citra/externals/tracy/public/client/TracyProfiler.cpp

4531 lines
151 KiB
C++

#ifdef TRACY_ENABLE
#ifdef _WIN32
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <winsock2.h>
# include <windows.h>
# include <tlhelp32.h>
# include <inttypes.h>
# include <intrin.h>
# include "../common/TracyUwp.hpp"
#else
# include <sys/time.h>
# include <sys/param.h>
#endif
#ifdef _GNU_SOURCE
# include <errno.h>
#endif
#ifdef __linux__
# include <dirent.h>
# include <pthread.h>
# include <sys/types.h>
# include <sys/syscall.h>
#endif
#if defined __APPLE__ || defined BSD
# include <sys/types.h>
# include <sys/sysctl.h>
#endif
#if defined __APPLE__
# include "TargetConditionals.h"
# include <mach-o/dyld.h>
#endif
#ifdef __ANDROID__
# include <sys/mman.h>
# include <sys/system_properties.h>
# include <stdio.h>
# include <stdint.h>
# include <algorithm>
# include <vector>
#endif
#ifdef __QNX__
# include <stdint.h>
# include <stdio.h>
# include <string.h>
# include <sys/syspage.h>
# include <sys/stat.h>
#endif
#include <algorithm>
#include <assert.h>
#include <atomic>
#include <chrono>
#include <limits>
#include <new>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <thread>
#include "../common/TracyAlign.hpp"
#include "../common/TracyAlloc.hpp"
#include "../common/TracySocket.hpp"
#include "../common/TracySystem.hpp"
#include "../common/TracyYield.hpp"
#include "../common/tracy_lz4.hpp"
#include "tracy_rpmalloc.hpp"
#include "TracyCallstack.hpp"
#include "TracyDebug.hpp"
#include "TracyDxt1.hpp"
#include "TracyScoped.hpp"
#include "TracyProfiler.hpp"
#include "TracyThread.hpp"
#include "TracyArmCpuTable.hpp"
#include "TracySysTrace.hpp"
#include "../tracy/TracyC.h"
#ifdef TRACY_PORT
# ifndef TRACY_DATA_PORT
# define TRACY_DATA_PORT TRACY_PORT
# endif
# ifndef TRACY_BROADCAST_PORT
# define TRACY_BROADCAST_PORT TRACY_PORT
# endif
#endif
#ifdef __APPLE__
# ifndef TRACY_DELAYED_INIT
# define TRACY_DELAYED_INIT
# endif
#else
# ifdef __GNUC__
# define init_order( val ) __attribute__ ((init_priority(val)))
# else
# define init_order(x)
# endif
#endif
#if defined _WIN32
# include <lmcons.h>
extern "C" typedef LONG (WINAPI *t_RtlGetVersion)( PRTL_OSVERSIONINFOW );
extern "C" typedef BOOL (WINAPI *t_GetLogicalProcessorInformationEx)( LOGICAL_PROCESSOR_RELATIONSHIP, PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX, PDWORD );
#else
# include <unistd.h>
# include <limits.h>
#endif
#if defined __linux__
# include <sys/sysinfo.h>
# include <sys/utsname.h>
#endif
#if !defined _WIN32 && ( defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64 )
# include "TracyCpuid.hpp"
#endif
#if !( ( defined _WIN32 && _WIN32_WINNT >= _WIN32_WINNT_VISTA ) || defined __linux__ )
# include <mutex>
#endif
#ifdef __QNX__
extern char* __progname;
#endif
namespace tracy
{
#ifdef __ANDROID__
// Implementation helpers of EnsureReadable(address).
// This is so far only needed on Android, where it is common for libraries to be mapped
// with only executable, not readable, permissions. Typical example (line from /proc/self/maps):
/*
746b63b000-746b6dc000 --xp 00042000 07:48 35 /apex/com.android.runtime/lib64/bionic/libc.so
*/
// See https://github.com/wolfpld/tracy/issues/125 .
// To work around this, we parse /proc/self/maps and we use mprotect to set read permissions
// on any mappings that contain symbols addresses hit by HandleSymbolCodeQuery.
namespace {
// Holds some information about a single memory mapping.
struct MappingInfo {
// Start of address range. Inclusive.
uintptr_t start_address;
// End of address range. Exclusive, so the mapping is the half-open interval
// [start, end) and its length in bytes is `end - start`. As in /proc/self/maps.
uintptr_t end_address;
// Read/Write/Executable permissions.
bool perm_r, perm_w, perm_x;
};
} // anonymous namespace
// Internal implementation helper for LookUpMapping(address).
//
// Parses /proc/self/maps returning a vector<MappingInfo>.
// /proc/self/maps is assumed to be sorted by ascending address, so the resulting
// vector is sorted by ascending address too.
static std::vector<MappingInfo> ParseMappings()
{
std::vector<MappingInfo> result;
FILE* file = fopen( "/proc/self/maps", "r" );
if( !file ) return result;
char line[1024];
while( fgets( line, sizeof( line ), file ) )
{
uintptr_t start_addr;
uintptr_t end_addr;
#if defined(__LP64__)
if( sscanf( line, "%lx-%lx", &start_addr, &end_addr ) != 2 ) continue;
#else
if (sscanf( line, "%dx-%dx", &start_addr, &end_addr ) != 2 ) continue;
#endif
char* first_space = strchr( line, ' ' );
if( !first_space ) continue;
char* perm = first_space + 1;
char* second_space = strchr( perm, ' ' );
if( !second_space || second_space - perm != 4 ) continue;
result.emplace_back();
auto& mapping = result.back();
mapping.start_address = start_addr;
mapping.end_address = end_addr;
mapping.perm_r = perm[0] == 'r';
mapping.perm_w = perm[1] == 'w';
mapping.perm_x = perm[2] == 'x';
}
fclose( file );
return result;
}
// Internal implementation helper for LookUpMapping(address).
//
// Takes as input an `address` and a known vector `mappings`, assumed to be
// sorted by increasing addresses, as /proc/self/maps seems to be.
// Returns a pointer to the MappingInfo describing the mapping that this
// address belongs to, or nullptr if the address isn't in `mappings`.
static MappingInfo* LookUpMapping(std::vector<MappingInfo>& mappings, uintptr_t address)
{
// Comparison function for std::lower_bound. Returns true if all addresses in `m1`
// are lower than `addr`.
auto Compare = []( const MappingInfo& m1, uintptr_t addr ) {
// '<=' because the address ranges are half-open intervals, [start, end).
return m1.end_address <= addr;
};
auto iter = std::lower_bound( mappings.begin(), mappings.end(), address, Compare );
if( iter == mappings.end() || iter->start_address > address) {
return nullptr;
}
return &*iter;
}
// Internal implementation helper for EnsureReadable(address).
//
// Takes as input an `address` and returns a pointer to a MappingInfo
// describing the mapping that this address belongs to, or nullptr if
// the address isn't in any known mapping.
//
// This function is stateful and not reentrant (assumes to be called from
// only one thread). It holds a vector of mappings parsed from /proc/self/maps.
//
// Attempts to react to mappings changes by re-parsing /proc/self/maps.
static MappingInfo* LookUpMapping(uintptr_t address)
{
// Static state managed by this function. Not constant, we mutate that state as
// we turn some mappings readable. Initially parsed once here, updated as needed below.
static std::vector<MappingInfo> s_mappings = ParseMappings();
MappingInfo* mapping = LookUpMapping( s_mappings, address );
if( mapping ) return mapping;
// This address isn't in any known mapping. Try parsing again, maybe
// mappings changed.
s_mappings = ParseMappings();
return LookUpMapping( s_mappings, address );
}
// Internal implementation helper for EnsureReadable(address).
//
// Attempts to make the specified `mapping` readable if it isn't already.
// Returns true if and only if the mapping is readable.
static bool EnsureReadable( MappingInfo& mapping )
{
if( mapping.perm_r )
{
// The mapping is already readable.
return true;
}
int prot = PROT_READ;
if( mapping.perm_w ) prot |= PROT_WRITE;
if( mapping.perm_x ) prot |= PROT_EXEC;
if( mprotect( reinterpret_cast<void*>( mapping.start_address ),
mapping.end_address - mapping.start_address, prot ) == -1 )
{
// Failed to make the mapping readable. Shouldn't happen, hasn't
// been observed yet. If it happened in practice, we should consider
// adding a bool to MappingInfo to track this to avoid retrying mprotect
// everytime on such mappings.
return false;
}
// The mapping is now readable. Update `mapping` so the next call will be fast.
mapping.perm_r = true;
return true;
}
// Attempts to set the read permission on the entire mapping containing the
// specified address. Returns true if and only if the mapping is now readable.
static bool EnsureReadable( uintptr_t address )
{
MappingInfo* mapping = LookUpMapping(address);
return mapping && EnsureReadable( *mapping );
}
#endif // defined __ANDROID__
#ifndef TRACY_DELAYED_INIT
struct InitTimeWrapper
{
int64_t val;
};
struct ProducerWrapper
{
tracy::moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* ptr;
};
struct ThreadHandleWrapper
{
uint32_t val;
};
#endif
#if defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64
static inline void CpuId( uint32_t* regs, uint32_t leaf )
{
memset(regs, 0, sizeof(uint32_t) * 4);
#if defined _WIN32
__cpuidex( (int*)regs, leaf, 0 );
#else
__get_cpuid( leaf, regs, regs+1, regs+2, regs+3 );
#endif
}
static void InitFailure( const char* msg )
{
#if defined _WIN32
bool hasConsole = false;
bool reopen = false;
const auto attached = AttachConsole( ATTACH_PARENT_PROCESS );
if( attached )
{
hasConsole = true;
reopen = true;
}
else
{
const auto err = GetLastError();
if( err == ERROR_ACCESS_DENIED )
{
hasConsole = true;
}
}
if( hasConsole )
{
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
if( reopen )
{
freopen( "CONOUT$", "w", stderr );
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
}
}
else
{
# ifndef TRACY_UWP
MessageBoxA( nullptr, msg, "Tracy Profiler initialization failure", MB_ICONSTOP );
# endif
}
#else
fprintf( stderr, "Tracy Profiler initialization failure: %s\n", msg );
#endif
exit( 1 );
}
static bool CheckHardwareSupportsInvariantTSC()
{
const char* noCheck = GetEnvVar( "TRACY_NO_INVARIANT_CHECK" );
if( noCheck && noCheck[0] == '1' ) return true;
uint32_t regs[4];
CpuId( regs, 1 );
if( !( regs[3] & ( 1 << 4 ) ) )
{
#if !defined TRACY_TIMER_QPC && !defined TRACY_TIMER_FALLBACK
InitFailure( "CPU doesn't support RDTSC instruction." );
#else
return false;
#endif
}
CpuId( regs, 0x80000007 );
if( regs[3] & ( 1 << 8 ) ) return true;
return false;
}
#if defined TRACY_TIMER_FALLBACK && defined TRACY_HW_TIMER
bool HardwareSupportsInvariantTSC()
{
static bool cachedResult = CheckHardwareSupportsInvariantTSC();
return cachedResult;
}
#endif
static int64_t SetupHwTimer()
{
#if !defined TRACY_TIMER_QPC && !defined TRACY_TIMER_FALLBACK
if( !CheckHardwareSupportsInvariantTSC() )
{
#if defined _WIN32
InitFailure( "CPU doesn't support invariant TSC.\nDefine TRACY_NO_INVARIANT_CHECK=1 to ignore this error, *if you know what you are doing*.\nAlternatively you may rebuild the application with the TRACY_TIMER_QPC or TRACY_TIMER_FALLBACK define to use lower resolution timer." );
#else
InitFailure( "CPU doesn't support invariant TSC.\nDefine TRACY_NO_INVARIANT_CHECK=1 to ignore this error, *if you know what you are doing*.\nAlternatively you may rebuild the application with the TRACY_TIMER_FALLBACK define to use lower resolution timer." );
#endif
}
#endif
return Profiler::GetTime();
}
#else
static int64_t SetupHwTimer()
{
return Profiler::GetTime();
}
#endif
static const char* GetProcessName()
{
const char* processName = "unknown";
#ifdef _WIN32
static char buf[_MAX_PATH];
GetModuleFileNameA( nullptr, buf, _MAX_PATH );
const char* ptr = buf;
while( *ptr != '\0' ) ptr++;
while( ptr > buf && *ptr != '\\' && *ptr != '/' ) ptr--;
if( ptr > buf ) ptr++;
processName = ptr;
#elif defined __ANDROID__
# if __ANDROID_API__ >= 21
auto buf = getprogname();
if( buf ) processName = buf;
# endif
#elif defined __linux__ && defined _GNU_SOURCE
if( program_invocation_short_name ) processName = program_invocation_short_name;
#elif defined __APPLE__ || defined BSD
auto buf = getprogname();
if( buf ) processName = buf;
#elif defined __QNX__
processName = __progname;
#endif
return processName;
}
static const char* GetProcessExecutablePath()
{
#ifdef _WIN32
static char buf[_MAX_PATH];
GetModuleFileNameA( nullptr, buf, _MAX_PATH );
return buf;
#elif defined __ANDROID__
return nullptr;
#elif defined __linux__ && defined _GNU_SOURCE
return program_invocation_name;
#elif defined __APPLE__
static char buf[1024];
uint32_t size = 1024;
_NSGetExecutablePath( buf, &size );
return buf;
#elif defined __DragonFly__
static char buf[1024];
readlink( "/proc/curproc/file", buf, 1024 );
return buf;
#elif defined __FreeBSD__
static char buf[1024];
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
size_t cb = 1024;
sysctl( mib, 4, buf, &cb, nullptr, 0 );
return buf;
#elif defined __NetBSD__
static char buf[1024];
readlink( "/proc/curproc/exe", buf, 1024 );
return buf;
#elif defined __QNX__
static char buf[_PC_PATH_MAX + 1];
_cmdname(buf);
return buf;
#else
return nullptr;
#endif
}
#if defined __linux__ && defined __ARM_ARCH
static uint32_t GetHex( char*& ptr, int skip )
{
uint32_t ret;
ptr += skip;
char* end;
if( ptr[0] == '0' && ptr[1] == 'x' )
{
ptr += 2;
ret = strtol( ptr, &end, 16 );
}
else
{
ret = strtol( ptr, &end, 10 );
}
ptr = end;
return ret;
}
#endif
static const char* GetHostInfo()
{
