citra/src/core/dumping/ffmpeg_backend.cpp
2023-06-17 21:23:58 +05:30

1104 lines
37 KiB
C++

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <unordered_map>
#include "common/assert.h"
#include "common/file_util.h"
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "common/string_util.h"
#include "core/dumping/ffmpeg_backend.h"
#include "core/hw/gpu.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
using namespace DynamicLibrary;
namespace VideoDumper {
void InitializeFFmpegLibraries() {
static bool initialized = false;
if (initialized) {
return;
}
FFmpeg::avformat_network_init();
initialized = true;
}
AVDictionary* ToAVDictionary(const std::string& serialized) {
Common::ParamPackage param_package{serialized};
AVDictionary* result = nullptr;
for (const auto& [key, value] : param_package) {
FFmpeg::av_dict_set(&result, key.c_str(), value.c_str(), 0);
}
return result;
}
FFmpegStream::~FFmpegStream() {
Free();
}
bool FFmpegStream::Init(FFmpegMuxer& muxer) {
InitializeFFmpegLibraries();
format_context = muxer.format_context.get();
format_context_mutex = &muxer.format_context_mutex;
return true;
}
void FFmpegStream::Free() {
codec_context.reset();
}
void FFmpegStream::Flush() {
SendFrame(nullptr);
}
void FFmpegStream::WritePacket(AVPacket* packet) {
FFmpeg::av_packet_rescale_ts(packet, codec_context->time_base, stream->time_base);
packet->stream_index = stream->index;
{
std::lock_guard lock{*format_context_mutex};
FFmpeg::av_interleaved_write_frame(format_context, packet);
}
}
void FFmpegStream::SendFrame(AVFrame* frame) {
// Initialize packet
AVPacket* packet = FFmpeg::av_packet_alloc();
if (!packet) {
LOG_ERROR(Render, "Frame dropped: av_packet_alloc failed");
}
SCOPE_EXIT({ FFmpeg::av_packet_free(&packet); });
packet->data = nullptr;
packet->size = 0;
// Encode frame
if (FFmpeg::avcodec_send_frame(codec_context.get(), frame) < 0) {
LOG_ERROR(Render, "Frame dropped: could not send frame");
return;
}
int error = 1;
while (error >= 0) {
error = FFmpeg::avcodec_receive_packet(codec_context.get(), packet);
if (error == AVERROR(EAGAIN) || error == AVERROR_EOF)
return;
if (error < 0) {
LOG_ERROR(Render, "Frame dropped: could not encode audio");
return;
} else {
// Write frame to video file
WritePacket(packet);
}
}
}
FFmpegVideoStream::~FFmpegVideoStream() {
Free();
}
// This is modified from libavcodec/decode.c
// The original version was broken
static AVPixelFormat GetPixelFormat(AVCodecContext* avctx, const AVPixelFormat* fmt) {
// Choose a software pixel format if any, prefering those in the front of the list
for (int i = 0; fmt[i] != AV_PIX_FMT_NONE; i++) {
const AVPixFmtDescriptor* desc = FFmpeg::av_pix_fmt_desc_get(fmt[i]);
if (!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL)) {
return fmt[i];
}
}
// Finally, traverse the list in order and choose the first entry
// with no external dependencies (if there is no hardware configuration
// information available then this just picks the first entry).
for (int i = 0; fmt[i] != AV_PIX_FMT_NONE; i++) {
const AVCodecHWConfig* config;
for (int j = 0;; j++) {
config = FFmpeg::avcodec_get_hw_config(avctx->codec, j);
if (!config || config->pix_fmt == fmt[i]) {
break;
}
}
if (!config) {
// No specific config available, so the decoder must be able
// to handle this format without any additional setup.
return fmt[i];
}
if (config->methods & AV_CODEC_HW_CONFIG_METHOD_INTERNAL) {
// Usable with only internal setup.
return fmt[i];
}
}
// Nothing is usable, give up.
