citra/src/core/hw/aes/key.cpp

615 lines
21 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <exception>
#include <fstream>
#include <optional>
#include <sstream>
#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/stream.hpp>
#include <cryptopp/aes.h>
#include <cryptopp/modes.h>
#include <cryptopp/sha.h>
#include <fmt/format.h>
#include "common/common_paths.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/file_sys/archive_ncch.h"
#include "core/hle/service/fs/archive.h"
#include "core/hw/aes/arithmetic128.h"
#include "core/hw/aes/key.h"
#include "core/hw/rsa/rsa.h"
namespace HW::AES {
namespace {
// The generator constant was calculated using the 0x39 KeyX and KeyY retrieved from a 3DS and the
// normal key dumped from a Wii U solving the equation:
// NormalKey = (((KeyX ROL 2) XOR KeyY) + constant) ROL 87
// On a real 3DS the generation for the normal key is hardware based, and thus the constant can't
// get dumped. Generated normal keys are also not accesible on a 3DS. The used formula for
// calculating the constant is a software implementation of what the hardware generator does.
constexpr AESKey generator_constant = {{0x1F, 0xF9, 0xE9, 0xAA, 0xC5, 0xFE, 0x04, 0x08, 0x02, 0x45,
0x91, 0xDC, 0x5D, 0x52, 0x76, 0x8A}};
struct KeyDesc {
char key_type;
std::size_t slot_id;
// This key is identical to the key with the same key_type and slot_id -1
bool same_as_before;
};
AESKey HexToKey(const std::string& hex) {
if (hex.size() < 32) {
throw std::invalid_argument("hex string is too short");
}
AESKey key;
for (std::size_t i = 0; i < key.size(); ++i) {
key[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), 0, 16));
}
return key;
}
std::vector<u8> HexToVector(const std::string& hex) {
std::vector<u8> vector(hex.size() / 2);
for (std::size_t i = 0; i < vector.size(); ++i) {
vector[i] = static_cast<u8>(std::stoi(hex.substr(i * 2, 2), nullptr, 16));
}
return vector;
}
struct KeySlot {
std::optional<AESKey> x;
std::optional<AESKey> y;
std::optional<AESKey> normal;
void SetKeyX(std::optional<AESKey> key) {
x = key;
GenerateNormalKey();
}
void SetKeyY(std::optional<AESKey> key) {
y = key;
GenerateNormalKey();
}
void SetNormalKey(std::optional<AESKey> key) {
normal = key;
}
void GenerateNormalKey() {
if (x && y) {
normal = Lrot128(Add128(Xor128(Lrot128(*x, 2), *y), generator_constant), 87);
} else {
normal = {};
}
}
void Clear() {
x.reset();
y.reset();
normal.reset();
}
};
std::array<KeySlot, KeySlotID::MaxKeySlotID> key_slots;
std::array<std::optional<AESKey>, MaxCommonKeySlot> common_key_y_slots;
std::array<std::optional<AESKey>, NumDlpNfcKeyYs> dlp_nfc_key_y_slots;
std::array<NfcSecret, NumNfcSecrets> nfc_secrets;
AESIV nfc_iv;
enum class FirmwareType : u32 {
ARM9 = 0, // uses NDMA
ARM11 = 1, // uses XDMA
};
struct FirmwareSectionHeader {
u32_le offset;
u32_le phys_address;
u32_le size;
enum_le<FirmwareType> firmware_type;
std::array<u8, 0x20> hash; // SHA-256 hash
};
struct FIRM_Header {
u32_le magic; // FIRM
