = (bitval >> 1) & 1;
+            B = (b << 6) | (b << 2) | b;
+        } break;
+
+        case 3: {
+            C = 11;
+            uint32_t cb = (bitval >> 1) & 3;
+            B = (cb << 5) | cb;
+        } break;
+
+        default:
+            assert(!"Invalid trit encoding for texel weight");
+            break;
+        }
+    } break;
+
+    case eIntegerEncoding_Quint: {
+        D = val.GetQuintValue();
+        assert(D < 5);
+
+        switch (bitlen) {
+        case 0: {
+            uint32_t results[5] = {0, 16, 32, 47, 63};
+            result = results[D];
+        } break;
+
+        case 1: {
+            C = 28;
+        } break;
+
+        case 2: {
+            C = 13;
+            uint32_t b = (bitval >> 1) & 1;
+            B = (b << 6) | (b << 1);
+        } break;
+
+        default:
+            assert(!"Invalid quint encoding for texel weight");
+            break;
+        }
+    } break;
+    }
+
+    if (val.GetEncoding() != eIntegerEncoding_JustBits && bitlen > 0) {
+        // Decode the value...
+        result = D * C + B;
+        result ^= A;
+        result = (A & 0x20) | (result >> 2);
+    }
+
+    assert(result < 64);
+
+    // Change from [0,63] to [0,64]
+    if (result > 32) {
+        result += 1;
+    }
+
+    return result;
+}
+
+void UnquantizeTexelWeights(uint32_t out[2][144], std::vector<IntegerEncodedValue>& weights,
+                            const TexelWeightParams& params, const uint32_t blockWidth,
+                            const uint32_t blockHeight) {
+    uint32_t weightIdx = 0;
+    uint32_t unquantized[2][144];
+    std::vector<IntegerEncodedValue>::const_iterator itr;
+    for (itr = weights.begin(); itr != weights.end(); itr++) {
+        unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
+
+        if (params.m_bDualPlane) {
+            itr++;
+            unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
+            if (itr == weights.end()) {
+                break;
+            }
+        }
+
+        if (++weightIdx >= (params.m_Width * params.m_Height))
+            break;
+    }
+
+    // Do infill if necessary (Section C.2.18) ...
+    uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
+    uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
+
+    const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U;
+    for (uint32_t plane = 0; plane < kPlaneScale; plane++)
+        for (uint32_t t = 0; t < blockHeight; t++)
+            for (uint32_t s = 0; s < blockWidth; s++) {
+                uint32_t cs = Ds * s;
+                uint32_t ct = Dt * t;
+
+                uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6;
+                uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6;
+
+                uint32_t js = gs >> 4;
+                uint32_t fs = gs & 0xF;
+
+                uint32_t jt = gt >> 4;
+                uint32_t ft = gt & 0x0F;
+
+                uint32_t w11 = (fs * ft + 8) >> 4;
+                uint32_t w10 = ft - w11;
+                uint32_t w01 = fs - w11;
+                uint32_t w00 = 16 - fs - ft + w11;
+
+                uint32_t v0 = js + jt * params.m_Width;
+
+#define FIND_TEXEL(tidx, bidx)                                                                     \
+    uint32_t p##bidx = 0;                                                                          \
+    do {                                                                                           \
+        if ((tidx) < (params.m_Width * params.m_Height)) {                                         \
+            p##bidx = unquantized[plane][(tidx)];                                                  \
+        }                                                                                          \
+    } while (0)
+
+                FIND_TEXEL(v0, 00);
+                FIND_TEXEL(v0 + 1, 01);
+                FIND_TEXEL(v0 + params.m_Width, 10);
+                FIND_TEXEL(v0 + params.m_Width + 1, 11);
+
+#undef FIND_TEXEL
+
+                out[plane][t * blockWidth + s] =
+                    (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
+            }
+}
+
+// Transfers a bit as described in C.2.14
+static inline void BitTransferSigned(int32_t& a, int32_t& b) {
+    b >>= 1;
+    b |= a & 0x80;
+    a >>= 1;
+    a &= 0x3F;
+    if (a & 0x20)
+        a -= 0x40;
+}
+
+// Adds more precision to the blue channel as described
+// in C.2.14
