yuzu/src/input_common/gcadapter/gc_adapter.cpp

351 lines
12 KiB
C++
Raw Normal View History

2020-06-21 16:36:28 +00:00
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
//*
#include "common/logging/log.h"
#include "common/threadsafe_queue.h"
#include "input_common/gcadapter/gc_adapter.h"
Common::SPSCQueue<GCPadStatus> pad_queue[4];
struct GCState state[4];
namespace GCAdapter {
static libusb_device_handle* usb_adapter_handle = nullptr;
static u8 adapter_controllers_status[4] = {
ControllerTypes::CONTROLLER_NONE, ControllerTypes::CONTROLLER_NONE,
ControllerTypes::CONTROLLER_NONE, ControllerTypes::CONTROLLER_NONE};
static std::mutex s_mutex;
static std::thread adapter_input_thread;
static bool adapter_thread_running;
static std::mutex initialization_mutex;
static std::thread detect_thread;
static bool detect_thread_running = false;
static libusb_context* libusb_ctx;
static u8 input_endpoint = 0;
static bool configuring = false;
GCPadStatus CheckStatus(int port, u8 adapter_payload[37]) {
GCPadStatus pad = {};
bool get_origin = false;
u8 type = adapter_payload[1 + (9 * port)] >> 4;
if (type)
get_origin = true;
adapter_controllers_status[port] = type;
if (adapter_controllers_status[port] != ControllerTypes::CONTROLLER_NONE) {
u8 b1 = adapter_payload[1 + (9 * port) + 1];
u8 b2 = adapter_payload[1 + (9 * port) + 2];
if (b1 & (1 << 0))
pad.button |= PAD_BUTTON_A;
if (b1 & (1 << 1))
pad.button |= PAD_BUTTON_B;
if (b1 & (1 << 2))
pad.button |= PAD_BUTTON_X;
if (b1 & (1 << 3))
pad.button |= PAD_BUTTON_Y;
if (b1 & (1 << 4))
pad.button |= PAD_BUTTON_LEFT;
if (b1 & (1 << 5))
pad.button |= PAD_BUTTON_RIGHT;
if (b1 & (1 << 6))
pad.button |= PAD_BUTTON_DOWN;
if (b1 & (1 << 7))
pad.button |= PAD_BUTTON_UP;
if (b2 & (1 << 0))
pad.button |= PAD_BUTTON_START;
if (b2 & (1 << 1))
pad.button |= PAD_TRIGGER_Z;
if (b2 & (1 << 2))
pad.button |= PAD_TRIGGER_R;
if (b2 & (1 << 3))
pad.button |= PAD_TRIGGER_L;
if (get_origin)
pad.button |= PAD_GET_ORIGIN;
pad.stickX = adapter_payload[1 + (9 * port) + 3];
pad.stickY = adapter_payload[1 + (9 * port) + 4];
pad.substickX = adapter_payload[1 + (9 * port) + 5];
pad.substickY = adapter_payload[1 + (9 * port) + 6];
pad.triggerLeft = adapter_payload[1 + (9 * port) + 7];
pad.triggerRight = adapter_payload[1 + (9 * port) + 8];
}
return pad;
}
void PadToState(GCPadStatus pad, GCState& state) {
//std::lock_guard lock{s_mutex};
state.buttons.insert_or_assign(PAD_BUTTON_A, pad.button & PAD_BUTTON_A);
state.buttons.insert_or_assign(PAD_BUTTON_B, pad.button & PAD_BUTTON_B);
state.buttons.insert_or_assign(PAD_BUTTON_X, pad.button & PAD_BUTTON_X);
state.buttons.insert_or_assign(PAD_BUTTON_Y, pad.button & PAD_BUTTON_Y);
state.buttons.insert_or_assign(PAD_BUTTON_LEFT, pad.button & PAD_BUTTON_LEFT);
state.buttons.insert_or_assign(PAD_BUTTON_RIGHT, pad.button & PAD_BUTTON_RIGHT);
state.buttons.insert_or_assign(PAD_BUTTON_DOWN, pad.button & PAD_BUTTON_DOWN);
state.buttons.insert_or_assign(PAD_BUTTON_UP, pad.button & PAD_BUTTON_UP);
state.buttons.insert_or_assign(PAD_BUTTON_START, pad.button & PAD_BUTTON_START);
state.buttons.insert_or_assign(PAD_TRIGGER_Z, pad.button & PAD_TRIGGER_Z);
state.buttons.insert_or_assign(PAD_TRIGGER_L, pad.button & PAD_TRIGGER_L);
state.buttons.insert_or_assign(PAD_TRIGGER_R, pad.button & PAD_TRIGGER_R);