return AV_PIX_FMT_NONE;
}
bool FFmpegVideoStream::Init(FFmpegMuxer& muxer, const Layout::FramebufferLayout& layout_) {
InitializeFFmpegLibraries();
if (!FFmpegStream::Init(muxer)) {
return false;
}
layout = layout_;
frame_count = 0;
// Initialize video codec
const AVCodec* codec =
FFmpeg::avcodec_find_encoder_by_name(Settings::values.video_encoder.c_str());
codec_context.reset(FFmpeg::avcodec_alloc_context3(codec));
if (!codec || !codec_context) {
LOG_ERROR(Render, "Could not find video encoder or allocate video codec context");
return false;
}
// Configure video codec context
codec_context->codec_type = AVMEDIA_TYPE_VIDEO;
codec_context->bit_rate = Settings::values.video_bitrate;
codec_context->width = layout.width;
codec_context->height = layout.height;
// Use 60fps here, since the video is already filtered (resampled)
codec_context->time_base.num = 1;
codec_context->time_base.den = 60;
codec_context->gop_size = 12;
// Get pixel format for codec
auto options = ToAVDictionary(Settings::values.video_encoder_options);
auto pixel_format_opt = FFmpeg::av_dict_get(options, "pixel_format", nullptr, 0);
if (pixel_format_opt) {
sw_pixel_format = FFmpeg::av_get_pix_fmt(pixel_format_opt->value);
} else if (codec->pix_fmts) {
sw_pixel_format = GetPixelFormat(codec_context.get(), codec->pix_fmts);
} else {
sw_pixel_format = AV_PIX_FMT_YUV420P;
}
if (sw_pixel_format == AV_PIX_FMT_NONE) {
// This encoder requires HW context configuration.
if (!InitHWContext(codec)) {
LOG_ERROR(Render, "Failed to initialize HW context");
return false;
}
} else {
requires_hw_frames = false;
codec_context->pix_fmt = sw_pixel_format;
}
if (format_context->oformat->flags & AVFMT_GLOBALHEADER) {
codec_context->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
}
if (FFmpeg::avcodec_open2(codec_context.get(), codec, &options) < 0) {
LOG_ERROR(Render, "Could not open video codec");
return false;
}
if (FFmpeg::av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
FFmpeg::av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Video encoder options not found: {}", buf);
}
// Create video stream
stream = FFmpeg::avformat_new_stream(format_context, codec);
if (!stream ||
FFmpeg::avcodec_parameters_from_context(stream->codecpar, codec_context.get()) < 0) {
LOG_ERROR(Render, "Could not create video stream");
return false;
}
stream->time_base = codec_context->time_base;
// Allocate frames
current_frame.reset(FFmpeg::av_frame_alloc());
filtered_frame.reset(FFmpeg::av_frame_alloc());
if (requires_hw_frames) {
hw_frame.reset(FFmpeg::av_frame_alloc());
if (FFmpeg::av_hwframe_get_buffer(codec_context->hw_frames_ctx, hw_frame.get(), 0) < 0) {
LOG_ERROR(Render, "Could not allocate buffer for HW frame");
return false;
}
}
return InitFilters();
}
void FFmpegVideoStream::Free() {
FFmpegStream::Free();
current_frame.reset();
filtered_frame.reset();
hw_frame.reset();
filter_graph.reset();
source_context = nullptr;
sink_context = nullptr;
}
void FFmpegVideoStream::ProcessFrame(VideoFrame& frame) {
if (frame.width != layout.width || frame.height != layout.height) {
LOG_ERROR(Render, "Frame dropped: resolution does not match");
return;
}
// Prepare frame
current_frame->data[0] = frame.data.data();
current_frame->linesize[0] = frame.stride;
current_frame->format = pixel_format;
current_frame->width = layout.width;
current_frame->height = layout.height;
current_frame->pts = frame_count++;
// Filter the frame
if (FFmpeg::av_buffersrc_add_frame(source_context, current_frame.get()) < 0) {
LOG_ERROR(Render, "Video frame dropped: Could not add frame to filter graph");
return;
}
while (true) {
const int error = FFmpeg::av_buffersink_get_frame(sink_context, filtered_frame.get());
if (error == AVERROR(EAGAIN) || error == AVERROR_EOF) {
return;
}
if (error < 0) {
LOG_ERROR(Render, "Video frame dropped: Could not receive frame from filter graph");
return;
} else {
if (requires_hw_frames) {
if (FFmpeg::av_hwframe_transfer_data(hw_frame.get(), filtered_frame.get(), 0) < 0) {
LOG_ERROR(Render, "Video frame dropped: Could not upload to HW frame");
return;
}
SendFrame(hw_frame.get());
} else {
SendFrame(filtered_frame.get());
}
FFmpeg::av_frame_unref(filtered_frame.get());
}
}
}
bool FFmpegVideoStream::InitHWContext(const AVCodec* codec) {
for (std::size_t i = 0; codec->pix_fmts[i] != AV_PIX_FMT_NONE; ++i) {
const AVCodecHWConfig* config;
for (int j = 0;; ++j) {
config = FFmpeg::avcodec_get_hw_config(codec, j);
if (!config || config->pix_fmt == codec->pix_fmts[i]) {
break;
}
}
// If we are at this point, there should not be any possible HW format that does not
// need configuration.