+static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) {
+    return Pixel(static_cast<int16_t>(a), static_cast<int16_t>((r + b) >> 1),
+                 static_cast<int16_t>((g + b) >> 1), static_cast<int16_t>(b));
+}
+
+// Partition selection functions as specified in
+// C.2.21
+static inline uint32_t hash52(uint32_t p) {
+    p ^= p >> 15;
+    p -= p << 17;
+    p += p << 7;
+    p += p << 4;
+    p ^= p >> 5;
+    p += p << 16;
+    p ^= p >> 7;
+    p ^= p >> 3;
+    p ^= p << 6;
+    p ^= p >> 17;
+    return p;
+}
+
+static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
+                                int32_t partitionCount, int32_t smallBlock) {
+    if (1 == partitionCount)
+        return 0;
+
+    if (smallBlock) {
+        x <<= 1;
+        y <<= 1;
+        z <<= 1;
+    }
+
+    seed += (partitionCount - 1) * 1024;
+
+    uint32_t rnum = hash52(static_cast<uint32_t>(seed));
+    uint8_t seed1 = static_cast<uint8_t>(rnum & 0xF);
+    uint8_t seed2 = static_cast<uint8_t>((rnum >> 4) & 0xF);
+    uint8_t seed3 = static_cast<uint8_t>((rnum >> 8) & 0xF);
+    uint8_t seed4 = static_cast<uint8_t>((rnum >> 12) & 0xF);
+    uint8_t seed5 = static_cast<uint8_t>((rnum >> 16) & 0xF);
+    uint8_t seed6 = static_cast<uint8_t>((rnum >> 20) & 0xF);
+    uint8_t seed7 = static_cast<uint8_t>((rnum >> 24) & 0xF);
+    uint8_t seed8 = static_cast<uint8_t>((rnum >> 28) & 0xF);
+    uint8_t seed9 = static_cast<uint8_t>((rnum >> 18) & 0xF);
+    uint8_t seed10 = static_cast<uint8_t>((rnum >> 22) & 0xF);
+    uint8_t seed11 = static_cast<uint8_t>((rnum >> 26) & 0xF);
+    uint8_t seed12 = static_cast<uint8_t>(((rnum >> 30) | (rnum << 2)) & 0xF);
+
+    seed1 *= seed1;
+    seed2 *= seed2;
+    seed3 *= seed3;
+    seed4 *= seed4;
+    seed5 *= seed5;
+    seed6 *= seed6;
+    seed7 *= seed7;
+    seed8 *= seed8;
+    seed9 *= seed9;
+    seed10 *= seed10;
+    seed11 *= seed11;
+    seed12 *= seed12;
+
+    int32_t sh1, sh2, sh3;
+    if (seed & 1) {
+        sh1 = (seed & 2) ? 4 : 5;
+        sh2 = (partitionCount == 3) ? 6 : 5;
+    } else {
+        sh1 = (partitionCount == 3) ? 6 : 5;
+        sh2 = (seed & 2) ? 4 : 5;
+    }
+    sh3 = (seed & 0x10) ? sh1 : sh2;
+
+    seed1 >>= sh1;
+    seed2 >>= sh2;
+    seed3 >>= sh1;
+    seed4 >>= sh2;
+    seed5 >>= sh1;
+    seed6 >>= sh2;
+    seed7 >>= sh1;
+    seed8 >>= sh2;
+    seed9 >>= sh3;
+    seed10 >>= sh3;
+    seed11 >>= sh3;
+    seed12 >>= sh3;
+
+    int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
+    int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
+    int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
+    int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
+
+    a &= 0x3F;
+    b &= 0x3F;
+    c &= 0x3F;
+    d &= 0x3F;
+
+    if (partitionCount < 4)
+        d = 0;
+    if (partitionCount < 3)
+        c = 0;
+
+    if (a >= b && a >= c && a >= d)
+        return 0;
+    else if (b >= c && b >= d)
+        return 1;
+    else if (c >= d)
+        return 2;
+    return 3;
+}
+
+static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount,
+                                         int32_t smallBlock) {
+    return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
+}
+
+// Section C.2.14
+void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues,
+                      uint32_t colorEndpointMode) {
+#define READ_UINT_VALUES(N)                                                                        \
+    uint32_t v[N];                                                                                 \
+    for (uint32_t i = 0; i < N; i++) {                                                             \
+        v[i] = *(colorValues++);                                                                   \
+    }
+
+#define READ_INT_VALUES(N)                                                                         \
+    int32_t v[N];                                                                                  \
+    for (uint32_t i = 0; i < N; i++) {                                                             \
+        v[i] = static_cast<int32_t>(*(colorValues++));                                             \
+    }
+
+    switch (colorEndpointMode) {
+    case 0: {
+        READ_UINT_VALUES(2)
+        ep1 = Pixel(0xFF, v[0], v[0], v[0]);
+        ep2 = Pixel(0xFF, v[1], v[1], v[1]);
+    } break;
+
+    case 1: {
+        READ_UINT_VALUES(2)
+        uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0);
