2017-01-18 20:03:45 -05:00

216 lines
7.0 KiB
C++

#include <array>
#include <cstring>
#include <memory>
#include <utility>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/color.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "common/swap.h"
#include "common/vector_math.h"
#include "video_core/texture/internal/etc1.h"
#include "video_core/texture/internal/texture_utils.h"
namespace {
#ifdef _DEBUG
#define CONST_FIX static
#else
#define CONST_FIX constexpr
#endif
CONST_FIX std::array<u8[2], 8> etc1_modifier_table = {{
{2, 8}, {5, 17}, {9, 29}, {13, 42}, {18, 60}, {24, 80}, {33, 106}, {47, 183},
}};
constexpr u32 buildRGBA(u32 r, u32 g, u32 b, u32 a) {
return (a << 24) | (b << 16) | (g << 8) | r;
}
union ETC1Tile {
u64 raw;
// Each of these two is a collection of 16 bits (one per lookup value)
BitField<0, 16, u64> table_subindexes;
BitField<16, 16, u64> negation_flags;
unsigned GetTableSubIndex(unsigned index) const {
return (table_subindexes >> index) & 1;
}
bool GetNegationFlag(unsigned index) const {
return ((negation_flags >> index) & 1) == 1;
}
BitField<32, 1, u64> flip;
BitField<33, 1, u64> differential_mode;
BitField<34, 3, u64> table_index_2;
BitField<37, 3, u64> table_index_1;
union {
// delta value + base value
BitField<40, 3, s64> db;
BitField<43, 5, u64> b;
BitField<48, 3, s64> dg;
BitField<51, 5, u64> g;
BitField<56, 3, s64> dr;
BitField<59, 5, u64> r;
} differential;
union {
BitField<40, 4, u64> b2;
BitField<44, 4, u64> b1;
BitField<48, 4, u64> g2;
BitField<52, 4, u64> g1;
BitField<56, 4, u64> r2;
BitField<60, 4, u64> r1;
} separate;
const u32 GetRGB(u32 x, u32 y) const {
int texel = 4 * x + y;
if (flip)
std::swap(x, y);
// Lookup base value
Math::Vec3<int> ret;
if (differential_mode) {
ret.r() = static_cast<int>(differential.r);
ret.g() = static_cast<int>(differential.g);
ret.b() = static_cast<int>(differential.b);
if (x >= 2) {
ret.r() += static_cast<int>(differential.dr);
ret.g() += static_cast<int>(differential.dg);
ret.b() += static_cast<int>(differential.db);
}
ret.r() = Color::Convert5To8(ret.r());
ret.g() = Color::Convert5To8(ret.g());
ret.b() = Color::Convert5To8(ret.b());
} else {
if (x < 2) {
ret.r() = Color::Convert4To8(static_cast<u8>(separate.r1));
ret.g() = Color::Convert4To8(static_cast<u8>(separate.g1));
ret.b() = Color::Convert4To8(static_cast<u8>(separate.b1));
} else {
ret.r() = Color::Convert4To8(static_cast<u8>(separate.r2));
ret.g() = Color::Convert4To8(static_cast<u8>(separate.g2));
ret.b() = Color::Convert4To8(static_cast<u8>(separate.b2));
}
}
// Add modifier
unsigned table_index =
static_cast<int>((x < 2) ? table_index_1.Value() : table_index_2.Value());
int modifier = etc1_modifier_table[table_index][GetTableSubIndex(texel)];
if (GetNegationFlag(texel))
modifier *= -1;
ret.r() = MathUtil::Clamp(ret.r() + modifier, 0, 255);
ret.g() = MathUtil::Clamp(ret.g() + modifier, 0, 255);
ret.b() = MathUtil::Clamp(ret.b() + modifier, 0, 255);
return buildRGBA(ret.r(), ret.g(), ret.b(), 0);
}
};
} // anonymous namespace
inline void decode(u8* morton_pointer, u8* matrix_pointer, size_t read_size) {
std::memcpy(matrix_pointer, morton_pointer, read_size);
}
template <size_t nibbles, size_t lines_per_block>
void tiling_pass(u8* linear, const u8* tiled, u32 x_blocks) {
const size_t tiled_line_size = (lines_per_block * nibbles) / 2;
const size_t row_length = x_blocks * tiled_line_size;
for (u32 i = 0; i < lines_per_block; i++) {
const u32 k = (lines_per_block - 1 - i);
const size_t tiled_index = i * tiled_line_size;
const size_t linear_index = k * row_length;
std::memcpy(linear + linear_index, tiled + tiled_index, tiled_line_size);
}
}
inline void etc1_pass(const u8* etc1_buffer, u8* linear_buffer, u32 x_blocks) {
const size_t line = 8 * 4;
alignas(64) u8 tmp[line * 8];
for (u32 i = 0; i < 4; i++) {
ETC1Tile tile;
const size_t index = (i % 2) * (line / 2) + (i / 2) * line * 4;
std::memcpy(&tile.raw, &etc1_buffer[i * 8], 8);
for (u32 k = 0; k < 4; k++) {
for (u32 j = 0; j < 4; j++) {
auto rgb = tile.GetRGB(j, k);
u32 rgba = rgb | 0xFF000000;
std::memcpy(&tmp[k * line + j * 4 + index], &rgba, 4);
}
}
}
tiling_pass<8, 8>(linear_buffer, tmp, x_blocks);
}
inline void etc1a4_pass(const u8* etc1_buffer, u8* linear_buffer, u32 x_blocks) {
const size_t line = 8 * 4;
alignas(64) u8 tmp[line * 8];
for (u32 i = 0; i < 4; i++) {
ETC1Tile tile;
u64 alpha_tile;
const size_t index = (i % 2) * (line / 2) + (i / 2) * line * 4;
std::memcpy(&alpha_tile, &etc1_buffer[i * 16], 8);
std::memcpy(&tile.raw, &etc1_buffer[i * 16 + 8], 8);
for (u32 k = 0; k < 4; k++) {
for (u32 j = 0; j < 4; j++) {
u32 alpha = (alpha_tile >> (4 * (j * 4 + k))) & 0x0F;
alpha |= (alpha << 4);
auto rgb = tile.GetRGB(j, k);
u32 rgba = rgb | (alpha << 24);
std::memcpy(&tmp[k * line + j * 4 + index], &rgba, 4);
}
}
}
tiling_pass<8, 8>(linear_buffer, tmp, x_blocks);
}
void ETC1A4(const u8* etc1_buffer, u8* matrix_buffer, u32 width, u32 height) {
const u32 x_blocks = (width / 8);
const u32 y_blocks = (height / 8);
const size_t line_size = 8 * 4;
const size_t tile_size = 8 * 8;
const size_t stride_size = width * line_size;
matrix_buffer = matrix_buffer + (height * width * 4) - stride_size;
for (u32 y = 0; y < y_blocks; y++) {
u8* linear_buffer = matrix_buffer;
for (u32 x = 0; x != x_blocks; x++) {
etc1a4_pass(etc1_buffer, linear_buffer, x_blocks);
linear_buffer += line_size;
etc1_buffer += tile_size;
}
matrix_buffer -= stride_size;
}
}
void ETC1(const u8* etc1_buffer, u8* matrix_buffer, u32 width, u32 height) {
const u32 x_blocks = (width / 8);
const u32 y_blocks = (height / 8);
const size_t line_size = 8 * 4;
const size_t tile_size = 8 * 8 / 2;
const size_t stride_size = width * line_size;
matrix_buffer = matrix_buffer + (height * width * 4) - stride_size;
for (u32 y = 0; y < y_blocks; y++) {
u8* linear_buffer = matrix_buffer;
for (u32 x = 0; x != x_blocks; x++) {
etc1_pass(etc1_buffer, linear_buffer, x_blocks);
linear_buffer += line_size;
etc1_buffer += tile_size;
}
matrix_buffer -= stride_size;
}
}