u32_le boot_priority; // Usually 0
u32_le arm11_entrypoint;
u32_le arm9_entrypoint;
INSERT_PADDING_BYTES(0x30); // Reserved
std::array<FirmwareSectionHeader, 4> section_headers; // 1st ARM11?, 3rd ARM9
std::array<u8, 0x100> signature; // RSA-2048 signature of the FIRM header's hash
};
struct ARM9_Header {
AESKey enc_key_x;
AESKey key_y;
AESKey CTR;
std::array<u8, 8> size; // in ASCII
INSERT_PADDING_BYTES(8); // Unknown
std::array<u8, 16> control_block;
std::array<u8, 16> hardware_debug_info;
std::array<u8, 16> enc_key_x_slot_16;
};
std::string KeyToString(AESKey& key) {
std::string s;
for (auto pos : key) {
s += fmt::format("{:02X}", pos);
}
return s;
}
void LoadBootromKeys() {
constexpr std::array<KeyDesc, 80> keys = {
{{'X', 0x2C, false}, {'X', 0x2D, true}, {'X', 0x2E, true}, {'X', 0x2F, true},
{'X', 0x30, false}, {'X', 0x31, true}, {'X', 0x32, true}, {'X', 0x33, true},
{'X', 0x34, false}, {'X', 0x35, true}, {'X', 0x36, true}, {'X', 0x37, true},
{'X', 0x38, false}, {'X', 0x39, true}, {'X', 0x3A, true}, {'X', 0x3B, true},
{'X', 0x3C, false}, {'X', 0x3D, false}, {'X', 0x3E, false}, {'X', 0x3F, false},
{'Y', 0x4, false}, {'Y', 0x5, false}, {'Y', 0x6, false}, {'Y', 0x7, false},
{'Y', 0x8, false}, {'Y', 0x9, false}, {'Y', 0xA, false}, {'Y', 0xB, false},
{'N', 0xC, false}, {'N', 0xD, true}, {'N', 0xE, true}, {'N', 0xF, true},
{'N', 0x10, false}, {'N', 0x11, true}, {'N', 0x12, true}, {'N', 0x13, true},
{'N', 0x14, false}, {'N', 0x15, false}, {'N', 0x16, false}, {'N', 0x17, false},
{'N', 0x18, false}, {'N', 0x19, true}, {'N', 0x1A, true}, {'N', 0x1B, true},
{'N', 0x1C, false}, {'N', 0x1D, true}, {'N', 0x1E, true}, {'N', 0x1F, true},
{'N', 0x20, false}, {'N', 0x21, true}, {'N', 0x22, true}, {'N', 0x23, true},
{'N', 0x24, false}, {'N', 0x25, true}, {'N', 0x26, true}, {'N', 0x27, true},
{'N', 0x28, true}, {'N', 0x29, false}, {'N', 0x2A, false}, {'N', 0x2B, false},
{'N', 0x2C, false}, {'N', 0x2D, true}, {'N', 0x2E, true}, {'N', 0x2F, true},
{'N', 0x30, false}, {'N', 0x31, true}, {'N', 0x32, true}, {'N', 0x33, true},
{'N', 0x34, false}, {'N', 0x35, true}, {'N', 0x36, true}, {'N', 0x37, true},
{'N', 0x38, false}, {'N', 0x39, true}, {'N', 0x3A, true}, {'N', 0x3B, true},
{'N', 0x3C, true}, {'N', 0x3D, false}, {'N', 0x3E, false}, {'N', 0x3F, false}}};
// Bootrom sets all these keys when executed, but later some of the normal keys get overwritten
// by other applications e.g. process9. These normal keys thus aren't used by any application
// and have no value for emulation
const std::string filepath = FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + BOOTROM9;
auto file = FileUtil::IOFile(filepath, "rb");
if (!file) {
return;
}
const std::size_t length = file.GetSize();
if (length != 65536) {
LOG_ERROR(HW_AES, "Bootrom9 size is wrong: {}", length);
return;
}
constexpr std::size_t KEY_SECTION_START = 55760;
file.Seek(KEY_SECTION_START, SEEK_SET); // Jump to the key section
AESKey new_key;
for (const auto& key : keys) {
if (!key.same_as_before) {
file.ReadArray(new_key.data(), new_key.size());
if (!file) {
LOG_ERROR(HW_AES, "Reading from Bootrom9 failed");
return;
}
}
LOG_DEBUG(HW_AES, "Loaded Slot{:#02x} Key{}: {}", key.slot_id, key.key_type,
KeyToString(new_key));
switch (key.key_type) {
case 'X':
key_slots.at(key.slot_id).SetKeyX(new_key);
break;
case 'Y':
key_slots.at(key.slot_id).SetKeyY(new_key);
break;
case 'N':
key_slots.at(key.slot_id).SetNormalKey(new_key);
break;
default:
LOG_ERROR(HW_AES, "Invalid key type {}", key.key_type);
break;
}
}
}
void LoadNativeFirmKeysOld3DS() {
constexpr u64 native_firm_id = 0x00040138'00000002;
FileSys::NCCHArchive archive(native_firm_id, Service::FS::MediaType::NAND);
std::array<char, 8> exefs_filepath = {'.', 'f', 'i', 'r', 'm', 0, 0, 0};
FileSys::Path file_path = FileSys::MakeNCCHFilePath(
FileSys::NCCHFileOpenType::NCCHData, 0, FileSys::NCCHFilePathType::ExeFS, exefs_filepath);
FileSys::Mode open_mode = {};
open_mode.read_flag.Assign(1);
auto file_result = archive.OpenFile(file_path, open_mode);
if (file_result.Failed())
return;
auto firm = std::move(file_result).Unwrap();
const std::size_t size = firm->GetSize();
if (size != 966656) {
LOG_ERROR(HW_AES, "native firm has wrong size {}", size);
return;
}
const auto rsa = RSA::GetSlot(0);
if (!rsa) {
LOG_ERROR(HW_AES, "RSA slot is missing");
return;
}
std::vector<u8> firm_buffer(size);
firm->Read(0, firm_buffer.size(), firm_buffer.data());
firm->Close();
constexpr std::size_t SLOT_0x25_KEY_X_SECRET_OFFSET = 934444;
constexpr std::size_t SLOT_0x25_KEY_X_SECRET_SIZE = 64;
std::vector<u8> secret_data(SLOT_0x25_KEY_X_SECRET_SIZE);
std::memcpy(secret_data.data(), firm_buffer.data() + SLOT_0x25_KEY_X_SECRET_OFFSET,
secret_data.size());
auto asn1 = RSA::CreateASN1Message(secret_data);
auto result = rsa.GetSignature(asn1);
if (result.size() < 0x100) {
std::vector<u8> temp(0x100);
std::copy(result.begin(), result.end(), temp.end() - result.size());
result = temp;
} else if (result.size() > 0x100) {
result.resize(0x100);
}
CryptoPP::SHA256 sha;
std::array<u8, CryptoPP::SHA256::DIGESTSIZE> hash_result;
sha.CalculateDigest(hash_result.data(), result.data(), result.size());
AESKey key;
std::memcpy(key.data(), hash_result.data(), sizeof(key));
key_slots.at(0x2F).SetKeyY(key);
std::memcpy(key.data(), hash_result.data() + sizeof(key), sizeof(key));
key_slots.at(0x25).SetKeyX(key);
}
void LoadSafeModeNativeFirmKeysOld3DS() {
// Use the safe mode native firm instead of the normal mode since there are only 2 version of it
// and thus we can use fixed offsets
constexpr u64 safe_mode_native_firm_id = 0x00040138'00000003;
FileSys::NCCHArchive archive(safe_mode_native_firm_id, Service::FS::MediaType::NAND);
std::array<char, 8> exefs_filepath = {'.', 'f', 'i', 'r', 'm', 0, 0, 0};
FileSys::Path file_path = FileSys::MakeNCCHFilePath(
FileSys::NCCHFileOpenType::NCCHData, 0, FileSys::NCCHFilePathType::ExeFS, exefs_filepath);
FileSys::Mode open_mode = {};
open_mode.read_flag.Assign(1);
auto file_result = archive.OpenFile(file_path, open_mode);
if (file_result.Failed())
return;
auto firm = std::move(file_result).Unwrap();
const std::size_t size = firm->GetSize();
if (size != 843776) {
LOG_ERROR(HW_AES, "safe mode native firm has wrong size {}", size);
return;
}
std::vector<u8> firm_buffer(size);
firm->Read(0, firm_buffer.size(), firm_buffer.data());
firm->Close();
{
AESKey key;
constexpr std::size_t SLOT_0x31_KEY_Y_OFFSET = 817672;
std::memcpy(key.data(), firm_buffer.data() + SLOT_0x31_KEY_Y_OFFSET, sizeof(key));
key_slots.at(0x31).SetKeyY(key);
LOG_DEBUG(HW_AES, "Loaded Slot0x31 KeyY: {}", KeyToString(key));
}
auto LoadCommonKey = [&firm_buffer](std::size_t key_slot) -> AESKey {
constexpr std::size_t START_OFFSET = 836533;
constexpr std::size_t OFFSET = 0x14; // 0x10 bytes for key + 4 bytes between keys
AESKey key;
std::memcpy(key.data(), firm_buffer.data() + START_OFFSET + OFFSET * key_slot, sizeof(key));
return key;
};
for (std::size_t key_slot{0}; key_slot < 6; ++key_slot) {
AESKey key = LoadCommonKey(key_slot);
common_key_y_slots[key_slot] = key;
LOG_DEBUG(HW_AES, "Loaded common key{}: {}", key_slot, KeyToString(key));
}
}
void LoadNativeFirmKeysNew3DS() {
// The first 0x10 bytes of the secret_sector are used as a key to decrypt a KeyX from the
// native_firm
const std::string filepath =
FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + SECRET_SECTOR;
auto secret = FileUtil::IOFile(filepath, "rb");
if (!secret) {
return;
}
ASSERT(secret.GetSize() > 0x10);
AESKey secret_key;
secret.ReadArray(secret_key.data(), secret_key.size());
// Use the safe mode native firm instead of the normal mode since there are only 1 version of it
// and thus we can use fixed offsets
constexpr u64 safe_mode_native_firm_id = 0x00040138'20000003;
// TODO(B3N30): Add the 0x25 KeyX that gets initalized by native_firm
// TODO(B3N30): Add the 0x18 - 0x1F KeyX that gets initalized by native_firm. This probably
// requires the normal native firm with version > 9.6.0-X
FileSys::NCCHArchive archive(safe_mode_native_firm_id, Service::FS::MediaType::NAND);
std::array<char, 8> exefs_filepath = {'.', 'f', 'i', 'r', 'm', 0, 0, 0};
FileSys::Path file_path = FileSys::MakeNCCHFilePath(
FileSys::NCCHFileOpenType::NCCHData, 0, FileSys::NCCHFilePathType::ExeFS, exefs_filepath);
FileSys::Mode open_mode = {};
open_mode.read_flag.Assign(1);
auto file_result = archive.OpenFile(file_path, open_mode);
if (file_result.Failed())
return;
auto firm = std::move(file_result).Unwrap();
std::vector<u8> firm_buffer(firm->GetSize());
firm->Read(0, firm_buffer.size(), firm_buffer.data());
firm->Close();
FIRM_Header header;
std::memcpy(&header, firm_buffer.data(), sizeof(header));
auto MakeMagic = [](char a, char b, char c, char d) -> u32 {
return a | b << 8 | c << 16 | d << 24;
};
if (MakeMagic('F', 'I', 'R', 'M') != header.magic) {
LOG_ERROR(HW_AES, "N3DS SAFE MODE Native Firm has wrong header {}", header.magic);