+        uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
+        ep1 = Pixel(0xFF, L0, L0, L0);
+        ep2 = Pixel(0xFF, L1, L1, L1);
+    } break;
+
+    case 4: {
+        READ_UINT_VALUES(4)
+        ep1 = Pixel(v[2], v[0], v[0], v[0]);
+        ep2 = Pixel(v[3], v[1], v[1], v[1]);
+    } break;
+
+    case 5: {
+        READ_INT_VALUES(4)
+        BitTransferSigned(v[1], v[0]);
+        BitTransferSigned(v[3], v[2]);
+        ep1 = Pixel(v[2], v[0], v[0], v[0]);
+        ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
+        ep1.ClampByte();
+        ep2.ClampByte();
+    } break;
+
+    case 6: {
+        READ_UINT_VALUES(4)
+        ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+        ep2 = Pixel(0xFF, v[0], v[1], v[2]);
+    } break;
+
+    case 8: {
+        READ_UINT_VALUES(6)
+        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
+            ep2 = Pixel(0xFF, v[1], v[3], v[5]);
+        } else {
+            ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
+            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
+        }
+    } break;
+
+    case 9: {
+        READ_INT_VALUES(6)
+        BitTransferSigned(v[1], v[0]);
+        BitTransferSigned(v[3], v[2]);
+        BitTransferSigned(v[5], v[4]);
+        if (v[1] + v[3] + v[5] >= 0) {
+            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
+            ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+        } else {
+            ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
+        }
+        ep1.ClampByte();
+        ep2.ClampByte();
+    } break;
+
+    case 10: {
+        READ_UINT_VALUES(6)
+        ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+        ep2 = Pixel(v[5], v[0], v[1], v[2]);
+    } break;
+
+    case 12: {
+        READ_UINT_VALUES(8)
+        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+            ep1 = Pixel(v[6], v[0], v[2], v[4]);
+            ep2 = Pixel(v[7], v[1], v[3], v[5]);
+        } else {
+            ep1 = BlueContract(v[7], v[1], v[3], v[5]);
+            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
+        }
+    } break;
+
+    case 13: {
+        READ_INT_VALUES(8)
+        BitTransferSigned(v[1], v[0]);
+        BitTransferSigned(v[3], v[2]);
+        BitTransferSigned(v[5], v[4]);
+        BitTransferSigned(v[7], v[6]);
+        if (v[1] + v[3] + v[5] >= 0) {
+            ep1 = Pixel(v[6], v[0], v[2], v[4]);
+            ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+        } else {
+            ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
+            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
+        }
+        ep1.ClampByte();
+        ep2.ClampByte();
+    } break;
+
+    default:
+        assert(!"Unsupported color endpoint mode (is it HDR?)");
+        break;
+    }
+
+#undef READ_UINT_VALUES
+#undef READ_INT_VALUES
+}
+
+void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth, const uint32_t blockHeight,
+                     uint32_t* outBuf) {
+    BitStream strm(inBuf);
+    TexelWeightParams weightParams = DecodeBlockInfo(strm);
+
+    // Was there an error?
+    if (weightParams.m_bError) {
+        assert(!"Invalid block mode");
+        FillError(outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    if (weightParams.m_bVoidExtentLDR) {
+        FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    if (weightParams.m_bVoidExtentHDR) {
+        assert(!"HDR void extent blocks are unsupported!");
+        FillError(outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    if (weightParams.m_Width > blockWidth) {
+        assert(!"Texel weight grid width should be smaller than block width");
+        FillError(outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    if (weightParams.m_Height > blockHeight) {
+        assert(!"Texel weight grid height should be smaller than block height");
+        FillError(outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    // Read num partitions
+    uint32_t nPartitions = strm.ReadBits(2) + 1;
+    assert(nPartitions <= 4);
+
+    if (nPartitions == 4 && weightParams.m_bDualPlane) {
+        assert(!"Dual plane mode is incompatible with four partition blocks");
+        FillError(outBuf, blockWidth, blockHeight);
+        return;
+    }
+
+    // Based on the number of partitions, read the color endpoint mode for
+    // each partition.
