yuzu/src/video_core/shader/decode/image.cpp

489 lines
17 KiB
C++
Raw Normal View History

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
2020-03-22 13:14:12 +00:00
#include "core/core.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"
2020-03-22 13:14:12 +00:00
#include "video_core/textures/texture.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
2020-03-11 12:19:56 +00:00
using Tegra::Shader::PredCondition;
2020-03-11 14:11:11 +00:00
using Tegra::Shader::StoreType;
2020-03-22 13:14:12 +00:00
using Tegra::Texture::ComponentType;
using Tegra::Texture::TextureFormat;
using Tegra::Texture::TICEntry;
namespace {
2020-03-22 13:14:12 +00:00
ComponentType GetComponentType(TICEntry tic, std::size_t component) {
const TextureFormat format{tic.format};
switch (format) {
case TextureFormat::R16_G16_B16_A16:
case TextureFormat::R32_G32_B32_A32:
case TextureFormat::R32_G32_B32:
case TextureFormat::R32_G32:
case TextureFormat::R16_G16:
case TextureFormat::R32:
case TextureFormat::R16:
case TextureFormat::R8:
case TextureFormat::R1:
if (0 == component) {
return tic.r_type;
}
if (1 == component) {
return tic.g_type;
}
if (2 == component) {
return tic.b_type;
}
if (3 == component) {
return tic.a_type;
}
break;
case TextureFormat::A8R8G8B8:
if (0 == component) {
return tic.a_type;
}
if (1 == component) {
return tic.r_type;
}
if (2 == component) {
return tic.g_type;
}
if (3 == component) {
return tic.b_type;
}
break;
case TextureFormat::A2B10G10R10:
case TextureFormat::A4B4G4R4:
case TextureFormat::A5B5G5R1:
case TextureFormat::A1B5G5R5:
if (0 == component) {
return tic.a_type;
}
if (1 == component) {
return tic.b_type;
}
if (2 == component) {
return tic.g_type;
}
if (3 == component) {
return tic.r_type;
}
break;
case TextureFormat::R32_B24G8:
if (0 == component) {
return tic.r_type;
}
if (1 == component) {
return tic.b_type;
}
if (2 == component) {
return tic.g_type;
}
break;
case TextureFormat::B5G6R5:
case TextureFormat::B6G5R5:
if (0 == component) {
return tic.b_type;
}
if (1 == component) {
return tic.g_type;
}
if (2 == component) {
return tic.r_type;
}
break;
case TextureFormat::G8R24:
case TextureFormat::G24R8:
case TextureFormat::G8R8:
case TextureFormat::G4R4:
if (0 == component) {
return tic.g_type;
}
if (1 == component) {
return tic.r_type;
}
break;
2020-03-22 13:14:12 +00:00
}
UNIMPLEMENTED_MSG("texture format not implement={}", format);
2020-03-22 13:14:12 +00:00
return ComponentType::FLOAT;
}
bool IsComponentEnabled(std::size_t component_mask, std::size_t component) {
constexpr u8 R = 0b0001;
constexpr u8 G = 0b0010;
constexpr u8 B = 0b0100;
constexpr u8 A = 0b1000;
constexpr std::array<u8, 16> mask = {
0, (R), (G), (R | G), (B), (R | B), (G | B), (R | G | B),
(A), (R | A), (G | A), (R | G | A), (B | A), (R | B | A), (G | B | A), (R | G | B | A)};
return std::bitset<4>{mask.at(component_mask)}.test(component);
}
u32 GetComponentSize(TextureFormat format, std::size_t component) {
switch (format) {
case TextureFormat::R32_G32_B32_A32:
return 32;
case TextureFormat::R16_G16_B16_A16:
return 16;
case TextureFormat::R32_G32_B32:
return (0 == component || 1 == component || 2 == component) ? 32 : 0;
case TextureFormat::R32_G32:
return (0 == component || 1 == component) ? 32 : 0;
case TextureFormat::R16_G16:
return (0 == component || 1 == component) ? 16 : 0;
case TextureFormat::R32:
return (0 == component) ? 32 : 0;
case TextureFormat::R16:
return (0 == component) ? 16 : 0;
case TextureFormat::R8:
return (0 == component) ? 8 : 0;
case TextureFormat::R1:
return (0 == component) ? 1 : 0;
case TextureFormat::A8R8G8B8:
return 8;
case TextureFormat::A2B10G10R10:
return (3 == component || 2 == component || 1 == component) ? 10 : 2;
case TextureFormat::A4B4G4R4:
return 4;
case TextureFormat::A5B5G5R1:
return (0 == component || 1 == component || 2 == component) ? 5 : 1;
case TextureFormat::A1B5G5R5:
return (1 == component || 2 == component || 3 == component) ? 5 : 1;
case TextureFormat::R32_B24G8:
if (0 == component) {
return 32;
}
if (1 == component) {
return 24;
}
if (2 == component) {
return 8;
}
return 0;
case TextureFormat::B5G6R5:
if (0 == component || 2 == component) {
return 5;
}
if (1 == component) {
return 6;
}
return 0;
case TextureFormat::B6G5R5:
if (1 == component || 2 == component) {
return 5;
}
if (0 == component) {
return 6;
}
return 0;
case TextureFormat::G8R24:
if (0 == component) {
return 8;
}
if (1 == component) {
return 24;
}
return 0;
case TextureFormat::G24R8:
if (0 == component) {
return 8;
}
if (1 == component) {
return 24;
}
return 0;
case TextureFormat::G8R8:
return (0 == component || 1 == component) ? 8 : 0;
case TextureFormat::G4R4:
return (0 == component || 1 == component) ? 4 : 0;
default:
UNIMPLEMENTED_MSG("texture format not implement={}", format);
return 0;
}
}
std::size_t GetImageComponentMask(TextureFormat format) {
constexpr u8 R = 0b0001;
constexpr u8 G = 0b0010;
constexpr u8 B = 0b0100;
constexpr u8 A = 0b1000;
switch (format) {
case TextureFormat::R32_G32_B32_A32:
case TextureFormat::R16_G16_B16_A16:
case TextureFormat::A8R8G8B8:
case TextureFormat::A2B10G10R10:
case TextureFormat::A4B4G4R4:
case TextureFormat::A5B5G5R1:
case TextureFormat::A1B5G5R5:
return std::size_t{R | G | B | A};
case TextureFormat::R32_G32_B32:
case TextureFormat::R32_B24G8:
case TextureFormat::B5G6R5:
case TextureFormat::B6G5R5:
return std::size_t{R | G | B};
case TextureFormat::R32_G32:
case TextureFormat::R16_G16:
case TextureFormat::G8R24:
case TextureFormat::G24R8:
case TextureFormat::G8R8:
case TextureFormat::G4R4:
return std::size_t{R | G};
case TextureFormat::R32:
case TextureFormat::R16:
case TextureFormat::R8:
case TextureFormat::R1:
return std::size_t{R};
default:
UNIMPLEMENTED_MSG("texture format not implement={}", format);
return std::size_t{R | G | B | A};
}
}
std::size_t GetImageTypeNumCoordinates(Tegra::Shader::ImageType image_type) {
switch (image_type) {
case Tegra::Shader::ImageType::Texture1D:
case Tegra::Shader::ImageType::TextureBuffer:
return 1;
case Tegra::Shader::ImageType::Texture1DArray:
case Tegra::Shader::ImageType::Texture2D:
return 2;
case Tegra::Shader::ImageType::Texture2DArray:
case Tegra::Shader::ImageType::Texture3D:
return 3;
}
UNREACHABLE();
return 1;
}
} // Anonymous namespace
u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
const auto GetCoordinates = [this, instr](Tegra::Shader::ImageType image_type) {
std::vector<Node> coords;
const std::size_t num_coords{GetImageTypeNumCoordinates(image_type)};
coords.reserve(num_coords);
for (std::size_t i = 0; i < num_coords; ++i) {
coords.push_back(GetRegister(instr.gpr8.Value() + i));
}
return coords;
};
switch (opcode->get().GetId()) {
case OpCode::Id::SULD: {
UNIMPLEMENTED_IF(instr.suldst.out_of_bounds_store !=
Tegra::Shader::OutOfBoundsStore::Ignore);
const auto type{instr.suldst.image_type};
auto& image{instr.suldst.is_immediate ? GetImage(instr.image, type)
: GetBindlessImage(instr.gpr39, type)};
image.MarkRead();
2020-03-09 12:33:26 +00:00
if (instr.suldst.mode == Tegra::Shader::SurfaceDataMode::P) {
u32 indexer = 0;
for (u32 element = 0; element < 4; ++element) {
if (!instr.suldst.IsComponentEnabled(element)) {
continue;
}
MetaImage meta{image, {}, element};
Node value = Operation(OperationCode::ImageLoad, meta, GetCoordinates(type));
SetTemporary(bb, indexer++, std::move(value));
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
} else if (instr.suldst.mode == Tegra::Shader::SurfaceDataMode::D_BA) {
UNIMPLEMENTED_IF(instr.suldst.GetStoreDataLayout() != StoreType::Bits32);
2020-03-22 13:14:12 +00:00
const auto maxwell3d = &Core::System::GetInstance().GPU().Maxwell3D();
const auto tex_info = maxwell3d->GetStageTexture(shader_stage, image.GetOffset());
const auto comp_mask = GetImageComponentMask(tex_info.tic.format);
// TODO(namkazt): let's suppose image format is same as store type. we check on it
// later.
2020-03-09 12:33:26 +00:00
switch (instr.suldst.GetStoreDataLayout()) {
case StoreType::Bits32: {
2020-03-22 13:14:12 +00:00
u32 shifted_counter = 0;
2020-03-22 14:13:07 +00:00
// value should be RGBA format
2020-03-22 13:14:12 +00:00
Node value = Immediate(0);
for (u32 element = 0; element < 4; ++element) {
if (!IsComponentEnabled(comp_mask, element)) {
continue;
}
const auto component_type = GetComponentType(tex_info.tic, element);
const auto component_size = GetComponentSize(tex_info.tic.format, element);
bool is_signed = true;
MetaImage meta{image, {}, element};
const Node original_value =
Operation(OperationCode::ImageLoad, meta, GetCoordinates(type));
2020-03-22 14:13:07 +00:00
2020-03-22 13:14:12 +00:00
Node converted_value = [&] {
switch (component_type) {
case ComponentType::SNORM: {
// range [-1.0, 1.0]
2020-03-22 13:39:16 +00:00
auto cnv_value =
Operation(OperationCode::FMul, original_value, Immediate(128.f));
return SignedOperation(OperationCode::ICastFloat, is_signed,
2020-03-22 13:14:12 +00:00
std::move(cnv_value));
}
case ComponentType::UNORM: {
// range [0.0, 1.0]
2020-03-22 13:39:16 +00:00
auto cnv_value =
2020-03-22 14:13:07 +00:00
Operation(OperationCode::FMul, original_value, Immediate(256.f));
2020-03-22 13:14:12 +00:00
is_signed = false;
2020-03-22 13:39:16 +00:00
return SignedOperation(OperationCode::ICastFloat, is_signed,
2020-03-22 13:14:12 +00:00
std::move(cnv_value));
}
case ComponentType::SINT: // range [-128,128]
return original_value;
case ComponentType::UINT: // range [0, 255]
is_signed = false;
return original_value;
case ComponentType::FLOAT:
return original_value;
default:
UNIMPLEMENTED_MSG("Unimplement component type={}", component_type);
return original_value;
}
}();
// shift element to correct position
shifted_counter += component_size;
const auto shifted = 32 - shifted_counter;
if (shifted > 0) {
converted_value =
SignedOperation(OperationCode::ILogicalShiftLeft, is_signed,
std::move(converted_value), Immediate(shifted));
2020-03-22 13:14:12 +00:00
}
2020-03-22 13:14:12 +00:00
// add value into result
2020-03-22 13:34:52 +00:00
value = Operation(OperationCode::UBitwiseOr, value, std::move(converted_value));
}
SetRegister(bb, instr.gpr0.Value(), std::move(value));
2020-03-09 12:33:26 +00:00
break;
}
default:
UNREACHABLE();
break;
}
}
break;
}
case OpCode::Id::SUST: {
UNIMPLEMENTED_IF(instr.suldst.mode != Tegra::Shader::SurfaceDataMode::P);
UNIMPLEMENTED_IF(instr.suldst.out_of_bounds_store !=
Tegra::Shader::OutOfBoundsStore::Ignore);
UNIMPLEMENTED_IF(instr.suldst.component_mask_selector != 0xf); // Ensure we have RGBA
std::vector<Node> values;
constexpr std::size_t hardcoded_size{4};
for (std::size_t i = 0; i < hardcoded_size; ++i) {
values.push_back(GetRegister(instr.gpr0.Value() + i));
}
const auto type{instr.suldst.image_type};
auto& image{instr.suldst.is_immediate ? GetImage(instr.image, type)
: GetBindlessImage(instr.gpr39, type)};
image.MarkWrite();
MetaImage meta{image, std::move(values)};
bb.push_back(Operation(OperationCode::ImageStore, meta, GetCoordinates(type)));
break;
}
case OpCode::Id::SUATOM: {
UNIMPLEMENTED_IF(instr.suatom_d.is_ba != 0);
const OperationCode operation_code = [instr] {
switch (instr.suatom_d.operation_type) {
case Tegra::Shader::ImageAtomicOperationType::S32:
case Tegra::Shader::ImageAtomicOperationType::U32:
switch (instr.suatom_d.operation) {
case Tegra::Shader::ImageAtomicOperation::Add:
return OperationCode::AtomicImageAdd;
case Tegra::Shader::ImageAtomicOperation::And:
return OperationCode::AtomicImageAnd;
case Tegra::Shader::ImageAtomicOperation::Or:
return OperationCode::AtomicImageOr;
case Tegra::Shader::ImageAtomicOperation::Xor:
return OperationCode::AtomicImageXor;
case Tegra::Shader::ImageAtomicOperation::Exch:
return OperationCode::AtomicImageExchange;
}
default:
break;
}
UNIMPLEMENTED_MSG("Unimplemented operation={} type={}",
static_cast<u64>(instr.suatom_d.operation.Value()),
static_cast<u64>(instr.suatom_d.operation_type.Value()));
return OperationCode::AtomicImageAdd;
}();
Node value = GetRegister(instr.gpr0);
const auto type = instr.suatom_d.image_type;
auto& image = GetImage(instr.image, type);
image.MarkAtomic();
MetaImage meta{image, {std::move(value)}};
SetRegister(bb, instr.gpr0, Operation(operation_code, meta, GetCoordinates(type)));
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled image instruction: {}", opcode->get().GetName());
}
return pc;
}
Image& ShaderIR::GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type) {
const auto offset = static_cast<u32>(image.index.Value());
const auto it =
std::find_if(std::begin(used_images), std::end(used_images),
[offset](const Image& entry) { return entry.GetOffset() == offset; });
if (it != std::end(used_images)) {
ASSERT(!it->IsBindless() && it->GetType() == it->GetType());
return *it;
}
const auto next_index = static_cast<u32>(used_images.size());
return used_images.emplace_back(next_index, offset, type);
}
Image& ShaderIR::GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type) {
const Node image_register = GetRegister(reg);
const auto [base_image, buffer, offset] =
TrackCbuf(image_register, global_code, static_cast<s64>(global_code.size()));
const auto it =
std::find_if(std::begin(used_images), std::end(used_images),
[buffer = buffer, offset = offset](const Image& entry) {
return entry.GetBuffer() == buffer && entry.GetOffset() == offset;
});
if (it != std::end(used_images)) {
ASSERT(it->IsBindless() && it->GetType() == it->GetType());
return *it;
}
const auto next_index = static_cast<u32>(used_images.size());
return used_images.emplace_back(next_index, offset, buffer, type);
}
} // namespace VideoCommon::Shader