ASSERT_MSG(config, "HW pixel format that does not need config should have been selected");
if (!(config->methods & (AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX |
AV_CODEC_HW_CONFIG_METHOD_HW_FRAMES_CTX))) {
// Maybe this format requires ad-hoc configuration, unsupported.
continue;
}
codec_context->pix_fmt = codec->pix_fmts[i];
// Create HW device context
AVBufferRef* hw_device_context;
SCOPE_EXIT({ FFmpeg::av_buffer_unref(&hw_device_context); });
// TODO: Provide the argument here somehow.
// This is necessary for some devices like CUDA where you must supply the GPU name.
// This is not necessary for VAAPI, etc.
if (FFmpeg::av_hwdevice_ctx_create(&hw_device_context, config->device_type, nullptr,
nullptr, 0) < 0) {
LOG_ERROR(Render, "Failed to create HW device context");
continue;
}
codec_context->hw_device_ctx = FFmpeg::av_buffer_ref(hw_device_context);
// Get the SW format
AVHWFramesConstraints* constraints =
FFmpeg::av_hwdevice_get_hwframe_constraints(hw_device_context, nullptr);
SCOPE_EXIT({ FFmpeg::av_hwframe_constraints_free(&constraints); });
if (constraints) {
sw_pixel_format = constraints->valid_sw_formats ? constraints->valid_sw_formats[0]
: AV_PIX_FMT_YUV420P;
} else {
LOG_WARNING(Render, "Could not query HW device constraints");
sw_pixel_format = AV_PIX_FMT_YUV420P;
}
// For encoders that only need the HW device
if (config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX) {
requires_hw_frames = false;
return true;
}
requires_hw_frames = true;
// Create HW frames context
AVBufferRef* hw_frames_context_ref;
SCOPE_EXIT({ FFmpeg::av_buffer_unref(&hw_frames_context_ref); });
if (!(hw_frames_context_ref = FFmpeg::av_hwframe_ctx_alloc(hw_device_context))) {
LOG_ERROR(Render, "Failed to create HW frames context");
continue;
}
AVHWFramesContext* hw_frames_context =
reinterpret_cast<AVHWFramesContext*>(hw_frames_context_ref->data);
hw_frames_context->format = codec->pix_fmts[i];
hw_frames_context->sw_format = sw_pixel_format;
hw_frames_context->width = codec_context->width;
hw_frames_context->height = codec_context->height;
hw_frames_context->initial_pool_size = 20; // value from FFmpeg's example
if (FFmpeg::av_hwframe_ctx_init(hw_frames_context_ref) < 0) {
LOG_ERROR(Render, "Failed to initialize HW frames context");
continue;
}
codec_context->hw_frames_ctx = FFmpeg::av_buffer_ref(hw_frames_context_ref);
return true;
}
LOG_ERROR(Render, "Failed to find a usable HW pixel format");
return false;
}
bool FFmpegVideoStream::InitFilters() {
filter_graph.reset(FFmpeg::avfilter_graph_alloc());
const AVFilter* source = FFmpeg::avfilter_get_by_name("buffer");
const AVFilter* sink = FFmpeg::avfilter_get_by_name("buffersink");
if (!source || !sink) {
LOG_ERROR(Render, "Could not find buffer source or sink");
return false;
}
// Configure buffer source
static constexpr AVRational src_time_base{static_cast<int>(GPU::frame_ticks),
static_cast<int>(BASE_CLOCK_RATE_ARM11)};
const std::string in_args =
fmt::format("video_size={}x{}:pix_fmt={}:time_base={}/{}:pixel_aspect=1", layout.width,
layout.height, pixel_format, src_time_base.num, src_time_base.den);
if (FFmpeg::avfilter_graph_create_filter(&source_context, source, "in", in_args.c_str(),
nullptr, filter_graph.get()) < 0) {
LOG_ERROR(Render, "Could not create buffer source");
return false;
}
// Configure buffer sink
if (FFmpeg::avfilter_graph_create_filter(&sink_context, sink, "out", nullptr, nullptr,
filter_graph.get()) < 0) {
LOG_ERROR(Render, "Could not create buffer sink");
return false;
}
// Point av_opt_set_int_list to correct functions.
#define av_int_list_length_for_size FFmpeg::av_int_list_length_for_size
#define av_opt_set_bin FFmpeg::av_opt_set_bin
const AVPixelFormat pix_fmts[] = {sw_pixel_format, AV_PIX_FMT_NONE};
if (av_opt_set_int_list(sink_context, "pix_fmts", pix_fmts, AV_PIX_FMT_NONE,
AV_OPT_SEARCH_CHILDREN) < 0) {
LOG_ERROR(Render, "Could not set output pixel format");
return false;
}
// Initialize filter graph
// `outputs` as in outputs of the 'previous' graphs
AVFilterInOut* outputs = FFmpeg::avfilter_inout_alloc();
outputs->name = FFmpeg::av_strdup("in");
outputs->filter_ctx = source_context;
outputs->pad_idx = 0;
outputs->next = nullptr;
// `inputs` as in inputs to the 'next' graphs
AVFilterInOut* inputs = FFmpeg::avfilter_inout_alloc();
inputs->name = FFmpeg::av_strdup("out");
inputs->filter_ctx = sink_context;
inputs->pad_idx = 0;
inputs->next = nullptr;
SCOPE_EXIT({
FFmpeg::avfilter_inout_free(&outputs);
FFmpeg::avfilter_inout_free(&inputs);
});
if (FFmpeg::avfilter_graph_parse_ptr(filter_graph.get(), filter_graph_desc.data(), &inputs,
&outputs, nullptr) < 0) {
LOG_ERROR(Render, "Could not parse or create filter graph");
return false;
}
if (FFmpeg::avfilter_graph_config(filter_graph.get(), nullptr) < 0) {
LOG_ERROR(Render, "Could not configure filter graph");
return false;
}
return true;
}
FFmpegAudioStream::~FFmpegAudioStream() {
Free();
}
bool FFmpegAudioStream::Init(FFmpegMuxer& muxer) {
InitializeFFmpegLibraries();
if (!FFmpegStream::Init(muxer)) {
return false;
}
frame_count = 0;
// Initialize audio codec
const AVCodec* codec =
FFmpeg::avcodec_find_encoder_by_name(Settings::values.audio_encoder.c_str());
codec_context.reset(FFmpeg::avcodec_alloc_context3(codec));
if (!codec || !codec_context) {
LOG_ERROR(Render, "Could not find audio encoder or allocate audio codec context");
return false;
}
// Configure audio codec context
codec_context->codec_type = AVMEDIA_TYPE_AUDIO;
codec_context->bit_rate = Settings::values.audio_bitrate;
if (codec->sample_fmts) {
codec_context->sample_fmt = codec->sample_fmts[0];
} else {
codec_context->sample_fmt = AV_SAMPLE_FMT_S16P;
}
if (codec->supported_samplerates) {
codec_context->sample_rate = codec->supported_samplerates[0];
// Prefer native sample rate if supported
const int* ptr = codec->supported_samplerates;
while ((*ptr)) {
if ((*ptr) == AudioCore::native_sample_rate) {
codec_context->sample_rate = AudioCore::native_sample_rate;
break;
}
ptr++;
}
} else {
codec_context->sample_rate = AudioCore::native_sample_rate;
}
codec_context->time_base.num = 1;
codec_context->time_base.den = codec_context->sample_rate;
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(59, 24, 100) // lavc 59.24.100
codec_context->ch_layout = AV_CHANNEL_LAYOUT_STEREO;
#else
codec_context->channel_layout = AV_CH_LAYOUT_STEREO;
codec_context->channels = 2;
#endif
if (format_context->oformat->flags & AVFMT_GLOBALHEADER) {