+
+    // Determine partitions, partition index, and color endpoint modes
+    int32_t planeIdx = -1;
+    uint32_t partitionIndex;
+    uint32_t colorEndpointMode[4] = {0, 0, 0, 0};
+
+    // Define color data.
+    uint8_t colorEndpointData[16];
+    memset(colorEndpointData, 0, sizeof(colorEndpointData));
+    BitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
+
+    // Read extra config data...
+    uint32_t baseCEM = 0;
+    if (nPartitions == 1) {
+        colorEndpointMode[0] = strm.ReadBits(4);
+        partitionIndex = 0;
+    } else {
+        partitionIndex = strm.ReadBits(10);
+        baseCEM = strm.ReadBits(6);
+    }
+    uint32_t baseMode = (baseCEM & 3);
+
+    // Remaining bits are color endpoint data...
+    uint32_t nWeightBits = weightParams.GetPackedBitSize();
+    int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead();
+
+    // Consider extra bits prior to texel data...
+    uint32_t extraCEMbits = 0;
+    if (baseMode) {
+        switch (nPartitions) {
+        case 2:
+            extraCEMbits += 2;
+            break;
+        case 3:
+            extraCEMbits += 5;
+            break;
+        case 4:
+            extraCEMbits += 8;
+            break;
+        default:
+            assert(false);
+            break;
+        }
+    }
+    remainingBits -= extraCEMbits;
+
+    // Do we have a dual plane situation?
+    uint32_t planeSelectorBits = 0;
+    if (weightParams.m_bDualPlane) {
+        planeSelectorBits = 2;
+    }
+    remainingBits -= planeSelectorBits;
+
+    // Read color data...
+    uint32_t colorDataBits = remainingBits;
+    while (remainingBits > 0) {
+        uint32_t nb = std::min(remainingBits, 8);
+        uint32_t b = strm.ReadBits(nb);
+        colorEndpointStream.WriteBits(b, nb);
+        remainingBits -= 8;
+    }
+
+    // Read the plane selection bits
+    planeIdx = strm.ReadBits(planeSelectorBits);
+
+    // Read the rest of the CEM
+    if (baseMode) {
+        uint32_t extraCEM = strm.ReadBits(extraCEMbits);
+        uint32_t CEM = (extraCEM << 6) | baseCEM;
+        CEM >>= 2;
+
+        bool C[4] = {0};
+        for (uint32_t i = 0; i < nPartitions; i++) {
+            C[i] = CEM & 1;
+            CEM >>= 1;
+        }
+
+        uint8_t M[4] = {0};
+        for (uint32_t i = 0; i < nPartitions; i++) {
+            M[i] = CEM & 3;
+            CEM >>= 2;
+            assert(M[i] <= 3);
+        }
+
+        for (uint32_t i = 0; i < nPartitions; i++) {
+            colorEndpointMode[i] = baseMode;
+            if (!(C[i]))
+                colorEndpointMode[i] -= 1;
+            colorEndpointMode[i] <<= 2;
+            colorEndpointMode[i] |= M[i];
+        }
+    } else if (nPartitions > 1) {
+        uint32_t CEM = baseCEM >> 2;
+        for (uint32_t i = 0; i < nPartitions; i++) {
+            colorEndpointMode[i] = CEM;
+        }
+    }
+
+    // Make sure everything up till here is sane.
+    for (uint32_t i = 0; i < nPartitions; i++) {
+        assert(colorEndpointMode[i] < 16);
+    }
+    assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
+
+    // Decode both color data and texel weight data
+    uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions
+    DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
+                      colorDataBits);
+
+    Pixel endpoints[4][2];
+    const uint32_t* colorValuesPtr = colorValues;
+    for (uint32_t i = 0; i < nPartitions; i++) {
+        ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
+    }
+
+    // Read the texel weight data..
+    uint8_t texelWeightData[16];
+    memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
+
+    // Reverse everything
+    for (uint32_t i = 0; i < 8; i++) {
+// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
+#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
+        unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i]));
+        unsigned char b = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[15 - i]));
+#undef REVERSE_BYTE
+
+        texelWeightData[i] = b;
+        texelWeightData[15 - i] = a;
+    }
+
+    // Make sure that higher non-texel bits are set to zero
+    const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
+    texelWeightData[clearByteStart - 1] &= (1 << (weightParams.GetPackedBitSize() % 8)) - 1;
+    memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
+
+    std::vector<IntegerEncodedValue> texelWeightValues;
+    BitStream weightStream(texelWeightData);
+
+    IntegerEncodedValue::DecodeIntegerSequence(texelWeightValues, weightStream,
+                                               weightParams.m_MaxWeight,
+                                               weightParams.GetNumWeightValues());
+
+    // Blocks can be at most 12x12, so we can have as many as 144 weights
+    uint32_t weights[2][144];
+    UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
+
+    // Now that we have endpoints and weights, we can interpolate and generate
+    // the proper decoding...