state.axes.insert_or_assign(STICK_X, pad.stickX);
state.axes.insert_or_assign(STICK_Y, pad.stickY);
state.axes.insert_or_assign(SUBSTICK_X, pad.substickX);
state.axes.insert_or_assign(SUBSTICK_Y, pad.substickY);
state.axes.insert_or_assign(TRIGGER_LEFT, pad.triggerLeft);
state.axes.insert_or_assign(TRIGGER_RIGHT, pad.triggerRight);
}
static void Read() {
LOG_INFO(Input, "GC Adapter Read() thread started");
int payload_size_in;
u8 adapter_payload[37];
while (adapter_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload,
sizeof(adapter_payload), &payload_size_in, 32);
int payload_size = 0;
u8 controller_payload_copy[37];
{
std::lock_guard<std::mutex> lk(s_mutex);
std::copy(std::begin(adapter_payload), std::end(adapter_payload),
std::begin(controller_payload_copy));
payload_size = payload_size_in;
}
GCPadStatus pad[4];
if (payload_size != sizeof(controller_payload_copy) ||
controller_payload_copy[0] != LIBUSB_DT_HID) {
LOG_ERROR(Input, "error reading payload (size: %d, type: %02x)", payload_size,
controller_payload_copy[0]);
} else {
for (int i = 0; i < 4; i++)
pad[i] = CheckStatus(i, controller_payload_copy);
}
for (int port = 0; port < 4; port++) {
if (DeviceConnected(port) && configuring) {
if (pad[port].button != PAD_GET_ORIGIN)
pad_queue[port].Push(pad[port]);
// Accounting for a threshold here because of some controller variance
if (pad[port].stickX > pad[port].MAIN_STICK_CENTER_X + pad[port].THRESHOLD ||
pad[port].stickX < pad[port].MAIN_STICK_CENTER_X - pad[port].THRESHOLD) {
pad[port].axis_which = STICK_X;
pad[port].axis_value = pad[port].stickX;
pad_queue[port].Push(pad[port]);
}
if (pad[port].stickY > pad[port].MAIN_STICK_CENTER_Y + pad[port].THRESHOLD ||
pad[port].stickY < pad[port].MAIN_STICK_CENTER_Y - pad[port].THRESHOLD) {
pad[port].axis_which = STICK_Y;
pad[port].axis_value = pad[port].stickY;
pad_queue[port].Push(pad[port]);
}
if (pad[port].substickX > pad[port].C_STICK_CENTER_X + pad[port].THRESHOLD ||
pad[port].substickX < pad[port].C_STICK_CENTER_X - pad[port].THRESHOLD) {
pad[port].axis_which = SUBSTICK_X;
pad[port].axis_value = pad[port].substickX;
pad_queue[port].Push(pad[port]);
}
if (pad[port].substickY > pad[port].C_STICK_CENTER_Y + pad[port].THRESHOLD ||
pad[port].substickY < pad[port].C_STICK_CENTER_Y - pad[port].THRESHOLD) {
pad[port].axis_which = SUBSTICK_Y;
pad[port].axis_value = pad[port].substickY;
pad_queue[port].Push(pad[port]);
}
}
PadToState(pad[port], state[port]);
}
std::this_thread::yield();
}
}
static void ScanThreadFunc() {
LOG_INFO(Input, "GC Adapter scanning thread started");
while (detect_thread_running) {
if (usb_adapter_handle == nullptr) {
std::lock_guard<std::mutex> lk(initialization_mutex);
Setup();
}
Sleep(500);
}
}
void Init() {
if (usb_adapter_handle != nullptr)
return;
LOG_INFO(Input, "GC Adapter Initialization started");
current_status = NO_ADAPTER_DETECTED;
libusb_init(&libusb_ctx);
StartScanThread();
}
void StartScanThread() {
if (detect_thread_running)
return;
if (!libusb_ctx)
return;
detect_thread_running = true;
detect_thread = std::thread(ScanThreadFunc);
}
void StopScanThread() {
detect_thread.join();
}
static void Setup() {
// Reset the error status in case the adapter gets unplugged
if (current_status < 0)
current_status = NO_ADAPTER_DETECTED;