codec_context->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
}
AVDictionary* options = ToAVDictionary(Settings::values.audio_encoder_options);
if (FFmpeg::avcodec_open2(codec_context.get(), codec, &options) < 0) {
LOG_ERROR(Render, "Could not open audio codec");
return false;
}
if (FFmpeg::av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
FFmpeg::av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Audio encoder options not found: {}", buf);
}
if (codec_context->frame_size) {
frame_size = static_cast<u64>(codec_context->frame_size);
} else { // variable frame size support
frame_size = std::tuple_size<AudioCore::StereoFrame16>::value;
}
// Create audio stream
stream = FFmpeg::avformat_new_stream(format_context, codec);
if (!stream ||
FFmpeg::avcodec_parameters_from_context(stream->codecpar, codec_context.get()) < 0) {
LOG_ERROR(Render, "Could not create audio stream");
return false;
}
// Allocate frame
audio_frame.reset(FFmpeg::av_frame_alloc());
audio_frame->format = codec_context->sample_fmt;
audio_frame->sample_rate = codec_context->sample_rate;
#if LIBAVCODEC_VERSION_INT >= AV_VERSION_INT(59, 24, 100) // lavc 59.24.100
auto num_channels = codec_context->ch_layout.nb_channels;
audio_frame->ch_layout = codec_context->ch_layout;
SwrContext* context = nullptr;
FFmpeg::swr_alloc_set_opts2(&context, &codec_context->ch_layout, codec_context->sample_fmt,
codec_context->sample_rate, &codec_context->ch_layout,
AV_SAMPLE_FMT_S16P, AudioCore::native_sample_rate, 0, nullptr);
#else
auto num_channels = codec_context->channels;
audio_frame->channel_layout = codec_context->channel_layout;
audio_frame->channels = num_channels;
auto* context = FFmpeg::swr_alloc_set_opts(
nullptr, codec_context->channel_layout, codec_context->sample_fmt,
codec_context->sample_rate, codec_context->channel_layout, AV_SAMPLE_FMT_S16P,
AudioCore::native_sample_rate, 0, nullptr);
#endif
if (!context) {
LOG_ERROR(Render, "Could not create SWR context");
return false;
}
swr_context.reset(context);
if (FFmpeg::swr_init(swr_context.get()) < 0) {
LOG_ERROR(Render, "Could not init SWR context");
return false;
}
// Allocate resampled data
int error = FFmpeg::av_samples_alloc_array_and_samples(
&resampled_data, nullptr, num_channels, frame_size, codec_context->sample_fmt, 0);
if (error < 0) {
LOG_ERROR(Render, "Could not allocate samples storage");
return false;
}
return true;
}
void FFmpegAudioStream::Free() {
FFmpegStream::Free();
audio_frame.reset();
swr_context.reset();
// Free resampled data
if (resampled_data) {
FFmpeg::av_freep(&resampled_data[0]);
}
FFmpeg::av_freep(&resampled_data);
}
void FFmpegAudioStream::ProcessFrame(const VariableAudioFrame& channel0,
const VariableAudioFrame& channel1) {
ASSERT_MSG(channel0.size() == channel1.size(),
"Frames of the two channels must have the same number of samples");
const auto sample_size = FFmpeg::av_get_bytes_per_sample(codec_context->sample_fmt);
std::array<const u8*, 2> src_data = {reinterpret_cast<const u8*>(channel0.data()),
reinterpret_cast<const u8*>(channel1.data())};
std::array<u8*, 2> dst_data;
if (FFmpeg::av_sample_fmt_is_planar(codec_context->sample_fmt)) {
dst_data = {resampled_data[0] + sample_size * offset,
resampled_data[1] + sample_size * offset};
} else {
dst_data = {resampled_data[0] + sample_size * offset * 2}; // 2 channels
}
auto resampled_count =
FFmpeg::swr_convert(swr_context.get(), dst_data.data(), frame_size - offset,
src_data.data(), static_cast<int>(channel0.size()));
if (resampled_count < 0) {
LOG_ERROR(Render, "Audio frame dropped: Could not resample data");
return;
}
offset += resampled_count;
if (offset < frame_size) { // Still not enough to form a frame
return;
}
while (true) {
// Prepare frame
audio_frame->nb_samples = frame_size;
audio_frame->data[0] = resampled_data[0];
if (FFmpeg::av_sample_fmt_is_planar(codec_context->sample_fmt)) {
audio_frame->data[1] = resampled_data[1];
}
audio_frame->pts = frame_count * frame_size;
frame_count++;
SendFrame(audio_frame.get());
// swr_convert buffers input internally. Try to get more resampled data
resampled_count =
FFmpeg::swr_convert(swr_context.get(), resampled_data, frame_size, nullptr, 0);
if (resampled_count < 0) {
LOG_ERROR(Render, "Audio frame dropped: Could not resample data");
return;
}
if (resampled_count < frame_size) {
offset = resampled_count;
break;
}
}
}
void FFmpegAudioStream::Flush() {
// Send the last samples
audio_frame->nb_samples = offset;
audio_frame->data[0] = resampled_data[0];
if (FFmpeg::av_sample_fmt_is_planar(codec_context->sample_fmt)) {
audio_frame->data[1] = resampled_data[1];
}
audio_frame->pts = frame_count * frame_size;
SendFrame(audio_frame.get());
FFmpegStream::Flush();
}
FFmpegMuxer::~FFmpegMuxer() {
Free();
}
bool FFmpegMuxer::Init(const std::string& path, const Layout::FramebufferLayout& layout) {
InitializeFFmpegLibraries();
if (!FileUtil::CreateFullPath(path)) {
return false;
}
// Get output format
const auto format = Settings::values.output_format;
auto* output_format = FFmpeg::av_guess_format(format.c_str(), path.c_str(), nullptr);
if (!output_format) {
LOG_ERROR(Render, "Could not get format {}", format);
return false;
}
// Initialize format context
auto* format_context_raw = format_context.get();
if (FFmpeg::avformat_alloc_output_context2(&format_context_raw, output_format, nullptr,
path.c_str()) < 0) {
LOG_ERROR(Render, "Could not allocate output context");
return false;
}
format_context.reset(format_context_raw);
if (!video_stream.Init(*this, layout))
return false;
if (!audio_stream.Init(*this))
return false;
AVDictionary* options = ToAVDictionary(Settings::values.format_options);
// Open video file
if (FFmpeg::avio_open(&format_context->pb, path.c_str(), AVIO_FLAG_WRITE) < 0 ||
FFmpeg::avformat_write_header(format_context.get(), &options)) {
LOG_ERROR(Render, "Could not open {}", path);
return false;
}
if (FFmpeg::av_dict_count(options) != 0) { // Successfully set options are removed from the dict
char* buf = nullptr;
FFmpeg::av_dict_get_string(options, &buf, ':', ';');
LOG_WARNING(Render, "Format options not found: {}", buf);
}
LOG_INFO(Render, "Dumping frames to {} ({}x{})", path, layout.width, layout.height);
return true;
}
void FFmpegMuxer::Free() {
video_stream.Free();
audio_stream.Free();
format_context.reset();
}
void FFmpegMuxer::ProcessVideoFrame(VideoFrame& frame) {
video_stream.ProcessFrame(frame);
}
void FFmpegMuxer::ProcessAudioFrame(const VariableAudioFrame& channel0,
const VariableAudioFrame& channel1) {