static char buf[1024];
auto ptr = buf;
#if defined _WIN32
# ifdef TRACY_UWP
auto GetVersion = &::GetVersionEx;
# else
auto GetVersion = (t_RtlGetVersion)GetProcAddress( GetModuleHandleA( "ntdll.dll" ), "RtlGetVersion" );
# endif
if( !GetVersion )
{
# ifdef __MINGW32__
ptr += sprintf( ptr, "OS: Windows (MingW)\n" );
# else
ptr += sprintf( ptr, "OS: Windows\n" );
# endif
}
else
{
RTL_OSVERSIONINFOW ver = { sizeof( RTL_OSVERSIONINFOW ) };
GetVersion( &ver );
# ifdef __MINGW32__
ptr += sprintf( ptr, "OS: Windows %i.%i.%i (MingW)\n", (int)ver.dwMajorVersion, (int)ver.dwMinorVersion, (int)ver.dwBuildNumber );
# else
ptr += sprintf( ptr, "OS: Windows %i.%i.%i\n", ver.dwMajorVersion, ver.dwMinorVersion, ver.dwBuildNumber );
# endif
}
#elif defined __linux__
struct utsname utsName;
uname( &utsName );
# if defined __ANDROID__
ptr += sprintf( ptr, "OS: Linux %s (Android)\n", utsName.release );
# else
ptr += sprintf( ptr, "OS: Linux %s\n", utsName.release );
# endif
#elif defined __APPLE__
# if TARGET_OS_IPHONE == 1
ptr += sprintf( ptr, "OS: Darwin (iOS)\n" );
# elif TARGET_OS_MAC == 1
ptr += sprintf( ptr, "OS: Darwin (OSX)\n" );
# else
ptr += sprintf( ptr, "OS: Darwin (unknown)\n" );
# endif
#elif defined __DragonFly__
ptr += sprintf( ptr, "OS: BSD (DragonFly)\n" );
#elif defined __FreeBSD__
ptr += sprintf( ptr, "OS: BSD (FreeBSD)\n" );
#elif defined __NetBSD__
ptr += sprintf( ptr, "OS: BSD (NetBSD)\n" );
#elif defined __OpenBSD__
ptr += sprintf( ptr, "OS: BSD (OpenBSD)\n" );
#elif defined __QNX__
ptr += sprintf( ptr, "OS: QNX\n" );
#else
ptr += sprintf( ptr, "OS: unknown\n" );
#endif
#if defined _MSC_VER
# if defined __clang__
ptr += sprintf( ptr, "Compiler: MSVC clang-cl %i.%i.%i\n", __clang_major__, __clang_minor__, __clang_patchlevel__ );
# else
ptr += sprintf( ptr, "Compiler: MSVC %i\n", _MSC_VER );
# endif
#elif defined __clang__
ptr += sprintf( ptr, "Compiler: clang %i.%i.%i\n", __clang_major__, __clang_minor__, __clang_patchlevel__ );
#elif defined __GNUC__
ptr += sprintf( ptr, "Compiler: gcc %i.%i.%i\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__ );
#else
ptr += sprintf( ptr, "Compiler: unknown\n" );
#endif
#if defined _WIN32
InitWinSock();
char hostname[512];
gethostname( hostname, 512 );
# ifdef TRACY_UWP
const char* user = "";
# else
DWORD userSz = UNLEN+1;
char user[UNLEN+1];
GetUserNameA( user, &userSz );
# endif
ptr += sprintf( ptr, "User: %s@%s\n", user, hostname );
#else
char hostname[_POSIX_HOST_NAME_MAX]{};
char user[_POSIX_LOGIN_NAME_MAX]{};
gethostname( hostname, _POSIX_HOST_NAME_MAX );
# if defined __ANDROID__
const auto login = getlogin();
if( login )
{
strcpy( user, login );
}
else
{
memcpy( user, "(?)", 4 );
}
# else
getlogin_r( user, _POSIX_LOGIN_NAME_MAX );
# endif
ptr += sprintf( ptr, "User: %s@%s\n", user, hostname );
#endif
#if defined __i386 || defined _M_IX86
ptr += sprintf( ptr, "Arch: x86\n" );
#elif defined __x86_64__ || defined _M_X64
ptr += sprintf( ptr, "Arch: x64\n" );
#elif defined __aarch64__
ptr += sprintf( ptr, "Arch: ARM64\n" );
#elif defined __ARM_ARCH
ptr += sprintf( ptr, "Arch: ARM\n" );
#else
ptr += sprintf( ptr, "Arch: unknown\n" );
#endif
#if defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64
uint32_t regs[4];
char cpuModel[4*4*3+1] = {};
auto modelPtr = cpuModel;
for( uint32_t i=0x80000002; i<0x80000005; ++i )
{
CpuId( regs, i );
memcpy( modelPtr, regs, sizeof( regs ) ); modelPtr += sizeof( regs );
}
ptr += sprintf( ptr, "CPU: %s\n", cpuModel );
#elif defined __linux__ && defined __ARM_ARCH
bool cpuFound = false;
FILE* fcpuinfo = fopen( "/proc/cpuinfo", "rb" );
if( fcpuinfo )
{
enum { BufSize = 4*1024 };
char buf[BufSize];
const auto sz = fread( buf, 1, BufSize, fcpuinfo );
fclose( fcpuinfo );
const auto end = buf + sz;
auto cptr = buf;
uint32_t impl = 0;
uint32_t var = 0;
uint32_t part = 0;
uint32_t rev = 0;
while( end - cptr > 20 )
{
while( end - cptr > 20 && memcmp( cptr, "CPU ", 4 ) != 0 )
{
cptr += 4;
while( end - cptr > 20 && *cptr != '\n' ) cptr++;
cptr++;
}
if( end - cptr <= 20 ) break;
cptr += 4;
if( memcmp( cptr, "implementer\t: ", 14 ) == 0 )
{
if( impl != 0 ) break;
impl = GetHex( cptr, 14 );
}
else if( memcmp( cptr, "variant\t: ", 10 ) == 0 ) var = GetHex( cptr, 10 );
else if( memcmp( cptr, "part\t: ", 7 ) == 0 ) part = GetHex( cptr, 7 );
else if( memcmp( cptr, "revision\t: ", 11 ) == 0 ) rev = GetHex( cptr, 11 );
while( *cptr != '\n' && *cptr != '\0' ) cptr++;
cptr++;
}
if( impl != 0 || var != 0 || part != 0 || rev != 0 )
{
cpuFound = true;
ptr += sprintf( ptr, "CPU: %s%s r%ip%i\n", DecodeArmImplementer( impl ), DecodeArmPart( impl, part ), var, rev );
}
}
if( !cpuFound )
{
ptr += sprintf( ptr, "CPU: unknown\n" );
}
#elif defined __APPLE__ && TARGET_OS_IPHONE == 1
{
size_t sz;
sysctlbyname( "hw.machine", nullptr, &sz, nullptr, 0 );
auto str = (char*)tracy_malloc( sz );
sysctlbyname( "hw.machine", str, &sz, nullptr, 0 );
ptr += sprintf( ptr, "Device: %s\n", DecodeIosDevice( str ) );
tracy_free( str );
}
#else
ptr += sprintf( ptr, "CPU: unknown\n" );
#endif
#ifdef __ANDROID__
char deviceModel[PROP_VALUE_MAX+1];
char deviceManufacturer[PROP_VALUE_MAX+1];
__system_property_get( "ro.product.model", deviceModel );
__system_property_get( "ro.product.manufacturer", deviceManufacturer );
ptr += sprintf( ptr, "Device: %s %s\n", deviceManufacturer, deviceModel );
#endif
ptr += sprintf( ptr, "CPU cores: %i\n", std::thread::hardware_concurrency() );
#if defined _WIN32
MEMORYSTATUSEX statex;
statex.dwLength = sizeof( statex );
GlobalMemoryStatusEx( &statex );
# ifdef _MSC_VER
ptr += sprintf( ptr, "RAM: %I64u MB\n", statex.ullTotalPhys / 1024 / 1024 );
# else
ptr += sprintf( ptr, "RAM: %llu MB\n", statex.ullTotalPhys / 1024 / 1024 );
# endif
#elif defined __linux__
struct sysinfo sysInfo;
sysinfo( &sysInfo );
ptr += sprintf( ptr, "RAM: %lu MB\n", sysInfo.totalram / 1024 / 1024 );
#elif defined __APPLE__
size_t memSize;
size_t sz = sizeof( memSize );
sysctlbyname( "hw.memsize", &memSize, &sz, nullptr, 0 );
ptr += sprintf( ptr, "RAM: %zu MB\n", memSize / 1024 / 1024 );
#elif defined BSD
size_t memSize;
size_t sz = sizeof( memSize );
sysctlbyname( "hw.physmem", &memSize, &sz, nullptr, 0 );
ptr += sprintf( ptr, "RAM: %zu MB\n", memSize / 1024 / 1024 );
#elif defined __QNX__
struct asinfo_entry *entries = SYSPAGE_ENTRY(asinfo);
size_t count = SYSPAGE_ENTRY_SIZE(asinfo) / sizeof(struct asinfo_entry);
char *strings = SYSPAGE_ENTRY(strings)->data;
uint64_t memSize = 0;
size_t i;
for (i = 0; i < count; i++) {
struct asinfo_entry *entry = &entries[i];
if (strcmp(strings + entry->name, "ram") == 0) {
memSize += entry->end - entry->start + 1;
}
}
memSize = memSize / 1024 / 1024;
ptr += sprintf( ptr, "RAM: %llu MB\n", memSize);
#else
ptr += sprintf( ptr, "RAM: unknown\n" );
#endif
return buf;
}
static uint64_t GetPid()
{
#if defined _WIN32
return uint64_t( GetCurrentProcessId() );
#else
return uint64_t( getpid() );
#endif
}
void Profiler::AckServerQuery()
{
QueueItem item;
MemWrite( &item.hdr.type, QueueType::AckServerQueryNoop );
NeedDataSize( QueueDataSize[(int)QueueType::AckServerQueryNoop] );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::AckServerQueryNoop] );
}
void Profiler::AckSymbolCodeNotAvailable()
{
QueueItem item;
MemWrite( &item.hdr.type, QueueType::AckSymbolCodeNotAvailable );
NeedDataSize( QueueDataSize[(int)QueueType::AckSymbolCodeNotAvailable] );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::AckSymbolCodeNotAvailable] );
}
static BroadcastMessage& GetBroadcastMessage( const char* procname, size_t pnsz, int& len, int port )
{
static BroadcastMessage msg;
msg.broadcastVersion = BroadcastVersion;
msg.protocolVersion = ProtocolVersion;
msg.listenPort = port;
msg.pid = GetPid();
memcpy( msg.programName, procname, pnsz );
memset( msg.programName + pnsz, 0, WelcomeMessageProgramNameSize - pnsz );
len = int( offsetof( BroadcastMessage, programName ) + pnsz + 1 );
return msg;
}
#if defined _WIN32 && !defined TRACY_UWP && !defined TRACY_NO_CRASH_HANDLER
static DWORD s_profilerThreadId = 0;
static DWORD s_symbolThreadId = 0;
static char s_crashText[1024];
LONG WINAPI CrashFilter( PEXCEPTION_POINTERS pExp )
{
if( !GetProfiler().IsConnected() ) return EXCEPTION_CONTINUE_SEARCH;
const unsigned ec = pExp->ExceptionRecord->ExceptionCode;
auto msgPtr = s_crashText;
switch( ec )
{
case EXCEPTION_ACCESS_VIOLATION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ACCESS_VIOLATION (0x%x). ", ec );
switch( pExp->ExceptionRecord->ExceptionInformation[0] )
{
case 0:
msgPtr += sprintf( msgPtr, "Read violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
case 1:
msgPtr += sprintf( msgPtr, "Write violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
case 8:
msgPtr += sprintf( msgPtr, "DEP violation at address 0x%" PRIxPTR ".", pExp->ExceptionRecord->ExceptionInformation[1] );
break;
default:
break;
}
break;
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ARRAY_BOUNDS_EXCEEDED (0x%x). ", ec );
break;
case EXCEPTION_DATATYPE_MISALIGNMENT:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_DATATYPE_MISALIGNMENT (0x%x). ", ec );
break;
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_FLT_DIVIDE_BY_ZERO (0x%x). ", ec );
break;
case EXCEPTION_ILLEGAL_INSTRUCTION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_ILLEGAL_INSTRUCTION (0x%x). ", ec );
break;
case EXCEPTION_IN_PAGE_ERROR:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_IN_PAGE_ERROR (0x%x). ", ec );
break;
case EXCEPTION_INT_DIVIDE_BY_ZERO:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_INT_DIVIDE_BY_ZERO (0x%x). ", ec );
break;
case EXCEPTION_PRIV_INSTRUCTION:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_PRIV_INSTRUCTION (0x%x). ", ec );
break;
case EXCEPTION_STACK_OVERFLOW:
msgPtr += sprintf( msgPtr, "Exception EXCEPTION_STACK_OVERFLOW (0x%x). ", ec );
break;
default:
return EXCEPTION_CONTINUE_SEARCH;
}
{
GetProfiler().SendCallstack( 60, "KiUserExceptionDispatcher" );
TracyQueuePrepare( QueueType::CrashReport );
item->crashReport.time = Profiler::GetTime();
item->crashReport.text = (uint64_t)s_crashText;
TracyQueueCommit( crashReportThread );
}
HANDLE h = CreateToolhelp32Snapshot( TH32CS_SNAPTHREAD, 0 );
if( h == INVALID_HANDLE_VALUE ) return EXCEPTION_CONTINUE_SEARCH;
THREADENTRY32 te = { sizeof( te ) };
if( !Thread32First( h, &te ) )
{
CloseHandle( h );
return EXCEPTION_CONTINUE_SEARCH;
}
const auto pid = GetCurrentProcessId();
const auto tid = GetCurrentThreadId();
do
{
if( te.th32OwnerProcessID == pid && te.th32ThreadID != tid && te.th32ThreadID != s_profilerThreadId && te.th32ThreadID != s_symbolThreadId )
{
HANDLE th = OpenThread( THREAD_SUSPEND_RESUME, FALSE, te.th32ThreadID );
if( th != INVALID_HANDLE_VALUE )
{
SuspendThread( th );
CloseHandle( th );
}
}
}
while( Thread32Next( h, &te ) );
CloseHandle( h );
{
TracyLfqPrepare( QueueType::Crash );
TracyLfqCommit;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 500 ) );
GetProfiler().RequestShutdown();
while( !GetProfiler().HasShutdownFinished() ) { std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); };
return EXCEPTION_CONTINUE_SEARCH;
}
#endif
static Profiler* s_instance = nullptr;
static Thread* s_thread;
#ifndef TRACY_NO_FRAME_IMAGE
static Thread* s_compressThread;
#endif
#ifdef TRACY_HAS_CALLSTACK
static Thread* s_symbolThread;
std::atomic<bool> s_symbolThreadGone { false };
#endif
#ifdef TRACY_HAS_SYSTEM_TRACING
static Thread* s_sysTraceThread = nullptr;
#endif
#if defined __linux__ && !defined TRACY_NO_CRASH_HANDLER
# ifndef TRACY_CRASH_SIGNAL
# define TRACY_CRASH_SIGNAL SIGPWR
# endif
static long s_profilerTid = 0;
static long s_symbolTid = 0;
static char s_crashText[1024];
static std::atomic<bool> s_alreadyCrashed( false );
static void ThreadFreezer( int /*signal*/ )
{
for(;;) sleep( 1000 );
}
static inline void HexPrint( char*& ptr, uint64_t val )
{
if( val == 0 )
{
*ptr++ = '0';
return;
}
static const char HexTable[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
char buf[16];
auto bptr = buf;
do
{
*bptr++ = HexTable[val%16];
val /= 16;
}
while( val > 0 );
do
{
*ptr++ = *--bptr;
}
while( bptr != buf );
}
static void CrashHandler( int signal, siginfo_t* info, void* /*ucontext*/ )
{
bool expected = false;
if( !s_alreadyCrashed.compare_exchange_strong( expected, true ) ) ThreadFreezer( signal );
struct sigaction act = {};
act.sa_handler = SIG_DFL;
sigaction( SIGABRT, &act, nullptr );
auto msgPtr = s_crashText;
switch( signal )
{
case SIGILL:
strcpy( msgPtr, "Illegal Instruction.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case ILL_ILLOPC:
strcpy( msgPtr, "Illegal opcode.\n" );
break;
case ILL_ILLOPN:
strcpy( msgPtr, "Illegal operand.\n" );
break;
case ILL_ILLADR:
strcpy( msgPtr, "Illegal addressing mode.\n" );
break;
case ILL_ILLTRP:
strcpy( msgPtr, "Illegal trap.\n" );
break;