+    for (uint32_t j = 0; j < blockHeight; j++)
+        for (uint32_t i = 0; i < blockWidth; i++) {
+            uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions,
+                                                   (blockHeight * blockWidth) < 32);
+            assert(partition < nPartitions);
+
+            Pixel p;
+            for (uint32_t c = 0; c < 4; c++) {
+                uint32_t C0 = endpoints[partition][0].Component(c);
+                C0 = Replicate(C0, 8, 16);
+                uint32_t C1 = endpoints[partition][1].Component(c);
+                C1 = Replicate(C1, 8, 16);
+
+                uint32_t plane = 0;
+                if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
+                    plane = 1;
+                }
+
+                uint32_t weight = weights[plane][j * blockWidth + i];
+                uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
+                if (C == 65535) {
+                    p.Component(c) = 255;
+                } else {
+                    double Cf = static_cast<double>(C);
+                    p.Component(c) = static_cast<uint16_t>(255.0 * (Cf / 65536.0) + 0.5);
+                }
+            }
+
+            outBuf[j * blockWidth + i] = p.Pack();
+        }
+}
+
+} // namespace ASTCC
+
+namespace Tegra::Texture::ASTC {
+
+std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
+                                uint32_t block_width, uint32_t block_height) {
+    uint32_t blockIdx = 0;
+    std::vector<uint8_t> outData;
+    outData.resize(height * width * 4);
+    for (uint32_t j = 0; j < height; j += block_height) {
+        for (uint32_t i = 0; i < width; i += block_width) {
+
+            uint8_t* blockPtr = data.data() + blockIdx * 16;
+
+            // Blocks can be at most 12x12
+            uint32_t uncompData[144];
+            ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
+
+            uint32_t decompWidth = std::min(block_width, width - i);
+            uint32_t decompHeight = std::min(block_height, height - j);
+
+            uint8_t* outRow = outData.data() + (j * width + i) * 4;
+            for (uint32_t jj = 0; jj < decompHeight; jj++) {
+                memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4);
+            }
+
+            blockIdx++;
+        }
+    }
+
+    return outData;
+}
+
+} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h
new file mode 100644
index 0000000000..f0d7c0e564
--- /dev/null
+++ b/src/video_core/textures/astc.h
@@ -0,0 +1,15 @@
+// Copyright 2018 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include <cstdint>
+#include <vector>
+
+namespace Tegra::Texture::ASTC {
+
+std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
+                                uint32_t block_width, uint32_t block_height);
+
+} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/decoders.cpp b/src/video_core/textures/decoders.cpp
index 7bf9c4c4b1..0db4367f16 100644
--- a/src/video_core/textures/decoders.cpp
+++ b/src/video_core/textures/decoders.cpp
@@ -53,6 +53,7 @@ u32 BytesPerPixel(TextureFormat format) {
     case TextureFormat::DXT45:
         // In this case a 'pixel' actually refers to a 4x4 tile.
         return 16;
+    case TextureFormat::ASTC_2D_4X4:
     case TextureFormat::A8R8G8B8:
     case TextureFormat::A2B10G10R10:
     case TextureFormat::BF10GF11RF11:
@@ -94,6 +95,7 @@ std::vector<u8> UnswizzleTexture(VAddr address, TextureFormat format, u32 width,
     case TextureFormat::R8:
     case TextureFormat::R16_G16_B16_A16:
     case TextureFormat::BF10GF11RF11:
+    case TextureFormat::ASTC_2D_4X4:
         CopySwizzledData(width, height, bytes_per_pixel, bytes_per_pixel, data,
                          unswizzled_data.data(), true, block_height);
         break;
@@ -115,6 +117,7 @@ std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat
     case TextureFormat::DXT23:
     case TextureFormat::DXT45:
     case TextureFormat::DXN1:
+    case TextureFormat::ASTC_2D_4X4:
     case TextureFormat::A8R8G8B8:
     case TextureFormat::A2B10G10R10:
     case TextureFormat::A1B5G5R5: