citra/src/core/hle/service/dsp_dsp.cpp

675 lines
22 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/bit_field.h"
#include "common/logging/log.h"
#include "core/audio/audio.h"
#include "core/core_timing.h"
#include "core/hle/kernel/event.h"
#include "core/hle/service/dsp_dsp.h"
#include <unordered_map>
////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace DSP_DSP
namespace DSP_DSP {
struct PairHash {
public:
template <typename T, typename U>
std::size_t operator()(const std::pair<T, U> &x) const {
return std::hash<T>()(x.first) ^ std::hash<U>()(x.second);
}
};
static u32 read_pipe_count;
static Kernel::SharedPtr<Kernel::Event> semaphore_event;
static u32 semaphore_mask;
static std::unordered_map<std::pair<u32, u32>, Kernel::SharedPtr<Kernel::Event>, PairHash> interrupt_events;
static const u64 frame_tick = 1310252ull;
static int tick_event;
static const int NUM_CHANNELS = 24;
// DSP Addresses
static const VAddr BASE_ADDR_0 = Memory::DSP_RAM_VADDR + 0x40000;
static const VAddr BASE_ADDR_1 = Memory::DSP_RAM_VADDR + 0x60000;
enum DspRegion {
DSPADDR0 = 0xBFFF, // Frame Counter
DSPADDR1 = 0x9E92, // Channel Context (x24)
DSPADDR2 = 0x8680, // Channel Status (x24)
DSPADDR3 = 0xA792, // ADPCM Coefficients (x24)
DSPADDR4 = 0x9430, // Context
DSPADDR5 = 0x8400, // Status
DSPADDR6 = 0x8540, // Loopback Samples
DSPADDR7 = 0x9494,
DSPADDR8 = 0x8710,
DSPADDR9 = 0x8410, // ???
DSPADDR10 = 0xA912,
DSPADDR11 = 0xAA12,
DSPADDR12 = 0xAAD2,
DSPADDR13 = 0xAC52,
DSPADDR14 = 0xAC5C
};
static constexpr VAddr DspAddrToVAddr(VAddr base, DspRegion dsp_addr) {
return (VAddr(dsp_addr) << 1) + base;
}
/**
* dsp_u32:
* Care must be taken when reading/writing 32-bit values as the words are not in the expected order.
*/
struct dsp_u32 {
operator u32() {
return Convert(storage);
}
void operator=(u32 newvalue) {
storage = Convert(newvalue);
}
private:
static constexpr u32 Convert(u32 value) {
return ((value & 0x0000FFFF) << 16) | ((value & 0xFFFF0000) >> 16);
}
u32 storage;
};
#define INSERT_PADDING_DSPWORDS(num_words) u16 CONCAT2(pad, __LINE__)[(num_words)]
#define ASSERT_STRUCT(name, size) \
static_assert(std::is_standard_layout<name>::value, "Structure doesn't use standard layout"); \
static_assert(sizeof(name) == (size), "Unexpected struct size")
struct Buffer {
dsp_u32 physical_address;
dsp_u32 sample_count;
INSERT_PADDING_DSPWORDS(3);
INSERT_PADDING_BYTES(1);
u8 is_looping;
u16 buffer_id;
INSERT_PADDING_DSPWORDS(1);
};
// Userland mainly controls the values in this structure
struct ChannelContext {
u32 dirty;
// Effects
float mix[12];
float rate;
u8 rim[2];
u16 iirfilter_type;
u16 iirfilter_mono[2];
u16 iirfilter_biquad[5];
// Buffer Queue
u16 buffers_dirty; //< Which of those queued buffers is dirty (bit i == buffers[i])
Buffer buffers[4]; //< Queued Buffers
INSERT_PADDING_DSPWORDS(2);
u16 is_active; //< Lower 8 bits == 0x01 if true.
u16 sync;
INSERT_PADDING_DSPWORDS(4);
// Embedded Buffer
dsp_u32 physical_address;
dsp_u32 sample_count;
union {
u16 flags1_raw;
BitField<0, 2, u16> mono_or_stereo;
BitField<2, 2, Audio::Format> format;
};
INSERT_PADDING_DSPWORDS(3);
union {
u16 flags2_raw;
BitField<0, 1, u16> has_adpcm;
BitField<1, 1, u16> is_looping;
};
u16 buffer_id;
};
ASSERT_STRUCT(ChannelContext, 192);
// The DSP controls the values in this structure
struct ChannelStatus {
u16 is_playing;
u16 sync;
dsp_u32 buffer_position;
u16 current_buffer_id;
INSERT_PADDING_DSPWORDS(1);
};
ASSERT_STRUCT(ChannelStatus, 12);
struct AdpcmCoefficients {
s16 coeff[16];
};
ASSERT_STRUCT(AdpcmCoefficients, 32);
template <typename T>
static inline bool TestAndUnsetBit(T& value, size_t bitno) {
T mask = 1 << bitno;
bool ret = (value & mask) == mask;
value &= ~mask;
return ret;
}
static void AudioTick(u64, int cycles_late) {
VAddr current_base;
{
// Frame IDs.
int id0 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_0, DSPADDR0));
int id1 = (int)Memory::Read16(DspAddrToVAddr(BASE_ADDR_1, DSPADDR0));
// The frame id increments once per audio frame, with wraparound at 65,535.
// I am uncertain whether the real DSP actually does something like this,
// or merely checks for a certan id for wraparound. TODO: Verify.
if (id1 - id0 > 10000 && id0 < 10) {
current_base = BASE_ADDR_0;
} else if (id0 - id1 > 10000 && id1 < 10) {
current_base = BASE_ADDR_1;
} else if (id1 > id0) {
current_base = BASE_ADDR_1;
} else {
current_base = BASE_ADDR_0;
}
}
auto channel_contexes = (ChannelContext*) Memory::GetPointer(DspAddrToVAddr(current_base, DSPADDR1));
auto channel_contex0 = (ChannelContext*)Memory::GetPointer(DspAddrToVAddr(BASE_ADDR_0, DSPADDR1));
auto channel_contex1 = (ChannelContext*)Memory::GetPointer(DspAddrToVAddr(BASE_ADDR_1, DSPADDR1));
auto channel_status0 = (ChannelStatus*)Memory::GetPointer(DspAddrToVAddr(BASE_ADDR_0, DSPADDR2));
auto channel_status1 = (ChannelStatus*)Memory::GetPointer(DspAddrToVAddr(BASE_ADDR_1, DSPADDR2));
auto channel_adpcm_coeffs = (AdpcmCoefficients*) Memory::GetPointer(DspAddrToVAddr(current_base, DSPADDR3));
for (int chanid=0; chanid<NUM_CHANNELS; chanid++) {
ChannelContext& ctx = channel_contexes[chanid];
ChannelStatus& status0 = channel_status0[chanid];
ChannelStatus& status1 = channel_status1[chanid];
if (ctx.dirty) {
if (TestAndUnsetBit(ctx.dirty, 29)) {
// First time init
LOG_DEBUG(Service_DSP, "Channel %i: First Time Init", chanid);
}
if (TestAndUnsetBit(ctx.dirty, 2)) {
// Update ADPCM coefficients
Audio::UpdateAdpcm(chanid, channel_adpcm_coeffs[chanid].coeff);
}
if (TestAndUnsetBit(ctx.dirty, 17)) {
// Interpolation type
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented dirty bit 17", chanid);
}
if (TestAndUnsetBit(ctx.dirty, 18)) {
// Rate
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented Rate %f", chanid, ctx.rate);
}
if (TestAndUnsetBit(ctx.dirty, 22)) {
// IIR
LOG_WARNING(Service_DSP, "Channel %i: Unimplemented IIR %x", chanid, ctx.iirfilter_type);
}
if (TestAndUnsetBit(ctx.dirty, 28)) {
// Sync count
LOG_DEBUG(Service_DSP, "Channel %i: Update Sync Count");
status0.sync = ctx.sync;
status1.sync = ctx.sync;
}
if (TestAndUnsetBit(ctx.dirty, 25) | TestAndUnsetBit(ctx.dirty, 26) | TestAndUnsetBit(ctx.dirty, 27)) {
// Mix
for (int i = 0; i < 12; i++)
LOG_DEBUG(Service_DSP, "Channel %i: mix[%i] %f", chanid, i, ctx.mix[i]);
}
if (TestAndUnsetBit(ctx.dirty, 4) | TestAndUnsetBit(ctx.dirty, 21) | TestAndUnsetBit(ctx.dirty, 30)) {
// TODO(merry): One of these bits might merely signify an update to the format. Verify this.