case ILL_PRVOPC:
strcpy( msgPtr, "Privileged opcode.\n" );
break;
case ILL_PRVREG:
strcpy( msgPtr, "Privileged register.\n" );
break;
case ILL_COPROC:
strcpy( msgPtr, "Coprocessor error.\n" );
break;
case ILL_BADSTK:
strcpy( msgPtr, "Internal stack error.\n" );
break;
default:
break;
}
break;
case SIGFPE:
strcpy( msgPtr, "Floating-point exception.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case FPE_INTDIV:
strcpy( msgPtr, "Integer divide by zero.\n" );
break;
case FPE_INTOVF:
strcpy( msgPtr, "Integer overflow.\n" );
break;
case FPE_FLTDIV:
strcpy( msgPtr, "Floating-point divide by zero.\n" );
break;
case FPE_FLTOVF:
strcpy( msgPtr, "Floating-point overflow.\n" );
break;
case FPE_FLTUND:
strcpy( msgPtr, "Floating-point underflow.\n" );
break;
case FPE_FLTRES:
strcpy( msgPtr, "Floating-point inexact result.\n" );
break;
case FPE_FLTINV:
strcpy( msgPtr, "Floating-point invalid operation.\n" );
break;
case FPE_FLTSUB:
strcpy( msgPtr, "Subscript out of range.\n" );
break;
default:
break;
}
break;
case SIGSEGV:
strcpy( msgPtr, "Invalid memory reference.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case SEGV_MAPERR:
strcpy( msgPtr, "Address not mapped to object.\n" );
break;
case SEGV_ACCERR:
strcpy( msgPtr, "Invalid permissions for mapped object.\n" );
break;
# ifdef SEGV_BNDERR
case SEGV_BNDERR:
strcpy( msgPtr, "Failed address bound checks.\n" );
break;
# endif
# ifdef SEGV_PKUERR
case SEGV_PKUERR:
strcpy( msgPtr, "Access was denied by memory protection keys.\n" );
break;
# endif
default:
break;
}
break;
case SIGPIPE:
strcpy( msgPtr, "Broken pipe.\n" );
while( *msgPtr ) msgPtr++;
break;
case SIGBUS:
strcpy( msgPtr, "Bus error.\n" );
while( *msgPtr ) msgPtr++;
switch( info->si_code )
{
case BUS_ADRALN:
strcpy( msgPtr, "Invalid address alignment.\n" );
break;
case BUS_ADRERR:
strcpy( msgPtr, "Nonexistent physical address.\n" );
break;
case BUS_OBJERR:
strcpy( msgPtr, "Object-specific hardware error.\n" );
break;
# ifdef BUS_MCEERR_AR
case BUS_MCEERR_AR:
strcpy( msgPtr, "Hardware memory error consumed on a machine check; action required.\n" );
break;
# endif
# ifdef BUS_MCEERR_AO
case BUS_MCEERR_AO:
strcpy( msgPtr, "Hardware memory error detected in process but not consumed; action optional.\n" );
break;
# endif
default:
break;
}
break;
case SIGABRT:
strcpy( msgPtr, "Abort signal from abort().\n" );
break;
default:
abort();
}
while( *msgPtr ) msgPtr++;
if( signal != SIGPIPE )
{
strcpy( msgPtr, "Fault address: 0x" );
while( *msgPtr ) msgPtr++;
HexPrint( msgPtr, uint64_t( info->si_addr ) );
*msgPtr++ = '\n';
}
{
GetProfiler().SendCallstack( 60, "__kernel_rt_sigreturn" );
TracyQueuePrepare( QueueType::CrashReport );
item->crashReport.time = Profiler::GetTime();
item->crashReport.text = (uint64_t)s_crashText;
TracyQueueCommit( crashReportThread );
}
DIR* dp = opendir( "/proc/self/task" );
if( !dp ) abort();
const auto selfTid = syscall( SYS_gettid );
struct dirent* ep;
while( ( ep = readdir( dp ) ) != nullptr )
{
if( ep->d_name[0] == '.' ) continue;
int tid = atoi( ep->d_name );
if( tid != selfTid && tid != s_profilerTid && tid != s_symbolTid )
{
syscall( SYS_tkill, tid, TRACY_CRASH_SIGNAL );
}
}
closedir( dp );
#ifdef TRACY_HAS_CALLSTACK
if( selfTid == s_symbolTid ) s_symbolThreadGone.store( true, std::memory_order_release );
#endif
TracyLfqPrepare( QueueType::Crash );
TracyLfqCommit;
std::this_thread::sleep_for( std::chrono::milliseconds( 500 ) );
GetProfiler().RequestShutdown();
while( !GetProfiler().HasShutdownFinished() ) { std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) ); };
abort();
}
#endif
enum { QueuePrealloc = 256 * 1024 };
TRACY_API int64_t GetFrequencyQpc()
{
#if defined _WIN32
LARGE_INTEGER t;
QueryPerformanceFrequency( &t );
return t.QuadPart;
#else
return 0;
#endif
}
#ifdef TRACY_DELAYED_INIT
struct ThreadNameData;
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue();
struct ProfilerData
{
int64_t initTime = SetupHwTimer();
moodycamel::ConcurrentQueue<QueueItem> queue;
Profiler profiler;
std::atomic<uint32_t> lockCounter { 0 };
std::atomic<uint8_t> gpuCtxCounter { 0 };
std::atomic<ThreadNameData*> threadNameData { nullptr };
};
struct ProducerWrapper
{
ProducerWrapper( ProfilerData& data ) : detail( data.queue ), ptr( data.queue.get_explicit_producer( detail ) ) {}
moodycamel::ProducerToken detail;
tracy::moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* ptr;
};
struct ProfilerThreadData
{
ProfilerThreadData( ProfilerData& data ) : token( data ), gpuCtx( { nullptr } ) {}
ProducerWrapper token;
GpuCtxWrapper gpuCtx;
# ifdef TRACY_ON_DEMAND
LuaZoneState luaZoneState;
# endif
};
std::atomic<int> RpInitDone { 0 };
std::atomic<int> RpInitLock { 0 };
thread_local bool RpThreadInitDone = false;
thread_local bool RpThreadShutdown = false;
# ifdef TRACY_MANUAL_LIFETIME
ProfilerData* s_profilerData = nullptr;
static ProfilerThreadData& GetProfilerThreadData();
static std::atomic<bool> s_isProfilerStarted { false };
TRACY_API void StartupProfiler()
{
s_profilerData = (ProfilerData*)tracy_malloc( sizeof( ProfilerData ) );
new (s_profilerData) ProfilerData();
s_profilerData->profiler.SpawnWorkerThreads();
GetProfilerThreadData().token = ProducerWrapper( *s_profilerData );
s_isProfilerStarted.store( true, std::memory_order_seq_cst );
}
static ProfilerData& GetProfilerData()
{
assert( s_profilerData );
return *s_profilerData;
}
TRACY_API void ShutdownProfiler()
{
s_isProfilerStarted.store( false, std::memory_order_seq_cst );
s_profilerData->~ProfilerData();
tracy_free( s_profilerData );
s_profilerData = nullptr;
rpmalloc_finalize();
RpThreadInitDone = false;
RpInitDone.store( 0, std::memory_order_release );
}
TRACY_API bool IsProfilerStarted()
{
return s_isProfilerStarted.load( std::memory_order_seq_cst );
}
# else
static std::atomic<int> profilerDataLock { 0 };
static std::atomic<ProfilerData*> profilerData { nullptr };
static ProfilerData& GetProfilerData()
{
auto ptr = profilerData.load( std::memory_order_acquire );
if( !ptr )
{
int expected = 0;
while( !profilerDataLock.compare_exchange_weak( expected, 1, std::memory_order_release, std::memory_order_relaxed ) ) { expected = 0; YieldThread(); }
ptr = profilerData.load( std::memory_order_acquire );
if( !ptr )
{
ptr = (ProfilerData*)tracy_malloc( sizeof( ProfilerData ) );
new (ptr) ProfilerData();
profilerData.store( ptr, std::memory_order_release );
}
profilerDataLock.store( 0, std::memory_order_release );
}
return *ptr;
}
# endif
// GCC prior to 8.4 had a bug with function-inline thread_local variables. Versions of glibc beginning with
// 2.18 may attempt to work around this issue, which manifests as a crash while running static destructors
// if this function is compiled into a shared object. Unfortunately, centos7 ships with glibc 2.17. If running
// on old GCC, use the old-fashioned way as a workaround
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85400
#if !defined(__clang__) && defined(__GNUC__) && ((__GNUC__ < 8) || ((__GNUC__ == 8) && (__GNUC_MINOR__ < 4)))
struct ProfilerThreadDataKey
{
public:
ProfilerThreadDataKey()
{
int val = pthread_key_create(&m_key, sDestructor);
static_cast<void>(val); // unused
assert(val == 0);
}
~ProfilerThreadDataKey()
{
int val = pthread_key_delete(m_key);
static_cast<void>(val); // unused
assert(val == 0);
}
ProfilerThreadData& get()
{
void* p = pthread_getspecific(m_key);
if (!p)
{
p = (ProfilerThreadData*)tracy_malloc( sizeof( ProfilerThreadData ) );
new (p) ProfilerThreadData(GetProfilerData());
pthread_setspecific(m_key, p);
}
return *static_cast<ProfilerThreadData*>(p);
}
private:
pthread_key_t m_key;
static void sDestructor(void* p)
{
((ProfilerThreadData*)p)->~ProfilerThreadData();
tracy_free(p);
}
};
static ProfilerThreadData& GetProfilerThreadData()
{
static ProfilerThreadDataKey key;
return key.get();
}
#else
static ProfilerThreadData& GetProfilerThreadData()
{
thread_local ProfilerThreadData data( GetProfilerData() );
return data;
}
#endif
TRACY_API moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* GetToken() { return GetProfilerThreadData().token.ptr; }
TRACY_API Profiler& GetProfiler() { return GetProfilerData().profiler; }
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue() { return GetProfilerData().queue; }
TRACY_API int64_t GetInitTime() { return GetProfilerData().initTime; }
TRACY_API std::atomic<uint32_t>& GetLockCounter() { return GetProfilerData().lockCounter; }
TRACY_API std::atomic<uint8_t>& GetGpuCtxCounter() { return GetProfilerData().gpuCtxCounter; }
TRACY_API GpuCtxWrapper& GetGpuCtx() { return GetProfilerThreadData().gpuCtx; }
TRACY_API uint32_t GetThreadHandle() { return detail::GetThreadHandleImpl(); }
std::atomic<ThreadNameData*>& GetThreadNameData() { return GetProfilerData().threadNameData; }
# ifdef TRACY_ON_DEMAND
TRACY_API LuaZoneState& GetLuaZoneState() { return GetProfilerThreadData().luaZoneState; }
# endif
# ifndef TRACY_MANUAL_LIFETIME
namespace
{
const auto& __profiler_init = GetProfiler();
}
# endif
#else
// MSVC static initialization order solution. gcc/clang uses init_order() to avoid all this.
// 1a. But s_queue is needed for initialization of variables in point 2.
extern moodycamel::ConcurrentQueue<QueueItem> s_queue;
// 2. If these variables would be in the .CRT$XCB section, they would be initialized only in main thread.
thread_local moodycamel::ProducerToken init_order(107) s_token_detail( s_queue );
thread_local ProducerWrapper init_order(108) s_token { s_queue.get_explicit_producer( s_token_detail ) };
thread_local ThreadHandleWrapper init_order(104) s_threadHandle { detail::GetThreadHandleImpl() };
# ifdef _MSC_VER
// 1. Initialize these static variables before all other variables.
# pragma warning( disable : 4075 )
# pragma init_seg( ".CRT$XCB" )
# endif
static InitTimeWrapper init_order(101) s_initTime { SetupHwTimer() };
std::atomic<int> init_order(102) RpInitDone( 0 );
std::atomic<int> init_order(102) RpInitLock( 0 );
thread_local bool RpThreadInitDone = false;
thread_local bool RpThreadShutdown = false;
moodycamel::ConcurrentQueue<QueueItem> init_order(103) s_queue( QueuePrealloc );
std::atomic<uint32_t> init_order(104) s_lockCounter( 0 );
std::atomic<uint8_t> init_order(104) s_gpuCtxCounter( 0 );
thread_local GpuCtxWrapper init_order(104) s_gpuCtx { nullptr };
struct ThreadNameData;
static std::atomic<ThreadNameData*> init_order(104) s_threadNameDataInstance( nullptr );
std::atomic<ThreadNameData*>& s_threadNameData = s_threadNameDataInstance;
# ifdef TRACY_ON_DEMAND
thread_local LuaZoneState init_order(104) s_luaZoneState { 0, false };
# endif
static Profiler init_order(105) s_profiler;
TRACY_API moodycamel::ConcurrentQueue<QueueItem>::ExplicitProducer* GetToken() { return s_token.ptr; }
TRACY_API Profiler& GetProfiler() { return s_profiler; }
TRACY_API moodycamel::ConcurrentQueue<QueueItem>& GetQueue() { return s_queue; }
TRACY_API int64_t GetInitTime() { return s_initTime.val; }
TRACY_API std::atomic<uint32_t>& GetLockCounter() { return s_lockCounter; }
TRACY_API std::atomic<uint8_t>& GetGpuCtxCounter() { return s_gpuCtxCounter; }
TRACY_API GpuCtxWrapper& GetGpuCtx() { return s_gpuCtx; }
TRACY_API uint32_t GetThreadHandle() { return s_threadHandle.val; }
std::atomic<ThreadNameData*>& GetThreadNameData() { return s_threadNameData; }
# ifdef TRACY_ON_DEMAND
TRACY_API LuaZoneState& GetLuaZoneState() { return s_luaZoneState; }
# endif
#endif
TRACY_API bool ProfilerAvailable() { return s_instance != nullptr; }
TRACY_API bool ProfilerAllocatorAvailable() { return !RpThreadShutdown; }
Profiler::Profiler()
: m_timeBegin( 0 )
, m_mainThread( detail::GetThreadHandleImpl() )
, m_epoch( std::chrono::duration_cast<std::chrono::seconds>( std::chrono::system_clock::now().time_since_epoch() ).count() )
, m_shutdown( false )
, m_shutdownManual( false )
, m_shutdownFinished( false )
, m_sock( nullptr )
, m_broadcast( nullptr )
, m_noExit( false )
, m_userPort( 0 )
, m_zoneId( 1 )
, m_samplingPeriod( 0 )
, m_stream( LZ4_createStream() )
, m_buffer( (char*)tracy_malloc( TargetFrameSize*3 ) )
, m_bufferOffset( 0 )
, m_bufferStart( 0 )
, m_lz4Buf( (char*)tracy_malloc( LZ4Size + sizeof( lz4sz_t ) ) )
, m_serialQueue( 1024*1024 )
, m_serialDequeue( 1024*1024 )
#ifndef TRACY_NO_FRAME_IMAGE
, m_fiQueue( 16 )
, m_fiDequeue( 16 )
#endif
, m_symbolQueue( 8*1024 )
, m_frameCount( 0 )
, m_isConnected( false )
#ifdef TRACY_ON_DEMAND
, m_connectionId( 0 )
, m_deferredQueue( 64*1024 )
#endif
, m_paramCallback( nullptr )
, m_sourceCallback( nullptr )
, m_queryImage( nullptr )
, m_queryData( nullptr )
, m_crashHandlerInstalled( false )
, m_programName( nullptr )
{
assert( !s_instance );
s_instance = this;
#ifndef TRACY_DELAYED_INIT
# ifdef _MSC_VER
// 3. But these variables need to be initialized in main thread within the .CRT$XCB section. Do it here.
s_token_detail = moodycamel::ProducerToken( s_queue );
s_token = ProducerWrapper { s_queue.get_explicit_producer( s_token_detail ) };
s_threadHandle = ThreadHandleWrapper { m_mainThread };
# endif
#endif
CalibrateTimer();
CalibrateDelay();
ReportTopology();
#ifndef TRACY_NO_EXIT
const char* noExitEnv = GetEnvVar( "TRACY_NO_EXIT" );
if( noExitEnv && noExitEnv[0] == '1' )
{
m_noExit = true;
}
#endif
const char* userPort = GetEnvVar( "TRACY_PORT" );
if( userPort )
{
m_userPort = atoi( userPort );
}
#if !defined(TRACY_DELAYED_INIT) || !defined(TRACY_MANUAL_LIFETIME)
SpawnWorkerThreads();
#endif
}
void Profiler::InstallCrashHandler()
{
#if defined __linux__ && !defined TRACY_NO_CRASH_HANDLER
struct sigaction threadFreezer = {};
threadFreezer.sa_handler = ThreadFreezer;
sigaction( TRACY_CRASH_SIGNAL, &threadFreezer, &m_prevSignal.pwr );
struct sigaction crashHandler = {};
crashHandler.sa_sigaction = CrashHandler;
crashHandler.sa_flags = SA_SIGINFO;
sigaction( SIGILL, &crashHandler, &m_prevSignal.ill );
sigaction( SIGFPE, &crashHandler, &m_prevSignal.fpe );
sigaction( SIGSEGV, &crashHandler, &m_prevSignal.segv );
sigaction( SIGPIPE, &crashHandler, &m_prevSignal.pipe );
sigaction( SIGBUS, &crashHandler, &m_prevSignal.bus );
sigaction( SIGABRT, &crashHandler, &m_prevSignal.abrt );
#endif
#if defined _WIN32 && !defined TRACY_UWP && !defined TRACY_NO_CRASH_HANDLER
m_exceptionHandler = AddVectoredExceptionHandler( 1, CrashFilter );
#endif
#ifndef TRACY_NO_CRASH_HANDLER
m_crashHandlerInstalled = true;
#endif
}
void Profiler::RemoveCrashHandler()
{
#if defined _WIN32 && !defined TRACY_UWP
if( m_crashHandlerInstalled ) RemoveVectoredExceptionHandler( m_exceptionHandler );
#endif
#if defined __linux__ && !defined TRACY_NO_CRASH_HANDLER
if( m_crashHandlerInstalled )
{
sigaction( TRACY_CRASH_SIGNAL, &m_prevSignal.pwr, nullptr );
sigaction( SIGILL, &m_prevSignal.ill, nullptr );
sigaction( SIGFPE, &m_prevSignal.fpe, nullptr );
sigaction( SIGSEGV, &m_prevSignal.segv, nullptr );
sigaction( SIGPIPE, &m_prevSignal.pipe, nullptr );
sigaction( SIGBUS, &m_prevSignal.bus, nullptr );
sigaction( SIGABRT, &m_prevSignal.abrt, nullptr );
}
#endif
m_crashHandlerInstalled = false;
}
void Profiler::SpawnWorkerThreads()
{
#ifdef TRACY_HAS_SYSTEM_TRACING
// use TRACY_NO_SYS_TRACE=1 to force disabling sys tracing (even if available in the underlying system)
// as it can have significant impact on the size of the traces
const char* noSysTrace = GetEnvVar( "TRACY_NO_SYS_TRACE" );
const bool disableSystrace = (noSysTrace && noSysTrace[0] == '1');
if( disableSystrace )
{
TracyDebug("TRACY: Sys Trace was disabled by 'TRACY_NO_SYS_TRACE=1'\n");
}
else if( SysTraceStart( m_samplingPeriod ) )
{
s_sysTraceThread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_sysTraceThread) Thread( SysTraceWorker, nullptr );
std::this_thread::sleep_for( std::chrono::milliseconds( 1 ) );
}
#endif
s_thread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_thread) Thread( LaunchWorker, this );
#ifndef TRACY_NO_FRAME_IMAGE
s_compressThread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_compressThread) Thread( LaunchCompressWorker, this );
#endif
#ifdef TRACY_HAS_CALLSTACK
s_symbolThread = (Thread*)tracy_malloc( sizeof( Thread ) );
new(s_symbolThread) Thread( LaunchSymbolWorker, this );
#endif
#if defined _WIN32 && !defined TRACY_UWP && !defined TRACY_NO_CRASH_HANDLER
s_profilerThreadId = GetThreadId( s_thread->Handle() );
# ifdef TRACY_HAS_CALLSTACK
s_symbolThreadId = GetThreadId( s_symbolThread->Handle() );
# endif
#endif
#ifdef TRACY_HAS_CALLSTACK
InitCallstackCritical();
#endif
m_timeBegin.store( GetTime(), std::memory_order_relaxed );
}
Profiler::~Profiler()
{
m_shutdown.store( true, std::memory_order_relaxed );
RemoveCrashHandler();
#ifdef TRACY_HAS_SYSTEM_TRACING
if( s_sysTraceThread )
{
SysTraceStop();
s_sysTraceThread->~Thread();
tracy_free( s_sysTraceThread );
}
#endif
#ifdef TRACY_HAS_CALLSTACK
s_symbolThread->~Thread();
tracy_free( s_symbolThread );
#endif
#ifndef TRACY_NO_FRAME_IMAGE
s_compressThread->~Thread();
tracy_free( s_compressThread );
#endif
s_thread->~Thread();
tracy_free( s_thread );
#ifdef TRACY_HAS_CALLSTACK
EndCallstack();
#endif
tracy_free( m_lz4Buf );
tracy_free( m_buffer );
LZ4_freeStream( (LZ4_stream_t*)m_stream );
if( m_sock )
{
m_sock->~Socket();
tracy_free( m_sock );
}
if( m_broadcast )
{
m_broadcast->~UdpBroadcast();
tracy_free( m_broadcast );
}
assert( s_instance );
s_instance = nullptr;
}
bool Profiler::ShouldExit()
{
return s_instance->m_shutdown.load( std::memory_order_relaxed );
}
void Profiler::Worker()
{
#if defined __linux__ && !defined TRACY_NO_CRASH_HANDLER
s_profilerTid = syscall( SYS_gettid );
#endif
ThreadExitHandler threadExitHandler;
SetThreadName( "Tracy Profiler" );
#ifdef TRACY_DATA_PORT
const bool dataPortSearch = false;
auto dataPort = m_userPort != 0 ? m_userPort : TRACY_DATA_PORT;
#else
const bool dataPortSearch = m_userPort == 0;
auto dataPort = m_userPort != 0 ? m_userPort : 8086;
#endif
#ifdef TRACY_BROADCAST_PORT
const auto broadcastPort = TRACY_BROADCAST_PORT;
#else
const auto broadcastPort = 8086;
#endif
while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
#ifdef TRACY_USE_RPMALLOC
rpmalloc_thread_initialize();
#endif
m_exectime = 0;
const auto execname = GetProcessExecutablePath();
if( execname )
{
struct stat st;
if( stat( execname, &st ) == 0 )
{
m_exectime = (uint64_t)st.st_mtime;
}
}
const auto procname = GetProcessName();
const auto pnsz = std::min<size_t>( strlen( procname ), WelcomeMessageProgramNameSize - 1 );
const auto hostinfo = GetHostInfo();
const auto hisz = std::min<size_t>( strlen( hostinfo ), WelcomeMessageHostInfoSize - 1 );
const uint64_t pid = GetPid();
uint8_t flags = 0;
#ifdef TRACY_ON_DEMAND
flags |= WelcomeFlag::OnDemand;
#endif
#ifdef __APPLE__
flags |= WelcomeFlag::IsApple;
#endif
#ifndef TRACY_NO_CODE_TRANSFER
flags |= WelcomeFlag::CodeTransfer;
#endif
#ifdef _WIN32
flags |= WelcomeFlag::CombineSamples;
# ifndef TRACY_NO_CONTEXT_SWITCH
flags |= WelcomeFlag::IdentifySamples;
# endif
#endif
#if defined __i386 || defined _M_IX86
uint8_t cpuArch = CpuArchX86;
#elif defined __x86_64__ || defined _M_X64
uint8_t cpuArch = CpuArchX64;
#elif defined __aarch64__
uint8_t cpuArch = CpuArchArm64;
#elif defined __ARM_ARCH
uint8_t cpuArch = CpuArchArm32;
#else
uint8_t cpuArch = CpuArchUnknown;
#endif
#if defined __i386 || defined _M_IX86 || defined __x86_64__ || defined _M_X64
uint32_t regs[4];
char manufacturer[12];
CpuId( regs, 0 );
memcpy( manufacturer, regs+1, 4 );
memcpy( manufacturer+4, regs+3, 4 );
memcpy( manufacturer+8, regs+2, 4 );
CpuId( regs, 1 );
uint32_t cpuId = ( regs[0] & 0xFFF ) | ( ( regs[0] & 0xFFF0000 ) >> 4 );
#else
const char manufacturer[12] = {};
uint32_t cpuId = 0;
#endif
WelcomeMessage welcome;
MemWrite( &welcome.timerMul, m_timerMul );
MemWrite( &welcome.initBegin, GetInitTime() );
MemWrite( &welcome.initEnd, m_timeBegin.load( std::memory_order_relaxed ) );
MemWrite( &welcome.delay, m_delay );
MemWrite( &welcome.resolution, m_resolution );
MemWrite( &welcome.epoch, m_epoch );
MemWrite( &welcome.exectime, m_exectime );
MemWrite( &welcome.pid, pid );
MemWrite( &welcome.samplingPeriod, m_samplingPeriod );
MemWrite( &welcome.flags, flags );
MemWrite( &welcome.cpuArch, cpuArch );
memcpy( welcome.cpuManufacturer, manufacturer, 12 );
MemWrite( &welcome.cpuId, cpuId );
memcpy( welcome.programName, procname, pnsz );
memset( welcome.programName + pnsz, 0, WelcomeMessageProgramNameSize - pnsz );
memcpy( welcome.hostInfo, hostinfo, hisz );
memset( welcome.hostInfo + hisz, 0, WelcomeMessageHostInfoSize - hisz );
moodycamel::ConsumerToken token( GetQueue() );
ListenSocket listen;
bool isListening = false;
if( !dataPortSearch )
{
isListening = listen.Listen( dataPort, 4 );
}
else
{
for( uint32_t i=0; i<20; i++ )
{
if( listen.Listen( dataPort+i, 4 ) )
{
dataPort += i;
isListening = true;
break;
}
}
}
if( !isListening )
{
for(;;)
{
if( ShouldExit() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
ClearQueues( token );
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
#ifndef TRACY_NO_BROADCAST
m_broadcast = (UdpBroadcast*)tracy_malloc( sizeof( UdpBroadcast ) );
new(m_broadcast) UdpBroadcast();
# ifdef TRACY_ONLY_LOCALHOST
const char* addr = "127.255.255.255";
# elif defined TRACY_CLIENT_ADDRESS
const char* addr = TRACY_CLIENT_ADDRESS;
# elif defined __QNX__
// global broadcast address of 255.255.255.255 is not well-supported by QNX,
// use the interface broadcast address instead, e.g. "const char* addr = 192.168.1.255;"
# error Need to specify TRACY_CLIENT_ADDRESS for a QNX target.
# else
const char* addr = "255.255.255.255";
# endif
if( !m_broadcast->Open( addr, broadcastPort ) )
{
m_broadcast->~UdpBroadcast();
tracy_free( m_broadcast );
m_broadcast = nullptr;
}
#endif
int broadcastLen = 0;
auto& broadcastMsg = GetBroadcastMessage( procname, pnsz, broadcastLen, dataPort );
uint64_t lastBroadcast = 0;
// Connections loop.
// Each iteration of the loop handles whole connection. Multiple iterations will only
// happen in the on-demand mode or when handshake fails.
for(;;)
{
// Wait for incoming connection
for(;;)
{
#ifndef TRACY_NO_EXIT
if( !m_noExit && ShouldExit() )
{
if( m_broadcast )
{
broadcastMsg.activeTime = -1;
m_broadcast->Send( broadcastPort, &broadcastMsg, broadcastLen );
}
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
#endif
m_sock = listen.Accept();
if( m_sock ) break;
#ifndef TRACY_ON_DEMAND
ProcessSysTime();
# ifdef TRACY_HAS_SYSPOWER
m_sysPower.Tick();
# endif
#endif
if( m_broadcast )
{
const auto t = std::chrono::high_resolution_clock::now().time_since_epoch().count();
if( t - lastBroadcast > 3000000000 ) // 3s
{
m_programNameLock.lock();
if( m_programName )
{
broadcastMsg = GetBroadcastMessage( m_programName, strlen( m_programName ), broadcastLen, dataPort );
m_programName = nullptr;
}
m_programNameLock.unlock();
lastBroadcast = t;
const auto ts = std::chrono::duration_cast<std::chrono::seconds>( std::chrono::system_clock::now().time_since_epoch() ).count();
broadcastMsg.activeTime = int32_t( ts - m_epoch );
assert( broadcastMsg.activeTime >= 0 );
m_broadcast->Send( broadcastPort, &broadcastMsg, broadcastLen );
}
}
}
if( m_broadcast )
{
lastBroadcast = 0;
broadcastMsg.activeTime = -1;
m_broadcast->Send( broadcastPort, &broadcastMsg, broadcastLen );
}
// Handshake
{
char shibboleth[HandshakeShibbolethSize];
auto res = m_sock->ReadRaw( shibboleth, HandshakeShibbolethSize, 2000 );
if( !res || memcmp( shibboleth, HandshakeShibboleth, HandshakeShibbolethSize ) != 0 )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
uint32_t protocolVersion;
res = m_sock->ReadRaw( &protocolVersion, sizeof( protocolVersion ), 2000 );
if( !res )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
if( protocolVersion != ProtocolVersion )
{
HandshakeStatus status = HandshakeProtocolMismatch;
m_sock->Send( &status, sizeof( status ) );
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
}
#ifdef TRACY_ON_DEMAND
const auto currentTime = GetTime();
ClearQueues( token );
m_connectionId.fetch_add( 1, std::memory_order_release );
#endif
m_isConnected.store( true, std::memory_order_release );
InstallCrashHandler();
HandshakeStatus handshake = HandshakeWelcome;
m_sock->Send( &handshake, sizeof( handshake ) );
LZ4_resetStream( (LZ4_stream_t*)m_stream );
m_sock->Send( &welcome, sizeof( welcome ) );
m_threadCtx = 0;
m_refTimeSerial = 0;
m_refTimeCtx = 0;
m_refTimeGpu = 0;
#ifdef TRACY_ON_DEMAND
OnDemandPayloadMessage onDemand;
onDemand.frames = m_frameCount.load( std::memory_order_relaxed );
onDemand.currentTime = currentTime;
m_sock->Send( &onDemand, sizeof( onDemand ) );
m_deferredLock.lock();
for( auto& item : m_deferredQueue )
{
uint64_t ptr;
uint16_t size;
const auto idx = MemRead<uint8_t>( &item.hdr.idx );
switch( (QueueType)idx )
{
case QueueType::MessageAppInfo:
ptr = MemRead<uint64_t>( &item.messageFat.text );
size = MemRead<uint16_t>( &item.messageFat.size );
SendSingleString( (const char*)ptr, size );
break;
case QueueType::LockName:
ptr = MemRead<uint64_t>( &item.lockNameFat.name );
size = MemRead<uint16_t>( &item.lockNameFat.size );
SendSingleString( (const char*)ptr, size );
break;
case QueueType::GpuContextName:
ptr = MemRead<uint64_t>( &item.gpuContextNameFat.ptr );
size = MemRead<uint16_t>( &item.gpuContextNameFat.size );
SendSingleString( (const char*)ptr, size );
break;
default:
break;
}
AppendData( &item, QueueDataSize[idx] );
}
m_deferredLock.unlock();
#endif
// Main communications loop
int keepAlive = 0;
for(;;)
{
ProcessSysTime();
#ifdef TRACY_HAS_SYSPOWER
m_sysPower.Tick();
#endif
const auto status = Dequeue( token );
const auto serialStatus = DequeueSerial();
if( status == DequeueStatus::ConnectionLost || serialStatus == DequeueStatus::ConnectionLost )
{
break;
}
else if( status == DequeueStatus::QueueEmpty && serialStatus == DequeueStatus::QueueEmpty )
{
if( ShouldExit() ) break;
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) break;
}
if( keepAlive == 500 )
{
QueueItem ka;
ka.hdr.type = QueueType::KeepAlive;
AppendData( &ka, QueueDataSize[ka.hdr.idx] );
if( !CommitData() ) break;
keepAlive = 0;
}
else if( !m_sock->HasData() )
{
keepAlive++;
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
else
{
keepAlive = 0;
}
bool connActive = true;
while( m_sock->HasData() )
{
connActive = HandleServerQuery();
if( !connActive ) break;
}
if( !connActive ) break;
}
if( ShouldExit() ) break;
m_isConnected.store( false, std::memory_order_release );
RemoveCrashHandler();
#ifdef TRACY_ON_DEMAND
m_bufferOffset = 0;
m_bufferStart = 0;
#endif
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
#ifndef TRACY_ON_DEMAND
// Client is no longer available here. Accept incoming connections, but reject handshake.
for(;;)
{
if( ShouldExit() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
ClearQueues( token );
m_sock = listen.Accept();
if( m_sock )
{
char shibboleth[HandshakeShibbolethSize];
auto res = m_sock->ReadRaw( shibboleth, HandshakeShibbolethSize, 1000 );
if( !res || memcmp( shibboleth, HandshakeShibboleth, HandshakeShibbolethSize ) != 0 )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
uint32_t protocolVersion;
res = m_sock->ReadRaw( &protocolVersion, sizeof( protocolVersion ), 1000 );
if( !res )
{
m_sock->~Socket();
tracy_free( m_sock );
m_sock = nullptr;
continue;
}
HandshakeStatus status = HandshakeNotAvailable;
m_sock->Send( &status, sizeof( status ) );
m_sock->~Socket();
tracy_free( m_sock );
}
}
#endif
}
// End of connections loop
// Wait for symbols thread to terminate. Symbol resolution will continue in this thread.
#ifdef TRACY_HAS_CALLSTACK
while( s_symbolThreadGone.load() == false ) { YieldThread(); }
#endif
// Client is exiting. Send items remaining in queues.
for(;;)
{
const auto status = Dequeue( token );
const auto serialStatus = DequeueSerial();
if( status == DequeueStatus::ConnectionLost || serialStatus == DequeueStatus::ConnectionLost )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
else if( status == DequeueStatus::QueueEmpty && serialStatus == DequeueStatus::QueueEmpty )
{
if( m_bufferOffset != m_bufferStart ) CommitData();
break;
}
while( m_sock->HasData() )
{
if( !HandleServerQuery() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
#ifdef TRACY_HAS_CALLSTACK
for(;;)
{
auto si = m_symbolQueue.front();
if( !si ) break;
HandleSymbolQueueItem( *si );
m_symbolQueue.pop();
}
#endif
}
// Send client termination notice to the server
QueueItem terminate;
MemWrite( &terminate.hdr.type, QueueType::Terminate );
if( !SendData( (const char*)&terminate, 1 ) )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
// Handle remaining server queries
for(;;)
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
#ifdef TRACY_HAS_CALLSTACK
for(;;)
{
auto si = m_symbolQueue.front();
if( !si ) break;
HandleSymbolQueueItem( *si );
m_symbolQueue.pop();
}
#endif
const auto status = Dequeue( token );
const auto serialStatus = DequeueSerial();
if( status == DequeueStatus::ConnectionLost || serialStatus == DequeueStatus::ConnectionLost )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() )
{
m_shutdownFinished.store( true, std::memory_order_relaxed );
return;
}
}
}
}
#ifndef TRACY_NO_FRAME_IMAGE
void Profiler::CompressWorker()
{
ThreadExitHandler threadExitHandler;
SetThreadName( "Tracy DXT1" );
while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
#ifdef TRACY_USE_RPMALLOC
rpmalloc_thread_initialize();
#endif
for(;;)
{
const auto shouldExit = ShouldExit();
{
bool lockHeld = true;
while( !m_fiLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
if( !m_fiQueue.empty() ) m_fiQueue.swap( m_fiDequeue );
if( lockHeld )
{
m_fiLock.unlock();
}
}
const auto sz = m_fiDequeue.size();
if( sz > 0 )
{
auto fi = m_fiDequeue.data();
auto end = fi + sz;
while( fi != end )
{
const auto w = fi->w;
const auto h = fi->h;
const auto csz = size_t( w * h / 2 );
auto etc1buf = (char*)tracy_malloc( csz );
CompressImageDxt1( (const char*)fi->image, etc1buf, w, h );
tracy_free( fi->image );
TracyLfqPrepare( QueueType::FrameImage );
MemWrite( &item->frameImageFat.image, (uint64_t)etc1buf );
MemWrite( &item->frameImageFat.frame, fi->frame );
MemWrite( &item->frameImageFat.w, w );
MemWrite( &item->frameImageFat.h, h );
uint8_t flip = fi->flip;
MemWrite( &item->frameImageFat.flip, flip );
TracyLfqCommit;
fi++;
}
m_fiDequeue.clear();
}
else
{
std::this_thread::sleep_for( std::chrono::milliseconds( 20 ) );
}
if( shouldExit )
{
return;
}
}
}
#endif
static void FreeAssociatedMemory( const QueueItem& item )
{
if( item.hdr.idx >= (int)QueueType::Terminate ) return;
uint64_t ptr;
switch( item.hdr.type )
{
case QueueType::ZoneText:
case QueueType::ZoneName:
ptr = MemRead<uint64_t>( &item.zoneTextFat.text );
tracy_free( (void*)ptr );
break;
case QueueType::MessageColor:
case QueueType::MessageColorCallstack:
ptr = MemRead<uint64_t>( &item.messageColorFat.text );
tracy_free( (void*)ptr );
break;
case QueueType::Message:
case QueueType::MessageCallstack:
#ifndef TRACY_ON_DEMAND
case QueueType::MessageAppInfo:
#endif
ptr = MemRead<uint64_t>( &item.messageFat.text );
tracy_free( (void*)ptr );
break;
case QueueType::ZoneBeginAllocSrcLoc:
case QueueType::ZoneBeginAllocSrcLocCallstack:
ptr = MemRead<uint64_t>( &item.zoneBegin.srcloc );
tracy_free( (void*)ptr );
break;
case QueueType::GpuZoneBeginAllocSrcLoc:
case QueueType::GpuZoneBeginAllocSrcLocCallstack:
case QueueType::GpuZoneBeginAllocSrcLocSerial:
case QueueType::GpuZoneBeginAllocSrcLocCallstackSerial:
ptr = MemRead<uint64_t>( &item.gpuZoneBegin.srcloc );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackSerial:
case QueueType::Callstack:
ptr = MemRead<uint64_t>( &item.callstackFat.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackAlloc:
ptr = MemRead<uint64_t>( &item.callstackAllocFat.nativePtr );
tracy_free( (void*)ptr );
ptr = MemRead<uint64_t>( &item.callstackAllocFat.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::CallstackSample:
case QueueType::CallstackSampleContextSwitch:
ptr = MemRead<uint64_t>( &item.callstackSampleFat.ptr );
tracy_free( (void*)ptr );
break;
case QueueType::FrameImage:
ptr = MemRead<uint64_t>( &item.frameImageFat.image );
tracy_free( (void*)ptr );
break;
#ifdef TRACY_HAS_CALLSTACK
case QueueType::CallstackFrameSize:
{
InitRpmalloc();
auto size = MemRead<uint8_t>( &item.callstackFrameSizeFat.size );
auto data = (const CallstackEntry*)MemRead<uint64_t>( &item.callstackFrameSizeFat.data );
for( uint8_t i=0; i<size; i++ )
{
const auto& frame = data[i];
tracy_free_fast( (void*)frame.name );
tracy_free_fast( (void*)frame.file );
}
tracy_free_fast( (void*)data );
break;
}
case QueueType::SymbolInformation:
{
uint8_t needFree = MemRead<uint8_t>( &item.symbolInformationFat.needFree );
if( needFree )
{
ptr = MemRead<uint64_t>( &item.symbolInformationFat.fileString );
tracy_free( (void*)ptr );
}
break;
}
case QueueType::SymbolCodeMetadata:
ptr = MemRead<uint64_t>( &item.symbolCodeMetadata.ptr );
tracy_free( (void*)ptr );
break;
#endif
#ifndef TRACY_ON_DEMAND
case QueueType::LockName:
ptr = MemRead<uint64_t>( &item.lockNameFat.name );
tracy_free( (void*)ptr );
break;
case QueueType::GpuContextName:
ptr = MemRead<uint64_t>( &item.gpuContextNameFat.ptr );
tracy_free( (void*)ptr );
break;
#endif
#ifdef TRACY_ON_DEMAND
case QueueType::MessageAppInfo:
case QueueType::GpuContextName:
// Don't free memory associated with deferred messages.
break;
#endif
#ifdef TRACY_HAS_SYSTEM_TRACING
case QueueType::ExternalNameMetadata:
ptr = MemRead<uint64_t>( &item.externalNameMetadata.name );
tracy_free( (void*)ptr );
ptr = MemRead<uint64_t>( &item.externalNameMetadata.threadName );
tracy_free_fast( (void*)ptr );
break;
#endif
case QueueType::SourceCodeMetadata:
ptr = MemRead<uint64_t>( &item.sourceCodeMetadata.ptr );
tracy_free( (void*)ptr );
break;
default:
break;
}
}
void Profiler::ClearQueues( moodycamel::ConsumerToken& token )
{
for(;;)
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [](const uint64_t&){}, []( QueueItem* item, size_t sz ) { assert( sz > 0 ); while( sz-- > 0 ) FreeAssociatedMemory( *item++ ); } );
if( sz == 0 ) break;
}
ClearSerial();
}
void Profiler::ClearSerial()
{
bool lockHeld = true;
while( !m_serialLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
for( auto& v : m_serialQueue ) FreeAssociatedMemory( v );
m_serialQueue.clear();
if( lockHeld )
{
m_serialLock.unlock();
}
for( auto& v : m_serialDequeue ) FreeAssociatedMemory( v );
m_serialDequeue.clear();
}
Profiler::DequeueStatus Profiler::Dequeue( moodycamel::ConsumerToken& token )
{
bool connectionLost = false;
const auto sz = GetQueue().try_dequeue_bulk_single( token,
[this, &connectionLost] ( const uint32_t& threadId )
{
if( ThreadCtxCheck( threadId ) == ThreadCtxStatus::ConnectionLost ) connectionLost = true;
},
[this, &connectionLost] ( QueueItem* item, size_t sz )
{
if( connectionLost ) return;
InitRpmalloc();
assert( sz > 0 );
int64_t refThread = m_refTimeThread;
int64_t refCtx = m_refTimeCtx;
int64_t refGpu = m_refTimeGpu;
while( sz-- > 0 )
{
uint64_t ptr;
uint16_t size;
auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx < (int)QueueType::Terminate )
{
switch( (QueueType)idx )
{
case QueueType::ZoneText:
case QueueType::ZoneName:
ptr = MemRead<uint64_t>( &item->zoneTextFat.text );
size = MemRead<uint16_t>( &item->zoneTextFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
case QueueType::Message:
case QueueType::MessageCallstack:
ptr = MemRead<uint64_t>( &item->messageFat.text );
size = MemRead<uint16_t>( &item->messageFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
case QueueType::MessageColor:
case QueueType::MessageColorCallstack:
ptr = MemRead<uint64_t>( &item->messageColorFat.text );
size = MemRead<uint16_t>( &item->messageColorFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
case QueueType::MessageAppInfo:
ptr = MemRead<uint64_t>( &item->messageFat.text );
size = MemRead<uint16_t>( &item->messageFat.size );
SendSingleString( (const char*)ptr, size );
#ifndef TRACY_ON_DEMAND
tracy_free_fast( (void*)ptr );
#endif
break;
case QueueType::ZoneBeginAllocSrcLoc:
case QueueType::ZoneBeginAllocSrcLocCallstack:
{
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
ptr = MemRead<uint64_t>( &item->zoneBegin.srcloc );
SendSourceLocationPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::Callstack:
ptr = MemRead<uint64_t>( &item->callstackFat.ptr );
SendCallstackPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
case QueueType::CallstackAlloc:
ptr = MemRead<uint64_t>( &item->callstackAllocFat.nativePtr );
if( ptr != 0 )
{
CutCallstack( (void*)ptr, "lua_pcall" );
SendCallstackPayload( ptr );
tracy_free_fast( (void*)ptr );
}
ptr = MemRead<uint64_t>( &item->callstackAllocFat.ptr );
SendCallstackAlloc( ptr );
tracy_free_fast( (void*)ptr );
break;
case QueueType::CallstackSample:
case QueueType::CallstackSampleContextSwitch:
{
ptr = MemRead<uint64_t>( &item->callstackSampleFat.ptr );
SendCallstackPayload64( ptr );
tracy_free_fast( (void*)ptr );
int64_t t = MemRead<int64_t>( &item->callstackSampleFat.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->callstackSampleFat.time, dt );
break;
}
case QueueType::FrameImage:
{
ptr = MemRead<uint64_t>( &item->frameImageFat.image );
const auto w = MemRead<uint16_t>( &item->frameImageFat.w );
const auto h = MemRead<uint16_t>( &item->frameImageFat.h );
const auto csz = size_t( w * h / 2 );
SendLongString( ptr, (const char*)ptr, csz, QueueType::FrameImageData );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::ZoneBegin:
case QueueType::ZoneBeginCallstack:
{
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
break;
}
case QueueType::ZoneEnd:
{
int64_t t = MemRead<int64_t>( &item->zoneEnd.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneEnd.time, dt );
break;
}
case QueueType::GpuZoneBegin:
case QueueType::GpuZoneBeginCallstack:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
break;
}
case QueueType::GpuZoneBeginAllocSrcLoc:
case QueueType::GpuZoneBeginAllocSrcLocCallstack:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
ptr = MemRead<uint64_t>( &item->gpuZoneBegin.srcloc );
SendSourceLocationPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::GpuZoneEnd:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneEnd.cpuTime );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->gpuZoneEnd.cpuTime, dt );
break;
}
case QueueType::GpuContextName:
ptr = MemRead<uint64_t>( &item->gpuContextNameFat.ptr );
size = MemRead<uint16_t>( &item->gpuContextNameFat.size );
SendSingleString( (const char*)ptr, size );
#ifndef TRACY_ON_DEMAND
tracy_free_fast( (void*)ptr );
#endif
break;
case QueueType::PlotDataInt:
case QueueType::PlotDataFloat:
case QueueType::PlotDataDouble:
{
int64_t t = MemRead<int64_t>( &item->plotDataInt.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->plotDataInt.time, dt );
break;
}
case QueueType::ContextSwitch:
{
int64_t t = MemRead<int64_t>( &item->contextSwitch.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->contextSwitch.time, dt );
break;
}
case QueueType::ThreadWakeup:
{
int64_t t = MemRead<int64_t>( &item->threadWakeup.time );
int64_t dt = t - refCtx;
refCtx = t;
MemWrite( &item->threadWakeup.time, dt );
break;
}
case QueueType::GpuTime:
{
int64_t t = MemRead<int64_t>( &item->gpuTime.gpuTime );
int64_t dt = t - refGpu;
refGpu = t;
MemWrite( &item->gpuTime.gpuTime, dt );
break;
}
#ifdef TRACY_HAS_CALLSTACK
case QueueType::CallstackFrameSize:
{
auto data = (const CallstackEntry*)MemRead<uint64_t>( &item->callstackFrameSizeFat.data );
auto datasz = MemRead<uint8_t>( &item->callstackFrameSizeFat.size );
auto imageName = (const char*)MemRead<uint64_t>( &item->callstackFrameSizeFat.imageName );
SendSingleString( imageName );
AppendData( item++, QueueDataSize[idx] );
for( uint8_t i=0; i<datasz; i++ )
{
const auto& frame = data[i];
SendSingleString( frame.name );
SendSecondString( frame.file );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackFrame );
MemWrite( &item.callstackFrame.line, frame.line );
MemWrite( &item.callstackFrame.symAddr, frame.symAddr );
MemWrite( &item.callstackFrame.symLen, frame.symLen );
AppendData( &item, QueueDataSize[(int)QueueType::CallstackFrame] );
tracy_free_fast( (void*)frame.name );
tracy_free_fast( (void*)frame.file );
}
tracy_free_fast( (void*)data );
continue;
}
case QueueType::SymbolInformation:
{
auto fileString = (const char*)MemRead<uint64_t>( &item->symbolInformationFat.fileString );
auto needFree = MemRead<uint8_t>( &item->symbolInformationFat.needFree );
SendSingleString( fileString );
if( needFree ) tracy_free_fast( (void*)fileString );
break;
}
case QueueType::SymbolCodeMetadata:
{
auto symbol = MemRead<uint64_t>( &item->symbolCodeMetadata.symbol );
auto ptr = (const char*)MemRead<uint64_t>( &item->symbolCodeMetadata.ptr );
auto size = MemRead<uint32_t>( &item->symbolCodeMetadata.size );
SendLongString( symbol, ptr, size, QueueType::SymbolCode );
tracy_free_fast( (void*)ptr );
++item;
continue;
}
#endif
#ifdef TRACY_HAS_SYSTEM_TRACING
case QueueType::ExternalNameMetadata:
{
auto thread = MemRead<uint64_t>( &item->externalNameMetadata.thread );
auto name = (const char*)MemRead<uint64_t>( &item->externalNameMetadata.name );
auto threadName = (const char*)MemRead<uint64_t>( &item->externalNameMetadata.threadName );
SendString( thread, threadName, QueueType::ExternalThreadName );
SendString( thread, name, QueueType::ExternalName );
tracy_free_fast( (void*)threadName );
tracy_free_fast( (void*)name );
++item;
continue;
}
#endif
case QueueType::SourceCodeMetadata:
{
auto ptr = (const char*)MemRead<uint64_t>( &item->sourceCodeMetadata.ptr );
auto size = MemRead<uint32_t>( &item->sourceCodeMetadata.size );
auto id = MemRead<uint32_t>( &item->sourceCodeMetadata.id );
SendLongString( (uint64_t)id, ptr, size, QueueType::SourceCode );
tracy_free_fast( (void*)ptr );
++item;
continue;
}
default:
assert( false );
break;
}
}
if( !AppendData( item++, QueueDataSize[idx] ) )
{
connectionLost = true;
m_refTimeThread = refThread;
m_refTimeCtx = refCtx;
m_refTimeGpu = refGpu;
return;
}
}
m_refTimeThread = refThread;
m_refTimeCtx = refCtx;
m_refTimeGpu = refGpu;
}
);
if( connectionLost ) return DequeueStatus::ConnectionLost;
return sz > 0 ? DequeueStatus::DataDequeued : DequeueStatus::QueueEmpty;
}
Profiler::DequeueStatus Profiler::DequeueContextSwitches( tracy::moodycamel::ConsumerToken& token, int64_t& timeStop )
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [] ( const uint64_t& ) {},
[this, &timeStop] ( QueueItem* item, size_t sz )
{
assert( sz > 0 );
int64_t refCtx = m_refTimeCtx;
while( sz-- > 0 )
{
FreeAssociatedMemory( *item );
if( timeStop < 0 ) return;
const auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx == (uint8_t)QueueType::ContextSwitch )
{
const auto csTime = MemRead<int64_t>( &item->contextSwitch.time );
if( csTime > timeStop )
{
timeStop = -1;
m_refTimeCtx = refCtx;
return;
}
int64_t dt = csTime - refCtx;
refCtx = csTime;
MemWrite( &item->contextSwitch.time, dt );
if( !AppendData( item, QueueDataSize[(int)QueueType::ContextSwitch] ) )
{
timeStop = -2;
m_refTimeCtx = refCtx;
return;
}
}
else if( idx == (uint8_t)QueueType::ThreadWakeup )
{
const auto csTime = MemRead<int64_t>( &item->threadWakeup.time );
if( csTime > timeStop )
{
timeStop = -1;
m_refTimeCtx = refCtx;
return;
}
int64_t dt = csTime - refCtx;
refCtx = csTime;
MemWrite( &item->threadWakeup.time, dt );
if( !AppendData( item, QueueDataSize[(int)QueueType::ThreadWakeup] ) )
{
timeStop = -2;
m_refTimeCtx = refCtx;
return;
}
}
item++;
}
m_refTimeCtx = refCtx;
}
);
if( timeStop == -2 ) return DequeueStatus::ConnectionLost;
return ( timeStop == -1 || sz > 0 ) ? DequeueStatus::DataDequeued : DequeueStatus::QueueEmpty;
}
#define ThreadCtxCheckSerial( _name ) \
uint32_t thread = MemRead<uint32_t>( &item->_name.thread ); \
switch( ThreadCtxCheck( thread ) ) \
{ \
case ThreadCtxStatus::Same: break; \
case ThreadCtxStatus::Changed: assert( m_refTimeThread == 0 ); refThread = 0; break; \
case ThreadCtxStatus::ConnectionLost: return DequeueStatus::ConnectionLost; \
default: assert( false ); break; \
}
Profiler::DequeueStatus Profiler::DequeueSerial()
{
{
bool lockHeld = true;
while( !m_serialLock.try_lock() )
{
if( m_shutdownManual.load( std::memory_order_relaxed ) )
{
lockHeld = false;
break;
}
}
if( !m_serialQueue.empty() ) m_serialQueue.swap( m_serialDequeue );
if( lockHeld )
{
m_serialLock.unlock();
}
}
const auto sz = m_serialDequeue.size();
if( sz > 0 )
{
InitRpmalloc();
int64_t refSerial = m_refTimeSerial;
int64_t refGpu = m_refTimeGpu;
#ifdef TRACY_FIBERS
int64_t refThread = m_refTimeThread;
#endif
auto item = m_serialDequeue.data();
auto end = item + sz;
while( item != end )
{
uint64_t ptr;
auto idx = MemRead<uint8_t>( &item->hdr.idx );
if( idx < (int)QueueType::Terminate )
{
switch( (QueueType)idx )
{
case QueueType::CallstackSerial:
ptr = MemRead<uint64_t>( &item->callstackFat.ptr );
SendCallstackPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
case QueueType::LockWait:
case QueueType::LockSharedWait:
{
int64_t t = MemRead<int64_t>( &item->lockWait.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockWait.time, dt );
break;
}
case QueueType::LockObtain:
case QueueType::LockSharedObtain:
{
int64_t t = MemRead<int64_t>( &item->lockObtain.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockObtain.time, dt );
break;
}
case QueueType::LockRelease:
case QueueType::LockSharedRelease:
{
int64_t t = MemRead<int64_t>( &item->lockRelease.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->lockRelease.time, dt );
break;
}
case QueueType::LockName:
{
ptr = MemRead<uint64_t>( &item->lockNameFat.name );
uint16_t size = MemRead<uint16_t>( &item->lockNameFat.size );
SendSingleString( (const char*)ptr, size );
#ifndef TRACY_ON_DEMAND
tracy_free_fast( (void*)ptr );
#endif
break;
}
case QueueType::MemAlloc:
case QueueType::MemAllocNamed:
case QueueType::MemAllocCallstack:
case QueueType::MemAllocCallstackNamed:
{
int64_t t = MemRead<int64_t>( &item->memAlloc.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->memAlloc.time, dt );
break;
}
case QueueType::MemFree:
case QueueType::MemFreeNamed:
case QueueType::MemFreeCallstack:
case QueueType::MemFreeCallstackNamed:
{
int64_t t = MemRead<int64_t>( &item->memFree.time );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->memFree.time, dt );
break;
}
case QueueType::GpuZoneBeginSerial:
case QueueType::GpuZoneBeginCallstackSerial:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
break;
}
case QueueType::GpuZoneBeginAllocSrcLocSerial:
case QueueType::GpuZoneBeginAllocSrcLocCallstackSerial:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneBegin.cpuTime );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->gpuZoneBegin.cpuTime, dt );
ptr = MemRead<uint64_t>( &item->gpuZoneBegin.srcloc );
SendSourceLocationPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::GpuZoneEndSerial:
{
int64_t t = MemRead<int64_t>( &item->gpuZoneEnd.cpuTime );
int64_t dt = t - refSerial;
refSerial = t;
MemWrite( &item->gpuZoneEnd.cpuTime, dt );
break;
}
case QueueType::GpuTime:
{
int64_t t = MemRead<int64_t>( &item->gpuTime.gpuTime );
int64_t dt = t - refGpu;
refGpu = t;
MemWrite( &item->gpuTime.gpuTime, dt );
break;
}
case QueueType::GpuContextName:
{
ptr = MemRead<uint64_t>( &item->gpuContextNameFat.ptr );
uint16_t size = MemRead<uint16_t>( &item->gpuContextNameFat.size );
SendSingleString( (const char*)ptr, size );
#ifndef TRACY_ON_DEMAND
tracy_free_fast( (void*)ptr );
#endif
break;
}
#ifdef TRACY_FIBERS
case QueueType::ZoneBegin:
case QueueType::ZoneBeginCallstack:
{
ThreadCtxCheckSerial( zoneBeginThread );
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
break;
}
case QueueType::ZoneBeginAllocSrcLoc:
case QueueType::ZoneBeginAllocSrcLocCallstack:
{
ThreadCtxCheckSerial( zoneBeginThread );
int64_t t = MemRead<int64_t>( &item->zoneBegin.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneBegin.time, dt );
ptr = MemRead<uint64_t>( &item->zoneBegin.srcloc );
SendSourceLocationPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::ZoneEnd:
{
ThreadCtxCheckSerial( zoneEndThread );
int64_t t = MemRead<int64_t>( &item->zoneEnd.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->zoneEnd.time, dt );
break;
}
case QueueType::ZoneText:
case QueueType::ZoneName:
{
ThreadCtxCheckSerial( zoneTextFatThread );
ptr = MemRead<uint64_t>( &item->zoneTextFat.text );
uint16_t size = MemRead<uint16_t>( &item->zoneTextFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::Message:
case QueueType::MessageCallstack:
{
ThreadCtxCheckSerial( messageFatThread );
ptr = MemRead<uint64_t>( &item->messageFat.text );
uint16_t size = MemRead<uint16_t>( &item->messageFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::MessageColor:
case QueueType::MessageColorCallstack:
{
ThreadCtxCheckSerial( messageColorFatThread );
ptr = MemRead<uint64_t>( &item->messageColorFat.text );
uint16_t size = MemRead<uint16_t>( &item->messageColorFat.size );
SendSingleString( (const char*)ptr, size );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::Callstack:
{
ThreadCtxCheckSerial( callstackFatThread );
ptr = MemRead<uint64_t>( &item->callstackFat.ptr );
SendCallstackPayload( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::CallstackAlloc:
{
ThreadCtxCheckSerial( callstackAllocFatThread );
ptr = MemRead<uint64_t>( &item->callstackAllocFat.nativePtr );
if( ptr != 0 )
{
CutCallstack( (void*)ptr, "lua_pcall" );
SendCallstackPayload( ptr );
tracy_free_fast( (void*)ptr );
}
ptr = MemRead<uint64_t>( &item->callstackAllocFat.ptr );
SendCallstackAlloc( ptr );
tracy_free_fast( (void*)ptr );
break;
}
case QueueType::FiberEnter:
{
ThreadCtxCheckSerial( fiberEnter );
int64_t t = MemRead<int64_t>( &item->fiberEnter.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->fiberEnter.time, dt );
break;
}
case QueueType::FiberLeave:
{
ThreadCtxCheckSerial( fiberLeave );
int64_t t = MemRead<int64_t>( &item->fiberLeave.time );
int64_t dt = t - refThread;
refThread = t;
MemWrite( &item->fiberLeave.time, dt );
break;
}
#endif
default:
assert( false );
break;
}
}
#ifdef TRACY_FIBERS
else
{
switch( (QueueType)idx )
{
case QueueType::ZoneColor:
{
ThreadCtxCheckSerial( zoneColorThread );
break;
}
case QueueType::ZoneValue:
{
ThreadCtxCheckSerial( zoneValueThread );
break;
}
case QueueType::ZoneValidation:
{
ThreadCtxCheckSerial( zoneValidationThread );
break;
}
case QueueType::MessageLiteral:
case QueueType::MessageLiteralCallstack:
{
ThreadCtxCheckSerial( messageLiteralThread );
break;
}
case QueueType::MessageLiteralColor:
case QueueType::MessageLiteralColorCallstack:
{
ThreadCtxCheckSerial( messageColorLiteralThread );
break;
}
case QueueType::CrashReport:
{
ThreadCtxCheckSerial( crashReportThread );
break;
}
default:
break;
}
}
#endif
if( !AppendData( item, QueueDataSize[idx] ) ) return DequeueStatus::ConnectionLost;
item++;
}
m_refTimeSerial = refSerial;
m_refTimeGpu = refGpu;
#ifdef TRACY_FIBERS
m_refTimeThread = refThread;
#endif
m_serialDequeue.clear();
}
else
{
return DequeueStatus::QueueEmpty;
}
return DequeueStatus::DataDequeued;
}
Profiler::ThreadCtxStatus Profiler::ThreadCtxCheck( uint32_t threadId )
{
if( m_threadCtx == threadId ) return ThreadCtxStatus::Same;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::ThreadContext );
MemWrite( &item.threadCtx.thread, threadId );
if( !AppendData( &item, QueueDataSize[(int)QueueType::ThreadContext] ) ) return ThreadCtxStatus::ConnectionLost;
m_threadCtx = threadId;
m_refTimeThread = 0;
return ThreadCtxStatus::Changed;
}
bool Profiler::CommitData()
{
bool ret = SendData( m_buffer + m_bufferStart, m_bufferOffset - m_bufferStart );
if( m_bufferOffset > TargetFrameSize * 2 ) m_bufferOffset = 0;
m_bufferStart = m_bufferOffset;
return ret;
}
bool Profiler::SendData( const char* data, size_t len )
{
const lz4sz_t lz4sz = LZ4_compress_fast_continue( (LZ4_stream_t*)m_stream, data, m_lz4Buf + sizeof( lz4sz_t ), (int)len, LZ4Size, 1 );
memcpy( m_lz4Buf, &lz4sz, sizeof( lz4sz ) );
return m_sock->Send( m_lz4Buf, lz4sz + sizeof( lz4sz_t ) ) != -1;
}
void Profiler::SendString( uint64_t str, const char* ptr, size_t len, QueueType type )
{
assert( type == QueueType::StringData ||
type == QueueType::ThreadName ||
type == QueueType::PlotName ||
type == QueueType::FrameName ||
type == QueueType::ExternalName ||
type == QueueType::ExternalThreadName ||
type == QueueType::FiberName );
QueueItem item;
MemWrite( &item.hdr.type, type );
MemWrite( &item.stringTransfer.ptr, str );
assert( len <= std::numeric_limits<uint16_t>::max() );
auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)type] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)type] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, l16 );
}
void Profiler::SendSingleString( const char* ptr, size_t len )
{
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SingleStringData );
assert( len <= std::numeric_limits<uint16_t>::max() );
auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::SingleStringData] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::SingleStringData] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, l16 );
}
void Profiler::SendSecondString( const char* ptr, size_t len )
{
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SecondStringData );
assert( len <= std::numeric_limits<uint16_t>::max() );
auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::SecondStringData] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::SecondStringData] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, l16 );
}
void Profiler::SendLongString( uint64_t str, const char* ptr, size_t len, QueueType type )
{
assert( type == QueueType::FrameImageData ||
type == QueueType::SymbolCode ||
type == QueueType::SourceCode );
QueueItem item;
MemWrite( &item.hdr.type, type );
MemWrite( &item.stringTransfer.ptr, str );
assert( len <= std::numeric_limits<uint32_t>::max() );
assert( QueueDataSize[(int)type] + sizeof( uint32_t ) + len <= TargetFrameSize );
auto l32 = uint32_t( len );
NeedDataSize( QueueDataSize[(int)type] + sizeof( l32 ) + l32 );
AppendDataUnsafe( &item, QueueDataSize[(int)type] );
AppendDataUnsafe( &l32, sizeof( l32 ) );
AppendDataUnsafe( ptr, l32 );
}
void Profiler::SendSourceLocation( uint64_t ptr )
{
auto srcloc = (const SourceLocationData*)ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SourceLocation );
MemWrite( &item.srcloc.name, (uint64_t)srcloc->name );
MemWrite( &item.srcloc.file, (uint64_t)srcloc->file );
MemWrite( &item.srcloc.function, (uint64_t)srcloc->function );
MemWrite( &item.srcloc.line, srcloc->line );
MemWrite( &item.srcloc.b, uint8_t( ( srcloc->color ) & 0xFF ) );
MemWrite( &item.srcloc.g, uint8_t( ( srcloc->color >> 8 ) & 0xFF ) );
MemWrite( &item.srcloc.r, uint8_t( ( srcloc->color >> 16 ) & 0xFF ) );
AppendData( &item, QueueDataSize[(int)QueueType::SourceLocation] );
}
void Profiler::SendSourceLocationPayload( uint64_t _ptr )
{
auto ptr = (const char*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SourceLocationPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
uint16_t len;
memcpy( &len, ptr, sizeof( len ) );
assert( len > 2 );
len -= 2;
ptr += 2;
NeedDataSize( QueueDataSize[(int)QueueType::SourceLocationPayload] + sizeof( len ) + len );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::SourceLocationPayload] );
AppendDataUnsafe( &len, sizeof( len ) );
AppendDataUnsafe( ptr, len );
}
void Profiler::SendCallstackPayload( uint64_t _ptr )
{
auto ptr = (uintptr_t*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto sz = *ptr++;
const auto len = sz * sizeof( uint64_t );
const auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::CallstackPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
if( compile_time_condition<sizeof( uintptr_t ) == sizeof( uint64_t )>::value )
{
AppendDataUnsafe( ptr, sizeof( uint64_t ) * sz );
}
else
{
for( uintptr_t i=0; i<sz; i++ )
{
const auto val = uint64_t( *ptr++ );
AppendDataUnsafe( &val, sizeof( uint64_t ) );
}
}
}
void Profiler::SendCallstackPayload64( uint64_t _ptr )
{
auto ptr = (uint64_t*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
const auto sz = *ptr++;
const auto len = sz * sizeof( uint64_t );
const auto l16 = uint16_t( len );
NeedDataSize( QueueDataSize[(int)QueueType::CallstackPayload] + sizeof( l16 ) + l16 );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackPayload] );
AppendDataUnsafe( &l16, sizeof( l16 ) );
AppendDataUnsafe( ptr, sizeof( uint64_t ) * sz );
}
void Profiler::SendCallstackAlloc( uint64_t _ptr )
{
auto ptr = (const char*)_ptr;
QueueItem item;
MemWrite( &item.hdr.type, QueueType::CallstackAllocPayload );
MemWrite( &item.stringTransfer.ptr, _ptr );
uint16_t len;
memcpy( &len, ptr, 2 );
ptr += 2;
NeedDataSize( QueueDataSize[(int)QueueType::CallstackAllocPayload] + sizeof( len ) + len );
AppendDataUnsafe( &item, QueueDataSize[(int)QueueType::CallstackAllocPayload] );
AppendDataUnsafe( &len, sizeof( len ) );
AppendDataUnsafe( ptr, len );
}
void Profiler::QueueCallstackFrame( uint64_t ptr )
{
#ifdef TRACY_HAS_CALLSTACK
m_symbolQueue.emplace( SymbolQueueItem { SymbolQueueItemType::CallstackFrame, ptr } );
#else
AckServerQuery();
#endif
}
void Profiler::QueueSymbolQuery( uint64_t symbol )
{
#ifdef TRACY_HAS_CALLSTACK
// Special handling for kernel frames
if( symbol >> 63 != 0 )
{
SendSingleString( "<kernel>" );
QueueItem item;
MemWrite( &item.hdr.type, QueueType::SymbolInformation );
MemWrite( &item.symbolInformation.line, 0 );
MemWrite( &item.symbolInformation.symAddr, symbol );
AppendData( &item, QueueDataSize[(int)QueueType::SymbolInformation] );
}
else
{
m_symbolQueue.emplace( SymbolQueueItem { SymbolQueueItemType::SymbolQuery, symbol } );
}
#else
AckServerQuery();
#endif
}
void Profiler::QueueExternalName( uint64_t ptr )
{
#ifdef TRACY_HAS_SYSTEM_TRACING
m_symbolQueue.emplace( SymbolQueueItem { SymbolQueueItemType::ExternalName, ptr } );
#endif
}
void Profiler::QueueKernelCode( uint64_t symbol, uint32_t size )
{
assert( symbol >> 63 != 0 );
#ifdef TRACY_HAS_CALLSTACK
m_symbolQueue.emplace( SymbolQueueItem { SymbolQueueItemType::KernelCode, symbol, size } );
#else
AckSymbolCodeNotAvailable();
#endif
}
void Profiler::QueueSourceCodeQuery( uint32_t id )
{
assert( m_exectime != 0 );
assert( m_queryData );
m_symbolQueue.emplace( SymbolQueueItem { SymbolQueueItemType::SourceCode, uint64_t( m_queryData ), uint64_t( m_queryImage ), id } );
m_queryData = nullptr;
m_queryImage = nullptr;
}
#ifdef TRACY_HAS_CALLSTACK
void Profiler::HandleSymbolQueueItem( const SymbolQueueItem& si )
{
switch( si.type )
{
case SymbolQueueItemType::CallstackFrame:
{
const auto frameData = DecodeCallstackPtr( si.ptr );
auto data = tracy_malloc_fast( sizeof( CallstackEntry ) * frameData.size );
memcpy( data, frameData.data, sizeof( CallstackEntry ) * frameData.size );
TracyLfqPrepare( QueueType::CallstackFrameSize );
MemWrite( &item->callstackFrameSizeFat.ptr, si.ptr );
MemWrite( &item->callstackFrameSizeFat.size, frameData.size );
MemWrite( &item->callstackFrameSizeFat.data, (uint64_t)data );
MemWrite( &item->callstackFrameSizeFat.imageName, (uint64_t)frameData.imageName );
TracyLfqCommit;
break;
}
case SymbolQueueItemType::SymbolQuery:
{
#ifdef __ANDROID__
// On Android it's common for code to be in mappings that are only executable
// but not readable.
if( !EnsureReadable( si.ptr ) )
{
TracyLfqPrepare( QueueType::AckServerQueryNoop );
TracyLfqCommit;
break;
}
#endif
const auto sym = DecodeSymbolAddress( si.ptr );
TracyLfqPrepare( QueueType::SymbolInformation );
MemWrite( &item->symbolInformationFat.line, sym.line );
MemWrite( &item->symbolInformationFat.symAddr, si.ptr );
MemWrite( &item->symbolInformationFat.fileString, (uint64_t)sym.file );
MemWrite( &item->symbolInformationFat.needFree, (uint8_t)sym.needFree );
TracyLfqCommit;
break;
}
#ifdef TRACY_HAS_SYSTEM_TRACING
case SymbolQueueItemType::ExternalName:
{
const char* threadName;
const char* name;
SysTraceGetExternalName( si.ptr, threadName, name );
TracyLfqPrepare( QueueType::ExternalNameMetadata );
MemWrite( &item->externalNameMetadata.thread, si.ptr );
MemWrite( &item->externalNameMetadata.name, (uint64_t)name );
MemWrite( &item->externalNameMetadata.threadName, (uint64_t)threadName );
TracyLfqCommit;
break;
}
#endif
case SymbolQueueItemType::KernelCode:
{
#ifdef _WIN32
auto mod = GetKernelModulePath( si.ptr );
if( mod )
{
auto fn = DecodeCallstackPtrFast( si.ptr );
if( *fn )
{
auto hnd = LoadLibraryExA( mod, nullptr, DONT_RESOLVE_DLL_REFERENCES );
if( hnd )
{
auto ptr = (const void*)GetProcAddress( hnd, fn );
if( ptr )
{
auto buf = (char*)tracy_malloc( si.extra );
memcpy( buf, ptr, si.extra );
FreeLibrary( hnd );
TracyLfqPrepare( QueueType::SymbolCodeMetadata );
MemWrite( &item->symbolCodeMetadata.symbol, si.ptr );
MemWrite( &item->symbolCodeMetadata.ptr, (uint64_t)buf );
MemWrite( &item->symbolCodeMetadata.size, (uint32_t)si.extra );
TracyLfqCommit;
break;
}
FreeLibrary( hnd );
}
}
}
#endif
TracyLfqPrepare( QueueType::AckSymbolCodeNotAvailable );
TracyLfqCommit;
break;
}
case SymbolQueueItemType::SourceCode:
HandleSourceCodeQuery( (char*)si.ptr, (char*)si.extra, si.id );
break;
default:
assert( false );
break;
}
}
void Profiler::SymbolWorker()
{
#if defined __linux__ && !defined TRACY_NO_CRASH_HANDLER
s_symbolTid = syscall( SYS_gettid );
#endif
ThreadExitHandler threadExitHandler;
SetThreadName( "Tracy Symbol Worker" );
#ifdef TRACY_USE_RPMALLOC
InitRpmalloc();
#endif
InitCallstack();
while( m_timeBegin.load( std::memory_order_relaxed ) == 0 ) std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
for(;;)
{
const auto shouldExit = ShouldExit();
#ifdef TRACY_ON_DEMAND
if( !IsConnected() )
{
if( shouldExit )
{
s_symbolThreadGone.store( true, std::memory_order_release );
return;
}
while( m_symbolQueue.front() ) m_symbolQueue.pop();
std::this_thread::sleep_for( std::chrono::milliseconds( 20 ) );
continue;
}
#endif
auto si = m_symbolQueue.front();
if( si )
{
HandleSymbolQueueItem( *si );
m_symbolQueue.pop();
}
else
{
if( shouldExit )
{
s_symbolThreadGone.store( true, std::memory_order_release );
return;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 20 ) );
}
}
}
#endif
bool Profiler::HandleServerQuery()
{
ServerQueryPacket payload;
if( !m_sock->Read( &payload, sizeof( payload ), 10 ) ) return false;
uint8_t type;
uint64_t ptr;
memcpy( &type, &payload.type, sizeof( payload.type ) );
memcpy( &ptr, &payload.ptr, sizeof( payload.ptr ) );
switch( type )
{
case ServerQueryString:
SendString( ptr, (const char*)ptr, QueueType::StringData );
break;
case ServerQueryThreadString:
if( ptr == m_mainThread )
{
SendString( ptr, "Main thread", 11, QueueType::ThreadName );
}
else
{
SendString( ptr, GetThreadName( ptr ), QueueType::ThreadName );
}
break;
case ServerQuerySourceLocation:
SendSourceLocation( ptr );
break;
case ServerQueryPlotName:
SendString( ptr, (const char*)ptr, QueueType::PlotName );
break;
case ServerQueryTerminate:
return false;
case ServerQueryCallstackFrame:
QueueCallstackFrame( ptr );
break;
case ServerQueryFrameName:
SendString( ptr, (const char*)ptr, QueueType::FrameName );
break;
case ServerQueryDisconnect:
HandleDisconnect();
return false;
#ifdef TRACY_HAS_SYSTEM_TRACING
case ServerQueryExternalName:
QueueExternalName( ptr );
break;
#endif
case ServerQueryParameter:
HandleParameter( ptr );
break;
case ServerQuerySymbol:
QueueSymbolQuery( ptr );
break;
#ifndef TRACY_NO_CODE_TRANSFER
case ServerQuerySymbolCode:
HandleSymbolCodeQuery( ptr, payload.extra );
break;
#endif
case ServerQuerySourceCode:
QueueSourceCodeQuery( uint32_t( ptr ) );
break;
case ServerQueryDataTransfer:
if( m_queryData )
{
assert( !m_queryImage );
m_queryImage = m_queryData;
}
m_queryDataPtr = m_queryData = (char*)tracy_malloc( ptr + 11 );
AckServerQuery();
break;
case ServerQueryDataTransferPart:
memcpy( m_queryDataPtr, &ptr, 8 );
memcpy( m_queryDataPtr+8, &payload.extra, 4 );
m_queryDataPtr += 12;
AckServerQuery();
break;
#ifdef TRACY_FIBERS
case ServerQueryFiberName:
SendString( ptr, (const char*)ptr, QueueType::FiberName );
break;
#endif
default:
assert( false );
break;
}
return true;
}
void Profiler::HandleDisconnect()
{
moodycamel::ConsumerToken token( GetQueue() );
#ifdef TRACY_HAS_SYSTEM_TRACING
if( s_sysTraceThread )
{
auto timestamp = GetTime();
for(;;)
{
const auto status = DequeueContextSwitches( token, timestamp );
if( status == DequeueStatus::ConnectionLost )
{
return;
}
else if( status == DequeueStatus::QueueEmpty )
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
if( timestamp < 0 )
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
break;
}
ClearSerial();
if( m_sock->HasData() )
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() ) return;
}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
else
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
}
#endif
QueueItem terminate;
MemWrite( &terminate.hdr.type, QueueType::Terminate );
if( !SendData( (const char*)&terminate, 1 ) ) return;
for(;;)
{
ClearQueues( token );
if( m_sock->HasData() )
{
while( m_sock->HasData() )
{
if( !HandleServerQuery() ) return;
}
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
}
else
{
if( m_bufferOffset != m_bufferStart )
{
if( !CommitData() ) return;
}
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
}
}
}
void Profiler::CalibrateTimer()
{
m_timerMul = 1.;
#ifdef TRACY_HW_TIMER
# if !defined TRACY_TIMER_QPC && defined TRACY_TIMER_FALLBACK
const bool needCalibration = HardwareSupportsInvariantTSC();
# else
const bool needCalibration = true;
# endif
if( needCalibration )
{
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto t0 = std::chrono::high_resolution_clock::now();
const auto r0 = GetTime();
std::atomic_signal_fence( std::memory_order_acq_rel );
std::this_thread::sleep_for( std::chrono::milliseconds( 200 ) );
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto t1 = std::chrono::high_resolution_clock::now();
const auto r1 = GetTime();
std::atomic_signal_fence( std::memory_order_acq_rel );
const auto dt = std::chrono::duration_cast<std::chrono::nanoseconds>( t1 - t0 ).count();
const auto dr = r1 - r0;
m_timerMul = double( dt ) / double( dr );
}
#endif
}
void Profiler::CalibrateDelay()
{
constexpr int Iterations = 50000;
auto mindiff = std::numeric_limits<int64_t>::max();
for( int i=0; i<Iterations * 10; i++ )
{
const auto t0i = GetTime();
const auto t1i = GetTime();
const auto dti = t1i - t0i;
if( dti > 0 && dti < mindiff ) mindiff = dti;
}
m_resolution = mindiff;
#ifdef TRACY_DELAYED_INIT
m_delay = m_resolution;
#else
constexpr int Events = Iterations * 2; // start + end
static_assert( Events < QueuePrealloc, "Delay calibration loop will allocate memory in queue" );
static const tracy::SourceLocationData __tracy_source_location { nullptr, TracyFunction, TracyFile, (uint32_t)TracyLine, 0 };
const auto t0 = GetTime();
for( int i=0; i<Iterations; i++ )
{
{
TracyLfqPrepare( QueueType::ZoneBegin );
MemWrite( &item->zoneBegin.time, Profiler::GetTime() );
MemWrite( &item->zoneBegin.srcloc, (uint64_t)&__tracy_source_location );
TracyLfqCommit;
}
{
TracyLfqPrepare( QueueType::ZoneEnd );
MemWrite( &item->zoneEnd.time, GetTime() );
TracyLfqCommit;
}
}
const auto t1 = GetTime();
const auto dt = t1 - t0;
m_delay = dt / Events;
moodycamel::ConsumerToken token( GetQueue() );
int left = Events;
while( left != 0 )
{
const auto sz = GetQueue().try_dequeue_bulk_single( token, [](const uint64_t&){}, [](QueueItem* item, size_t sz){} );
assert( sz > 0 );
left -= (int)sz;
}
assert( GetQueue().size_approx() == 0 );
#endif
}
void Profiler::ReportTopology()
{
#ifndef TRACY_DELAYED_INIT
struct CpuData
{
uint32_t package;
uint32_t core;
uint32_t thread;
};
#if defined _WIN32
# ifdef TRACY_UWP
t_GetLogicalProcessorInformationEx _GetLogicalProcessorInformationEx = &::GetLogicalProcessorInformationEx;
# else
t_GetLogicalProcessorInformationEx _GetLogicalProcessorInformationEx = (t_GetLogicalProcessorInformationEx)GetProcAddress( GetModuleHandleA( "kernel32.dll" ), "GetLogicalProcessorInformationEx" );
# endif
if( !_GetLogicalProcessorInformationEx ) return;
DWORD psz = 0;
_GetLogicalProcessorInformationEx( RelationProcessorPackage, nullptr, &psz );
auto packageInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)tracy_malloc( psz );
auto res = _GetLogicalProcessorInformationEx( RelationProcessorPackage, packageInfo, &psz );
assert( res );
DWORD csz = 0;
_GetLogicalProcessorInformationEx( RelationProcessorCore, nullptr, &csz );
auto coreInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)tracy_malloc( csz );
res = _GetLogicalProcessorInformationEx( RelationProcessorCore, coreInfo, &csz );
assert( res );
SYSTEM_INFO sysinfo;
GetSystemInfo( &sysinfo );
const uint32_t numcpus = sysinfo.dwNumberOfProcessors;
auto cpuData = (CpuData*)tracy_malloc( sizeof( CpuData ) * numcpus );
for( uint32_t i=0; i<numcpus; i++ ) cpuData[i].thread = i;
int idx = 0;
auto ptr = packageInfo;
while( (char*)ptr < ((char*)packageInfo) + psz )
{
assert( ptr->Relationship == RelationProcessorPackage );
// FIXME account for GroupCount
auto mask = ptr->Processor.GroupMask[0].Mask;
int core = 0;
while( mask != 0 )
{
if( mask & 1 ) cpuData[core].package = idx;
core++;
mask >>= 1;
}
ptr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(((char*)ptr) + ptr->Size);
idx++;
}
idx = 0;
ptr = coreInfo;
while( (char*)ptr < ((char*)coreInfo) + csz )
{
assert( ptr->Relationship == RelationProcessorCore );
// FIXME account for GroupCount
auto mask = ptr->Processor.GroupMask[0].Mask;
int core = 0;
while( mask != 0 )
{
if( mask & 1 ) cpuData[core].core = idx;
core++;
mask >>= 1;
}
ptr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX*)(((char*)ptr) + ptr->Size);
idx++;
}
for( uint32_t i=0; i<numcpus; i++ )
{
auto& data = cpuData[i];
TracyLfqPrepare( QueueType::CpuTopology );
MemWrite( &item->cpuTopology.package, data.package );
MemWrite( &item->cpuTopology.core, data.core );
MemWrite( &item->cpuTopology.thread, data.thread );
#ifdef TRACY_ON_DEMAND
DeferItem( *item );
#endif
TracyLfqCommit;
}
tracy_free( cpuData );
tracy_free( coreInfo );
tracy_free( packageInfo );
#elif defined __linux__
const int numcpus = std::thread::hardware_concurrency();
auto cpuData = (CpuData*)tracy_malloc( sizeof( CpuData ) * numcpus );
memset( cpuData, 0, sizeof( CpuData ) * numcpus );
const char* basePath = "/sys/devices/system/cpu/cpu";
for( int i=0; i<numcpus; i++ )
{
char path[1024];
sprintf( path, "%s%i/topology/physical_package_id", basePath, i );
char buf[1024];
FILE* f = fopen( path, "rb" );
if( !f )
{
tracy_free( cpuData );
return;
}
auto read = fread( buf, 1, 1024, f );
buf[read] = '\0';
fclose( f );
cpuData[i].package = uint32_t( atoi( buf ) );
cpuData[i].thread = i;
sprintf( path, "%s%i/topology/core_id", basePath, i );
f = fopen( path, "rb" );
read = fread( buf, 1, 1024, f );
buf[read] = '\0';
fclose( f );
cpuData[i].core = uint32_t( atoi( buf ) );
}
for( int i=0; i<numcpus; i++ )
{
auto& data = cpuData[i];
TracyLfqPrepare( QueueType::CpuTopology );
MemWrite( &item->cpuTopology.package, data.package );
MemWrite( &item->cpuTopology.core, data.core );
MemWrite( &item->cpuTopology.thread, data.thread );
#ifdef TRACY_ON_DEMAND
DeferItem( *item );
#endif
TracyLfqCommit;
}
tracy_free( cpuData );
#endif
#endif
}
void Profiler::SendCallstack( int depth, const char* skipBefore )
{
#ifdef TRACY_HAS_CALLSTACK
auto ptr = Callstack( depth );
CutCallstack( ptr, skipBefore );
TracyQueuePrepare( QueueType::Callstack );
MemWrite( &item->callstackFat.ptr, (uint64_t)ptr );
TracyQueueCommit( callstackFatThread );
#endif
}
void Profiler::CutCallstack( void* callstack, const char* skipBefore )
{
#ifdef TRACY_HAS_CALLSTACK
auto data = (uintptr_t*)callstack;
const auto sz = *data++;
uintptr_t i;
for( i=0; i<sz; i++ )
{
auto name = DecodeCallstackPtrFast( uint64_t( data[i] ) );
const bool found = strcmp( name, skipBefore ) == 0;
if( found )
{
i++;
break;
}
}
if( i != sz )
{
memmove( data, data + i, ( sz - i ) * sizeof( uintptr_t* ) );
*--data = sz - i;
}
#endif
}
#ifdef TRACY_HAS_SYSTIME
void Profiler::ProcessSysTime()
{
if( m_shutdown.load( std::memory_order_relaxed ) ) return;
auto t = std::chrono::high_resolution_clock::now().time_since_epoch().count();
if( t - m_sysTimeLast > 100000000 ) // 100 ms
{
auto sysTime = m_sysTime.Get();
if( sysTime >= 0 )
{
m_sysTimeLast = t;
TracyLfqPrepare( QueueType::SysTimeReport );
MemWrite( &item->sysTime.time, GetTime() );
MemWrite( &item->sysTime.sysTime, sysTime );
TracyLfqCommit;
}
}
}
#endif
void Profiler::HandleParameter( uint64_t payload )
{
assert( m_paramCallback );
const auto idx = uint32_t( payload >> 32 );
const auto val = int32_t( payload & 0xFFFFFFFF );
m_paramCallback( m_paramCallbackData, idx, val );
AckServerQuery();
}
void Profiler::HandleSymbolCodeQuery( uint64_t symbol, uint32_t size )
{
if( symbol >> 63 != 0 )
{
QueueKernelCode( symbol, size );
}
else
{
#ifdef __ANDROID__
// On Android it's common for code to be in mappings that are only executable
// but not readable.