return;
}
u32 arm9_offset(0);
u32 arm9_size(0);
for (auto section_header : header.section_headers) {
if (section_header.firmware_type == FirmwareType::ARM9) {
arm9_offset = section_header.offset;
arm9_size = section_header.size;
break;
}
}
if (arm9_offset != 0x66800) {
LOG_ERROR(HW_AES, "ARM9 binary at wrong offset: {}", arm9_offset);
return;
}
if (arm9_size != 0x8BA00) {
LOG_ERROR(HW_AES, "ARM9 binary has wrong size: {}", arm9_size);
return;
}
ARM9_Header arm9_header;
std::memcpy(&arm9_header, firm_buffer.data() + arm9_offset, sizeof(arm9_header));
AESKey keyX_slot0x15;
CryptoPP::ECB_Mode<CryptoPP::AES>::Decryption d;
d.SetKey(secret_key.data(), secret_key.size());
d.ProcessData(keyX_slot0x15.data(), arm9_header.enc_key_x.data(), arm9_header.enc_key_x.size());
key_slots.at(0x15).SetKeyX(keyX_slot0x15);
key_slots.at(0x15).SetKeyY(arm9_header.key_y);
auto normal_key_slot0x15 = key_slots.at(0x15).normal;
if (!normal_key_slot0x15) {
LOG_ERROR(HW_AES, "Failed to get normal key for slot id 0x15");
return;
}
constexpr u32 ARM9_BINARY_OFFSET = 0x800; // From the beginning of the ARM9 section
std::vector<u8> enc_arm9_binary;
enc_arm9_binary.resize(arm9_size - ARM9_BINARY_OFFSET);
ASSERT(enc_arm9_binary.size() + arm9_offset + ARM9_BINARY_OFFSET < firm_buffer.size());
std::memcpy(enc_arm9_binary.data(), firm_buffer.data() + arm9_offset + ARM9_BINARY_OFFSET,
enc_arm9_binary.size());
std::vector<u8> arm9_binary;
arm9_binary.resize(enc_arm9_binary.size());
CryptoPP::CTR_Mode<CryptoPP::AES>::Decryption d2;
d2.SetKeyWithIV(normal_key_slot0x15->data(), normal_key_slot0x15->size(),
arm9_header.CTR.data(), arm9_header.CTR.size());
d2.ProcessData(arm9_binary.data(), enc_arm9_binary.data(), enc_arm9_binary.size());
{
AESKey key;
constexpr std::size_t SLOT_0x31_KEY_Y_OFFSET = 517368;
std::memcpy(key.data(), arm9_binary.data() + SLOT_0x31_KEY_Y_OFFSET, sizeof(key));
key_slots.at(0x31).SetKeyY(key);
LOG_DEBUG(HW_AES, "Loaded Slot0x31 KeyY: {}", KeyToString(key));
}
auto LoadCommonKey = [&arm9_binary](std::size_t key_slot) -> AESKey {
constexpr std::size_t START_OFFSET = 541065;
constexpr std::size_t OFFSET = 0x14; // 0x10 bytes for key + 4 bytes between keys
AESKey key;
std::memcpy(key.data(), arm9_binary.data() + START_OFFSET + OFFSET * key_slot, sizeof(key));
return key;
};
for (std::size_t key_slot{0}; key_slot < 6; ++key_slot) {
AESKey key = LoadCommonKey(key_slot);
common_key_y_slots[key_slot] = key;
LOG_DEBUG(HW_AES, "Loaded common key{}: {}", key_slot, KeyToString(key));
}
}
void LoadPresetKeys() {
const std::string filepath = FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir) + AES_KEYS;
FileUtil::CreateFullPath(filepath); // Create path if not already created
boost::iostreams::stream<boost::iostreams::file_descriptor_source> file;
FileUtil::OpenFStream<std::ios_base::in>(file, filepath);
if (!file.is_open()) {
return;
}
while (!file.eof()) {
std::string line;
std::getline(file, line);
// Ignore empty or commented lines.
if (line.empty() || line.starts_with("#")) {
continue;
}
const auto parts = Common::SplitString(line, '=');
if (parts.size() != 2) {
LOG_ERROR(HW_AES, "Failed to parse {}", line);
continue;
}
const std::string& name = parts[0];
std::size_t nfc_secret_index;
if (std::sscanf(name.c_str(), "nfcSecret%zd", &nfc_secret_index) == 1) {
auto value = HexToVector(parts[1]);
if (nfc_secret_index >= nfc_secrets.size()) {
LOG_ERROR(HW_AES, "Invalid NFC secret index {}", nfc_secret_index);
} else if (name.ends_with("Phrase")) {
nfc_secrets[nfc_secret_index].phrase = value;
} else if (name.ends_with("Seed")) {
nfc_secrets[nfc_secret_index].seed = value;
} else if (name.ends_with("HmacKey")) {
nfc_secrets[nfc_secret_index].hmac_key = value;
} else {
LOG_ERROR(HW_AES, "Invalid NFC secret {}", name);
}
continue;
}
AESKey key;
try {
key = HexToKey(parts[1]);
} catch (const std::logic_error& e) {
LOG_ERROR(HW_AES, "Invalid key {}: {}", parts[1], e.what());
continue;
}
std::size_t common_key_index;
if (std::sscanf(name.c_str(), "common%zd", &common_key_index) == 1) {
if (common_key_index >= common_key_y_slots.size()) {
LOG_ERROR(HW_AES, "Invalid common key index {}", common_key_index);
} else {
common_key_y_slots[common_key_index] = key;
}
continue;
}
if (name == "dlpKeyY") {
dlp_nfc_key_y_slots[DlpNfcKeyY::Dlp] = key;
continue;
}
if (name == "nfcKeyY") {
dlp_nfc_key_y_slots[DlpNfcKeyY::Nfc] = key;
continue;
}
if (name == "nfcIv") {
nfc_iv = key;
continue;
}
std::size_t slot_id;
char key_type;
if (std::sscanf(name.c_str(), "slot0x%zXKey%c", &slot_id, &key_type) != 2) {
LOG_ERROR(HW_AES, "Invalid key name {}", name);
continue;
}
if (slot_id >= MaxKeySlotID) {
LOG_ERROR(HW_AES, "Out of range slot ID {:#X}", slot_id);
continue;
}
switch (key_type) {
case 'X':
key_slots.at(slot_id).SetKeyX(key);
break;
case 'Y':
key_slots.at(slot_id).SetKeyY(key);
break;
case 'N':
key_slots.at(slot_id).SetNormalKey(key);
break;
default:
LOG_ERROR(HW_AES, "Invalid key type {}", key_type);
break;
}
}
}
} // namespace
void InitKeys(bool force) {
static bool initialized = false;
if (initialized && !force)
return;
initialized = true;
HW::RSA::InitSlots();
LoadBootromKeys();
LoadNativeFirmKeysOld3DS();
LoadSafeModeNativeFirmKeysOld3DS();
LoadNativeFirmKeysNew3DS();
LoadPresetKeys();
}
void SetKeyX(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetKeyX(key);
}
void SetKeyY(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetKeyY(key);
}
void SetNormalKey(std::size_t slot_id, const AESKey& key) {
key_slots.at(slot_id).SetNormalKey(key);
}
bool IsKeyXAvailable(std::size_t slot_id) {
return key_slots.at(slot_id).x.has_value();
}
bool IsNormalKeyAvailable(std::size_t slot_id) {
return key_slots.at(slot_id).normal.has_value();
}
AESKey GetNormalKey(std::size_t slot_id) {
return key_slots.at(slot_id).normal.value_or(AESKey{});
}
void SelectCommonKeyIndex(u8 index) {
key_slots[KeySlotID::TicketCommonKey].SetKeyY(common_key_y_slots.at(index));
}
void SelectDlpNfcKeyYIndex(u8 index) {
key_slots[KeySlotID::DLPNFCDataKey].SetKeyY(dlp_nfc_key_y_slots.at(index));
}
bool NfcSecretsAvailable() {
auto missing_secret =
std::find_if(nfc_secrets.begin(), nfc_secrets.end(), [](auto& nfc_secret) {
return nfc_secret.phrase.empty() || nfc_secret.seed.empty() ||
nfc_secret.hmac_key.empty();
});
SelectDlpNfcKeyYIndex(DlpNfcKeyY::Nfc);
return IsNormalKeyAvailable(KeySlotID::DLPNFCDataKey) && missing_secret == nfc_secrets.end();
}
const NfcSecret& GetNfcSecret(NfcSecretId secret_id) {
return nfc_secrets[secret_id];
}
const AESIV& GetNfcIv() {
return nfc_iv;
}
} // namespace HW::AES