// Format updated
Audio::UpdateFormat(chanid, ctx.mono_or_stereo, ctx.format);
channel_contex0[chanid].flags1_raw = channel_contex1[chanid].flags1_raw = ctx.flags1_raw;
channel_contex0[chanid].flags2_raw = channel_contex1[chanid].flags2_raw = ctx.flags2_raw;
// Embedded Buffer Changed
Audio::EnqueueBuffer(chanid, ctx.buffer_id, Memory::GetPhysicalPointer(ctx.physical_address), ctx.sample_count, ctx.is_looping);
status0.is_playing |= 0x100; // TODO: This is supposed to flicker on then turn off.
}
if (TestAndUnsetBit(ctx.dirty, 19)) {
// Buffer queue
for (int i = 0; i < 4; i++) {
if (TestAndUnsetBit(ctx.buffers_dirty, i)) {
auto& b = ctx.buffers[i];
Audio::EnqueueBuffer(chanid, b.buffer_id, Memory::GetPhysicalPointer(b.physical_address), b.sample_count, b.is_looping);
}
}
if (ctx.buffers_dirty) {
LOG_ERROR(Service_DSP, "Channel %i: Unknown channel buffer dirty bits: 0x%04x", chanid, ctx.buffers_dirty);
}
ctx.buffers_dirty = 0;
status0.is_playing |= 0x100; // TODO: This is supposed to flicker on then turn off.
}
if (TestAndUnsetBit(ctx.dirty, 16)) {
// Is Active?
Audio::Play(chanid, (ctx.is_active & 0xFF) != 0);
}
if (ctx.dirty) {
LOG_ERROR(Service_DSP, "Channel %i: Unknown channel dirty bits: 0x%08x", chanid, ctx.dirty);
}
ctx.dirty = 0;
}
// TODO: Detect any change to the structures without a dirty flag update to identify what the other bits do.
Audio::Tick(chanid);
// Update channel status
bool playing = false;
std::tie(playing, status0.current_buffer_id, status0.buffer_position) = Audio::GetStatus(chanid);
if (playing) {
status0.is_playing |= 1;
} else {
status0.is_playing = 0;
}
status1 = status0;
}
for (auto interrupt_event : interrupt_events)
interrupt_event.second->Signal();
CoreTiming::ScheduleEvent(frame_tick-cycles_late, tick_event, 0);
}
/**
* DSP_DSP::ConvertProcessAddressFromDspDram service function
* Inputs:
* 1 : Address
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : (inaddr << 1) + 0x1FF40000 (where 0x1FF00000 is the DSP RAM address)
*/
static void ConvertProcessAddressFromDspDram(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 addr = cmd_buff[1];
cmd_buff[1] = 0; // No error
cmd_buff[2] = DspAddrToVAddr(BASE_ADDR_0, (DspRegion)addr);
}
/**
* DSP_DSP::LoadComponent service function
* Inputs:
* 1 : Size
* 2 : Unknown (observed only half word used)
* 3 : Unknown (observed only half word used)
* 4 : (size << 4) | 0xA
* 5 : Buffer address
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Component loaded, 0 on not loaded, 1 on loaded
*/
static void LoadComponent(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 size = cmd_buff[1];
u32 unk1 = cmd_buff[2];
u32 unk2 = cmd_buff[3];
u32 new_size = cmd_buff[4];
u32 buffer = cmd_buff[5];
cmd_buff[1] = 0; // No error
cmd_buff[2] = 1; // Pretend that we actually loaded the DSP firmware
// TODO(bunnei): Implement real DSP firmware loading
LOG_WARNING(Service_DSP, "(STUBBED) called size=0x%X, unk1=0x%08X, unk2=0x%08X, new_size=0x%X, buffer=0x%08X",
size, unk1, unk2, new_size, buffer);
}
/**
* DSP_DSP::GetSemaphoreEventHandle service function
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 3 : Semaphore event handle
*/
static void GetSemaphoreEventHandle(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[3] = Kernel::g_handle_table.Create(semaphore_event).MoveFrom(); // Event handle
LOG_WARNING(Service_DSP, "(STUBBED) called");
}
/**
* DSP_DSP::FlushDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void FlushDataCache(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
// TODO(purpasmart96): Verify return header on HW
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_DEBUG(Service_DSP, "(STUBBED) called address=0x%08X, size=0x%X, process=0x%08X",
address, size, process);
}
/**
* DSP_DSP::RegisterInterruptEvents service function
* Inputs:
* 1 : Interrupt
* 2 : Number
* 4 : Interrupt event handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void RegisterInterruptEvents(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 interrupt = cmd_buff[1]; // TODO(merry): Confirm the purpose of each interrupt. Presumably there would be one interrupt that would allow for ARM11 modification of the output.
u32 number = cmd_buff[2];
u32 event_handle = cmd_buff[4];
if (!event_handle) {
// Unregister the event for this interrupt and number
interrupt_events.erase(std::make_pair(interrupt, number));
cmd_buff[1] = RESULT_SUCCESS.raw;
} else {
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(event_handle);
if (evt != nullptr) {
interrupt_events[std::make_pair(interrupt, number)] = evt;
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
} else {
LOG_ERROR(Service_DSP, "called with invalid handle=%08X", event_handle);
// TODO(yuriks): An error should be returned from SendSyncRequest, not in the cmdbuf
cmd_buff[1] = -1;
}
}
LOG_WARNING(Service_DSP, "(STUBBED) called interrupt=%u, number=%u, event_handle=0x%08X", interrupt, number, event_handle);
}
/**
* DSP_DSP::SetSemaphore service function
* Inputs:
* 1 : Unknown (observed only half word used)
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* Notes:
* Games do not seem to rely on the DSP semaphore very much
*/
static void SetSemaphore(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = 0; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called");
}
/**
* DSP_DSP::WriteProcessPipe service function
* Inputs:
* 1 : Number
* 2 : Size
* 3 : (size <<14) | 0x402
* 4 : Buffer
* Outputs:
* 0 : Return header
* 1 : Result of function, 0 on success, otherwise error code
*/
static void WriteProcessPipe(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 number = cmd_buff[1];
u32 size = cmd_buff[2];
u32 new_size = cmd_buff[3];
u32 buffer = cmd_buff[4];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called number=%u, size=0x%X, new_size=0x%X, buffer=0x%08X",
number, size, new_size, buffer);
}
/**
* DSP_DSP::ReadPipeIfPossible service function
* Inputs:
* 1 : Unknown
* 2 : Unknown
* 3 : Size in bytes of read (observed only lower half word used)
* 0x41 : Virtual address to read from DSP pipe to in memory
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Number of bytes read from pipe
*/
static void ReadPipeIfPossible(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 pipe = cmd_buff[1];
u32 unk2 = cmd_buff[2];
u32 size = cmd_buff[3] & 0xFFFF;// Lower 16 bits are size
VAddr addr = cmd_buff[0x41];
if (pipe != 2) {
LOG_ERROR(Service_DSP, "I'm not sure what to do when pipe=0x%08x\n", pipe);
}
// Canned DSP responses that games expect. These were taken from HW by 3dmoo team.
// TODO: Remove this hack :)
// FIXME(merry): Incorrect behaviour; the read buffer isn't a single stream, nor does it behave like a stream.
static const std::array<u16, 16> canned_read_pipe = {{
0x000F,
DSPADDR0,
DSPADDR1,
DSPADDR2,
DSPADDR3,
DSPADDR4,
DSPADDR5,
DSPADDR6,
DSPADDR7,
DSPADDR8,
DSPADDR9,
DSPADDR10,
DSPADDR11,
DSPADDR12,
DSPADDR13,
DSPADDR14,
}};
u32 initial_size = read_pipe_count;
for (unsigned offset = 0; offset < size; offset += sizeof(u16)) {
if (read_pipe_count < canned_read_pipe.size()) {
Memory::Write16(addr + offset, canned_read_pipe[read_pipe_count]);
read_pipe_count++;
} else {
LOG_ERROR(Service_DSP, "canned read pipe log exceeded!");
break;
}
}
cmd_buff[1] = 0; // No error
cmd_buff[2] = (read_pipe_count - initial_size) * sizeof(u16);
LOG_WARNING(Service_DSP, "(STUBBED) called pipe=0x%08X, unk2=0x%08X, size=0x%X, buffer=0x%08X",
pipe, unk2, size, addr);
}
/**
* DSP_DSP::SetSemaphoreMask service function
* Inputs:
* 1 : Mask
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void SetSemaphoreMask(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 mask = cmd_buff[1];
semaphore_mask = mask;
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_DSP, "(STUBBED) called mask=0x%08X", mask);
}
/**
* DSP_DSP::GetHeadphoneStatus service function
* Inputs:
* 1 : None
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : The headphone status response, 0 = Not using headphones?,
* 1 = using headphones?