if( !EnsureReadable( symbol ) )
{
AckSymbolCodeNotAvailable();
return;
}
#endif
SendLongString( symbol, (const char*)symbol, size, QueueType::SymbolCode );
}
}
void Profiler::HandleSourceCodeQuery( char* data, char* image, uint32_t id )
{
bool ok = false;
struct stat st;
if( stat( data, &st ) == 0 && (uint64_t)st.st_mtime < m_exectime )
{
if( st.st_size < ( TargetFrameSize - 16 ) )
{
FILE* f = fopen( data, "rb" );
if( f )
{
auto ptr = (char*)tracy_malloc_fast( st.st_size );
auto rd = fread( ptr, 1, st.st_size, f );
fclose( f );
if( rd == (size_t)st.st_size )
{
TracyLfqPrepare( QueueType::SourceCodeMetadata );
MemWrite( &item->sourceCodeMetadata.ptr, (uint64_t)ptr );
MemWrite( &item->sourceCodeMetadata.size, (uint32_t)rd );
MemWrite( &item->sourceCodeMetadata.id, id );
TracyLfqCommit;
ok = true;
}
}
}
}
#ifdef TRACY_DEBUGINFOD
else if( image && data[0] == '/' )
{
size_t size;
auto buildid = GetBuildIdForImage( image, size );
if( buildid )
{
auto d = debuginfod_find_source( GetDebuginfodClient(), buildid, size, data, nullptr );
TracyDebug( "DebugInfo source query: %s, fn: %s, image: %s\n", d >= 0 ? " ok " : "fail", data, image );
if( d >= 0 )
{
struct stat st;
fstat( d, &st );
if( st.st_size < ( TargetFrameSize - 16 ) )
{
lseek( d, 0, SEEK_SET );
auto ptr = (char*)tracy_malloc_fast( st.st_size );
auto rd = read( d, ptr, st.st_size );
if( rd == (size_t)st.st_size )
{
TracyLfqPrepare( QueueType::SourceCodeMetadata );
MemWrite( &item->sourceCodeMetadata.ptr, (uint64_t)ptr );
MemWrite( &item->sourceCodeMetadata.size, (uint32_t)rd );
MemWrite( &item->sourceCodeMetadata.id, id );
TracyLfqCommit;
ok = true;
}
}
close( d );
}
}
}
else
{
TracyDebug( "DebugInfo invalid query fn: %s, image: %s\n", data, image );
}
#endif
if( !ok && m_sourceCallback )
{
size_t sz;
char* ptr = m_sourceCallback( m_sourceCallbackData, data, sz );
if( ptr )
{
if( sz < ( TargetFrameSize - 16 ) )
{
TracyLfqPrepare( QueueType::SourceCodeMetadata );
MemWrite( &item->sourceCodeMetadata.ptr, (uint64_t)ptr );
MemWrite( &item->sourceCodeMetadata.size, (uint32_t)sz );
MemWrite( &item->sourceCodeMetadata.id, id );
TracyLfqCommit;
ok = true;
}
}
}
if( !ok )
{
TracyLfqPrepare( QueueType::AckSourceCodeNotAvailable );
MemWrite( &item->sourceCodeNotAvailable, id );
TracyLfqCommit;
}
tracy_free_fast( data );
tracy_free_fast( image );
}
#if defined _WIN32 && defined TRACY_TIMER_QPC
int64_t Profiler::GetTimeQpc()
{
LARGE_INTEGER t;
QueryPerformanceCounter( &t );
return t.QuadPart;
}
#endif
}
#ifdef __cplusplus
extern "C" {
#endif
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin( const struct ___tracy_source_location_data* srcloc, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active ) return ctx;
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneBegin );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, (uint64_t)srcloc );
TracyQueueCommitC( zoneBeginThread );
}
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_callstack( const struct ___tracy_source_location_data* srcloc, int depth, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active ) return ctx;
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
tracy::GetProfiler().SendCallstack( depth );
{
TracyQueuePrepareC( tracy::QueueType::ZoneBeginCallstack );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, (uint64_t)srcloc );
TracyQueueCommitC( zoneBeginThread );
}
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_alloc( uint64_t srcloc, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active )
{
tracy::tracy_free( (void*)srcloc );
return ctx;
}
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneBeginAllocSrcLoc );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, srcloc );
TracyQueueCommitC( zoneBeginThread );
}
return ctx;
}
TRACY_API TracyCZoneCtx ___tracy_emit_zone_begin_alloc_callstack( uint64_t srcloc, int depth, int active )
{
___tracy_c_zone_context ctx;
#ifdef TRACY_ON_DEMAND
ctx.active = active && tracy::GetProfiler().IsConnected();
#else
ctx.active = active;
#endif
if( !ctx.active )
{
tracy::tracy_free( (void*)srcloc );
return ctx;
}
const auto id = tracy::GetProfiler().GetNextZoneId();
ctx.id = id;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
tracy::GetProfiler().SendCallstack( depth );
{
TracyQueuePrepareC( tracy::QueueType::ZoneBeginAllocSrcLocCallstack );
tracy::MemWrite( &item->zoneBegin.time, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->zoneBegin.srcloc, srcloc );
TracyQueueCommitC( zoneBeginThread );
}
return ctx;
}
TRACY_API void ___tracy_emit_zone_end( TracyCZoneCtx ctx )
{
if( !ctx.active ) return;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneEnd );
tracy::MemWrite( &item->zoneEnd.time, tracy::Profiler::GetTime() );
TracyQueueCommitC( zoneEndThread );
}
}
TRACY_API void ___tracy_emit_zone_text( TracyCZoneCtx ctx, const char* txt, size_t size )
{
assert( size < std::numeric_limits<uint16_t>::max() );
if( !ctx.active ) return;
auto ptr = (char*)tracy::tracy_malloc( size );
memcpy( ptr, txt, size );
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneText );
tracy::MemWrite( &item->zoneTextFat.text, (uint64_t)ptr );
tracy::MemWrite( &item->zoneTextFat.size, (uint16_t)size );
TracyQueueCommitC( zoneTextFatThread );
}
}
TRACY_API void ___tracy_emit_zone_name( TracyCZoneCtx ctx, const char* txt, size_t size )
{
assert( size < std::numeric_limits<uint16_t>::max() );
if( !ctx.active ) return;
auto ptr = (char*)tracy::tracy_malloc( size );
memcpy( ptr, txt, size );
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneName );
tracy::MemWrite( &item->zoneTextFat.text, (uint64_t)ptr );
tracy::MemWrite( &item->zoneTextFat.size, (uint16_t)size );
TracyQueueCommitC( zoneTextFatThread );
}
}
TRACY_API void ___tracy_emit_zone_color( TracyCZoneCtx ctx, uint32_t color ) {
if( !ctx.active ) return;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneColor );
tracy::MemWrite( &item->zoneColor.b, uint8_t( ( color ) & 0xFF ) );
tracy::MemWrite( &item->zoneColor.g, uint8_t( ( color >> 8 ) & 0xFF ) );
tracy::MemWrite( &item->zoneColor.r, uint8_t( ( color >> 16 ) & 0xFF ) );
TracyQueueCommitC( zoneColorThread );
}
}
TRACY_API void ___tracy_emit_zone_value( TracyCZoneCtx ctx, uint64_t value )
{
if( !ctx.active ) return;
#ifndef TRACY_NO_VERIFY
{
TracyQueuePrepareC( tracy::QueueType::ZoneValidation );
tracy::MemWrite( &item->zoneValidation.id, ctx.id );
TracyQueueCommitC( zoneValidationThread );
}
#endif
{
TracyQueuePrepareC( tracy::QueueType::ZoneValue );
tracy::MemWrite( &item->zoneValue.value, value );
TracyQueueCommitC( zoneValueThread );
}
}
TRACY_API void ___tracy_emit_memory_alloc( const void* ptr, size_t size, int secure ) { tracy::Profiler::MemAlloc( ptr, size, secure != 0 ); }
TRACY_API void ___tracy_emit_memory_alloc_callstack( const void* ptr, size_t size, int depth, int secure ) { tracy::Profiler::MemAllocCallstack( ptr, size, depth, secure != 0 ); }
TRACY_API void ___tracy_emit_memory_free( const void* ptr, int secure ) { tracy::Profiler::MemFree( ptr, secure != 0 ); }
TRACY_API void ___tracy_emit_memory_free_callstack( const void* ptr, int depth, int secure ) { tracy::Profiler::MemFreeCallstack( ptr, depth, secure != 0 ); }
TRACY_API void ___tracy_emit_memory_alloc_named( const void* ptr, size_t size, int secure, const char* name ) { tracy::Profiler::MemAllocNamed( ptr, size, secure != 0, name ); }
TRACY_API void ___tracy_emit_memory_alloc_callstack_named( const void* ptr, size_t size, int depth, int secure, const char* name ) { tracy::Profiler::MemAllocCallstackNamed( ptr, size, depth, secure != 0, name ); }
TRACY_API void ___tracy_emit_memory_free_named( const void* ptr, int secure, const char* name ) { tracy::Profiler::MemFreeNamed( ptr, secure != 0, name ); }
TRACY_API void ___tracy_emit_memory_free_callstack_named( const void* ptr, int depth, int secure, const char* name ) { tracy::Profiler::MemFreeCallstackNamed( ptr, depth, secure != 0, name ); }
TRACY_API void ___tracy_emit_frame_mark( const char* name ) { tracy::Profiler::SendFrameMark( name ); }
TRACY_API void ___tracy_emit_frame_mark_start( const char* name ) { tracy::Profiler::SendFrameMark( name, tracy::QueueType::FrameMarkMsgStart ); }
TRACY_API void ___tracy_emit_frame_mark_end( const char* name ) { tracy::Profiler::SendFrameMark( name, tracy::QueueType::FrameMarkMsgEnd ); }
TRACY_API void ___tracy_emit_frame_image( const void* image, uint16_t w, uint16_t h, uint8_t offset, int flip ) { tracy::Profiler::SendFrameImage( image, w, h, offset, flip ); }
TRACY_API void ___tracy_emit_plot( const char* name, double val ) { tracy::Profiler::PlotData( name, val ); }
TRACY_API void ___tracy_emit_plot_float( const char* name, float val ) { tracy::Profiler::PlotData( name, val ); }
TRACY_API void ___tracy_emit_plot_int( const char* name, int64_t val ) { tracy::Profiler::PlotData( name, val ); }
TRACY_API void ___tracy_emit_plot_config( const char* name, int type, int step, int fill, uint32_t color ) { tracy::Profiler::ConfigurePlot( name, tracy::PlotFormatType(type), step, fill, color ); }
TRACY_API void ___tracy_emit_message( const char* txt, size_t size, int callstack ) { tracy::Profiler::Message( txt, size, callstack ); }
TRACY_API void ___tracy_emit_messageL( const char* txt, int callstack ) { tracy::Profiler::Message( txt, callstack ); }
TRACY_API void ___tracy_emit_messageC( const char* txt, size_t size, uint32_t color, int callstack ) { tracy::Profiler::MessageColor( txt, size, color, callstack ); }
TRACY_API void ___tracy_emit_messageLC( const char* txt, uint32_t color, int callstack ) { tracy::Profiler::MessageColor( txt, color, callstack ); }
TRACY_API void ___tracy_emit_message_appinfo( const char* txt, size_t size ) { tracy::Profiler::MessageAppInfo( txt, size ); }
TRACY_API uint64_t ___tracy_alloc_srcloc( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz ) {
return tracy::Profiler::AllocSourceLocation( line, source, sourceSz, function, functionSz );
}
TRACY_API uint64_t ___tracy_alloc_srcloc_name( uint32_t line, const char* source, size_t sourceSz, const char* function, size_t functionSz, const char* name, size_t nameSz ) {
return tracy::Profiler::AllocSourceLocation( line, source, sourceSz, function, functionSz, name, nameSz );
}
TRACY_API void ___tracy_emit_gpu_zone_begin( const struct ___tracy_gpu_zone_begin_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuZoneBegin );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_zone_begin_callstack( const struct ___tracy_gpu_zone_begin_callstack_data data )
{
tracy::GetProfiler().SendCallstack( data.depth );
TracyLfqPrepareC( tracy::QueueType::GpuZoneBeginCallstack );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_zone_begin_alloc( const struct ___tracy_gpu_zone_begin_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuZoneBeginAllocSrcLoc );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_zone_begin_alloc_callstack( const struct ___tracy_gpu_zone_begin_callstack_data data )
{
tracy::GetProfiler().SendCallstack( data.depth );
TracyLfqPrepareC( tracy::QueueType::GpuZoneBeginAllocSrcLocCallstack );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_time( const struct ___tracy_gpu_time_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuTime );
tracy::MemWrite( &item->gpuTime.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuTime.queryId, data.queryId );
tracy::MemWrite( &item->gpuTime.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_zone_end( const struct ___tracy_gpu_zone_end_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuZoneEnd );
tracy::MemWrite( &item->gpuZoneEnd.cpuTime, tracy::Profiler::GetTime() );
memset( &item->gpuZoneEnd.thread, 0, sizeof( item->gpuZoneEnd.thread ) );
tracy::MemWrite( &item->gpuZoneEnd.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneEnd.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_new_context( ___tracy_gpu_new_context_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuNewContext );
tracy::MemWrite( &item->gpuNewContext.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuNewContext.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuNewContext.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuNewContext.period, data.period );
tracy::MemWrite( &item->gpuNewContext.context, data.context );
tracy::MemWrite( &item->gpuNewContext.flags, data.flags );
tracy::MemWrite( &item->gpuNewContext.type, data.type );
#ifdef TRACY_ON_DEMAND
tracy::GetProfiler().DeferItem( *item );
#endif
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_context_name( const struct ___tracy_gpu_context_name_data data )
{
auto ptr = (char*)tracy::tracy_malloc( data.len );
memcpy( ptr, data.name, data.len );
TracyLfqPrepareC( tracy::QueueType::GpuContextName );
tracy::MemWrite( &item->gpuContextNameFat.context, data.context );
tracy::MemWrite( &item->gpuContextNameFat.ptr, (uint64_t)ptr );
tracy::MemWrite( &item->gpuContextNameFat.size, data.len );
#ifdef TRACY_ON_DEMAND
tracy::GetProfiler().DeferItem( *item );
#endif
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_calibration( const struct ___tracy_gpu_calibration_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuCalibration );
tracy::MemWrite( &item->gpuCalibration.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuCalibration.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuCalibration.cpuDelta, data.cpuDelta );
tracy::MemWrite( &item->gpuCalibration.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_time_sync( const struct ___tracy_gpu_time_sync_data data )
{
TracyLfqPrepareC( tracy::QueueType::GpuTimeSync );
tracy::MemWrite( &item->gpuTimeSync.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuTimeSync.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuTimeSync.context, data.context );
TracyLfqCommitC;
}
TRACY_API void ___tracy_emit_gpu_zone_begin_serial( const struct ___tracy_gpu_zone_begin_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuZoneBeginSerial );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_zone_begin_callstack_serial( const struct ___tracy_gpu_zone_begin_callstack_data data )
{
auto item = tracy::Profiler::QueueSerialCallstack( tracy::Callstack( data.depth ) );
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuZoneBeginCallstackSerial );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_zone_begin_alloc_serial( const struct ___tracy_gpu_zone_begin_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuZoneBeginAllocSrcLocSerial );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_zone_begin_alloc_callstack_serial( const struct ___tracy_gpu_zone_begin_callstack_data data )
{
auto item = tracy::Profiler::QueueSerialCallstack( tracy::Callstack( data.depth ) );
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuZoneBeginAllocSrcLocCallstackSerial );
tracy::MemWrite( &item->gpuZoneBegin.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuZoneBegin.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuZoneBegin.srcloc, data.srcloc );
tracy::MemWrite( &item->gpuZoneBegin.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneBegin.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_time_serial( const struct ___tracy_gpu_time_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuTime );
tracy::MemWrite( &item->gpuTime.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuTime.queryId, data.queryId );
tracy::MemWrite( &item->gpuTime.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_zone_end_serial( const struct ___tracy_gpu_zone_end_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuZoneEndSerial );
tracy::MemWrite( &item->gpuZoneEnd.cpuTime, tracy::Profiler::GetTime() );
memset( &item->gpuZoneEnd.thread, 0, sizeof( item->gpuZoneEnd.thread ) );
tracy::MemWrite( &item->gpuZoneEnd.queryId, data.queryId );
tracy::MemWrite( &item->gpuZoneEnd.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_new_context_serial( ___tracy_gpu_new_context_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuNewContext );
tracy::MemWrite( &item->gpuNewContext.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuNewContext.thread, tracy::GetThreadHandle() );
tracy::MemWrite( &item->gpuNewContext.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuNewContext.period, data.period );
tracy::MemWrite( &item->gpuNewContext.context, data.context );
tracy::MemWrite( &item->gpuNewContext.flags, data.flags );
tracy::MemWrite( &item->gpuNewContext.type, data.type );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_context_name_serial( const struct ___tracy_gpu_context_name_data data )
{
auto ptr = (char*)tracy::tracy_malloc( data.len );
memcpy( ptr, data.name, data.len );
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuContextName );
tracy::MemWrite( &item->gpuContextNameFat.context, data.context );
tracy::MemWrite( &item->gpuContextNameFat.ptr, (uint64_t)ptr );
tracy::MemWrite( &item->gpuContextNameFat.size, data.len );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_calibration_serial( const struct ___tracy_gpu_calibration_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuCalibration );
tracy::MemWrite( &item->gpuCalibration.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuCalibration.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuCalibration.cpuDelta, data.cpuDelta );
tracy::MemWrite( &item->gpuCalibration.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API void ___tracy_emit_gpu_time_sync_serial( const struct ___tracy_gpu_time_sync_data data )
{
auto item = tracy::Profiler::QueueSerial();
tracy::MemWrite( &item->hdr.type, tracy::QueueType::GpuTimeSync );
tracy::MemWrite( &item->gpuTimeSync.cpuTime, tracy::Profiler::GetTime() );
tracy::MemWrite( &item->gpuTimeSync.gpuTime, data.gpuTime );
tracy::MemWrite( &item->gpuTimeSync.context, data.context );
tracy::Profiler::QueueSerialFinish();
}
TRACY_API int ___tracy_connected( void )
{
return tracy::GetProfiler().IsConnected();
}
#ifdef TRACY_FIBERS
TRACY_API void ___tracy_fiber_enter( const char* fiber ){ tracy::Profiler::EnterFiber( fiber ); }
TRACY_API void ___tracy_fiber_leave( void ){ tracy::Profiler::LeaveFiber(); }
#endif
# ifdef TRACY_MANUAL_LIFETIME
TRACY_API void ___tracy_startup_profiler( void )
{
tracy::StartupProfiler();
}
TRACY_API void ___tracy_shutdown_profiler( void )
{
tracy::ShutdownProfiler();
}
TRACY_API int ___tracy_profiler_started( void )
{
return tracy::s_isProfilerStarted.load( std::memory_order_seq_cst );
}
# endif
#ifdef __cplusplus
}
#endif
#endif