for (int i = 0; i < 4; i++)
adapter_controllers_status[i] = ControllerTypes::CONTROLLER_NONE;
libusb_device** devs; // pointer to list of connected usb devices
int cnt = libusb_get_device_list(libusb_ctx, &devs); //get the list of devices
for (int i = 0; i < cnt; i++) {
if (CheckDeviceAccess(devs[i])) {
// GC Adapter found, registering it
GetGCEndpoint(devs[i]);
break;
}
}
}
static bool CheckDeviceAccess(libusb_device* device) {
libusb_device_descriptor desc;
int ret = libusb_get_device_descriptor(device, &desc);
if (ret) {
// could not acquire the descriptor, no point in trying to use it.
LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: %d", ret);
return false;
}
if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) {
// This isn<73>t the device we are looking for.
return false;
}
ret = libusb_open(device, &usb_adapter_handle);
if (ret == LIBUSB_ERROR_ACCESS) {
LOG_ERROR(Input,
"Yuzu can not gain access to this device: ID %04X:%04X.",
desc.idVendor, desc.idProduct);
return false;
}
if (ret) {
LOG_ERROR(Input, "libusb_open failed to open device with error = %d", ret);
return false;
}
ret = libusb_kernel_driver_active(usb_adapter_handle, 0);
if (ret == 1) {
ret = libusb_detach_kernel_driver(usb_adapter_handle, 0);
if (ret != 0 && ret != LIBUSB_ERROR_NOT_SUPPORTED)
LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = %d", ret);
}
if (ret != 0 && ret != LIBUSB_ERROR_NOT_SUPPORTED) {
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
ret = libusb_claim_interface(usb_adapter_handle, 0);
if (ret) {
LOG_ERROR(Input, "libusb_claim_interface failed with error = %d", ret);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
return true;
}
static void GetGCEndpoint(libusb_device* device) {
libusb_config_descriptor* config = nullptr;
libusb_get_config_descriptor(device, 0, &config);
for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
const libusb_interface* interfaceContainer = &config->interface[ic];
for (int i = 0; i < interfaceContainer->num_altsetting; i++) {
const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
for (u8 e = 0; e < interface->bNumEndpoints; e++) {
const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN)
input_endpoint = endpoint->bEndpointAddress;
}
}
}
adapter_thread_running = true;
current_status = ADAPTER_DETECTED;
adapter_input_thread = std::thread(Read); // Read input
}
void Shutdown() {
StopScanThread();
Reset();
current_status = NO_ADAPTER_DETECTED;
}
static void Reset() {
std::unique_lock<std::mutex> lock(initialization_mutex, std::defer_lock);
if (!lock.try_lock())
return;
if (current_status != ADAPTER_DETECTED)
return;
if (adapter_thread_running)
adapter_input_thread.join();
for (int i = 0; i < 4; i++)
adapter_controllers_status[i] = ControllerTypes::CONTROLLER_NONE;
current_status = NO_ADAPTER_DETECTED;
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 0);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
}
}
bool DeviceConnected(int port) {
return adapter_controllers_status[port] != ControllerTypes::CONTROLLER_NONE;
}
void ResetDeviceType(int port) {
adapter_controllers_status[port] = ControllerTypes::CONTROLLER_NONE;
}
void BeginConfiguration() {
configuring = true;
}
void EndConfiguration() {
configuring = false;
}
} // end of namespace GCAdapter