*/
static void GetHeadphoneStatus(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 0; // Not using headphones?
LOG_DEBUG(Service_DSP, "(STUBBED) called");
}
/**
* DSP_DSP::RecvData service function
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : Value in the register
*/
static void RecvData(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 registerNo = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 1;
LOG_WARNING(Service_DSP, "(STUBBED) called register=%u", registerNo);
}
/**
* DSP_DSP::RecvDataIsReady service function
* Inputs:
* 1 : Register Number
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
* 2 : non-zero == ready
* Notes:
* Seems to be mainly called when going into sleep mode.
*/
static void RecvDataIsReady(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 registerNo = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = 1;
LOG_WARNING(Service_DSP, "(STUBBED) called register=%u", registerNo);
}
const Interface::FunctionInfo FunctionTable[] = {
{0x00010040, nullptr, "RecvData"},
{0x00020040, nullptr, "RecvDataIsReady"},
{0x00030080, nullptr, "SendData"},
{0x00040040, nullptr, "SendDataIsEmpty"},
{0x000500C2, nullptr, "SendFifoEx"},
{0x000600C0, nullptr, "RecvFifoEx"},
{0x00070040, SetSemaphore, "SetSemaphore"},
{0x00080000, nullptr, "GetSemaphore"},
{0x00090040, nullptr, "ClearSemaphore"},
{0x000A0040, nullptr, "MaskSemaphore"},
{0x000B0000, nullptr, "CheckSemaphoreRequest"},
{0x000C0040, ConvertProcessAddressFromDspDram, "ConvertProcessAddressFromDspDram"},
{0x000D0082, WriteProcessPipe, "WriteProcessPipe"},
{0x000E00C0, nullptr, "ReadPipe"},
{0x000F0080, nullptr, "GetPipeReadableSize"},
{0x001000C0, ReadPipeIfPossible, "ReadPipeIfPossible"},
{0x001100C2, LoadComponent, "LoadComponent"},
{0x00120000, nullptr, "UnloadComponent"},
{0x00130082, FlushDataCache, "FlushDataCache"},
{0x00140082, nullptr, "InvalidateDCache"},
{0x00150082, RegisterInterruptEvents, "RegisterInterruptEvents"},
{0x00160000, GetSemaphoreEventHandle, "GetSemaphoreEventHandle"},
{0x00170040, SetSemaphoreMask, "SetSemaphoreMask"},
{0x00180040, nullptr, "GetPhysicalAddress"},
{0x00190040, nullptr, "GetVirtualAddress"},
{0x001A0042, nullptr, "SetIirFilterI2S1_cmd1"},
{0x001B0042, nullptr, "SetIirFilterI2S1_cmd2"},
{0x001C0082, nullptr, "SetIirFilterEQ"},
{0x001D00C0, nullptr, "ReadMultiEx_SPI2"},
{0x001E00C2, nullptr, "WriteMultiEx_SPI2"},
{0x001F0000, GetHeadphoneStatus, "GetHeadphoneStatus"},
{0x00200040, nullptr, "ForceHeadphoneOut"},
{0x00210000, nullptr, "GetIsDspOccupied"},
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Interface class
Interface::Interface() {
semaphore_event = Kernel::Event::Create(RESETTYPE_ONESHOT, "DSP_DSP::semaphore_event");
interrupt_events.clear();
read_pipe_count = 0;
Register(FunctionTable);
tick_event = CoreTiming::RegisterEvent("DSP_DSP::tick_event", AudioTick);
CoreTiming::ScheduleEvent(frame_tick, tick_event, 0);
}
Interface::~Interface() {
semaphore_event = nullptr;
interrupt_events.clear();
CoreTiming::UnscheduleEvent(tick_event, 0);
}
} // namespace