audio_stream.ProcessFrame(channel0, channel1);
}
void FFmpegMuxer::FlushVideo() {
video_stream.Flush();
}
void FFmpegMuxer::FlushAudio() {
audio_stream.Flush();
}
void FFmpegMuxer::WriteTrailer() {
std::lock_guard lock{format_context_mutex};
FFmpeg::av_interleaved_write_frame(format_context.get(), nullptr);
FFmpeg::av_write_trailer(format_context.get());
}
FFmpegBackend::FFmpegBackend() = default;
FFmpegBackend::~FFmpegBackend() {
ASSERT_MSG(!IsDumping(), "Dumping must be stopped first");
if (video_processing_thread.joinable())
video_processing_thread.join();
if (audio_processing_thread.joinable())
audio_processing_thread.join();
ffmpeg.Free();
}
bool FFmpegBackend::StartDumping(const std::string& path, const Layout::FramebufferLayout& layout) {
InitializeFFmpegLibraries();
if (!ffmpeg.Init(path, layout)) {
ffmpeg.Free();
return false;
}
video_layout = layout;
if (video_processing_thread.joinable()) {
video_processing_thread.join();
}
video_processing_thread = std::thread([&] {
event1.Set();
while (true) {
event2.Wait();
current_buffer = (current_buffer + 1) % 2;
next_buffer = (current_buffer + 1) % 2;
event1.Set();
// Process this frame
auto& frame = video_frame_buffers[current_buffer];
if (frame.width == 0 && frame.height == 0) {
// An empty frame marks the end of frame data
ffmpeg.FlushVideo();
break;
}
ffmpeg.ProcessVideoFrame(frame);
}
// Finish audio execution first if not done yet
if (audio_processing_thread.joinable())
audio_processing_thread.join();
EndDumping();
});
if (audio_processing_thread.joinable()) {
audio_processing_thread.join();
}
audio_processing_thread = std::thread([&] {
VariableAudioFrame channel0, channel1;
while (true) {
channel0 = audio_frame_queues[0].PopWait();
channel1 = audio_frame_queues[1].PopWait();
if (channel0.empty()) {
// An empty frame marks the end of frame data
ffmpeg.FlushAudio();
break;
}
ffmpeg.ProcessAudioFrame(channel0, channel1);
}
});
VideoCore::g_renderer->PrepareVideoDumping();
is_dumping = true;
return true;
}
void FFmpegBackend::AddVideoFrame(VideoFrame frame) {
event1.Wait();
video_frame_buffers[next_buffer] = std::move(frame);
event2.Set();
}
void FFmpegBackend::AddAudioFrame(AudioCore::StereoFrame16 frame) {
std::array<VariableAudioFrame, 2> refactored_frame;
for (auto& channel : refactored_frame) {
channel.resize(frame.size());
}
for (std::size_t i = 0; i < frame.size(); i++) {
refactored_frame[0][i] = frame[i][0];
refactored_frame[1][i] = frame[i][1];
}
audio_frame_queues[0].Push(std::move(refactored_frame[0]));
audio_frame_queues[1].Push(std::move(refactored_frame[1]));
}
void FFmpegBackend::AddAudioSample(const std::array<s16, 2>& sample) {
audio_frame_queues[0].Push(VariableAudioFrame{sample[0]});
audio_frame_queues[1].Push(VariableAudioFrame{sample[1]});
}
void FFmpegBackend::StopDumping() {
is_dumping = false;
VideoCore::g_renderer->CleanupVideoDumping();
// Flush the video processing queue
AddVideoFrame(VideoFrame());
for (auto i : {0, 1}) {
// Flush the audio processing queue
audio_frame_queues[i].Push(VariableAudioFrame());
}
// Wait until processing ends
processing_ended.Wait();
}
bool FFmpegBackend::IsDumping() const {
return is_dumping.load(std::memory_order_relaxed);
}
Layout::FramebufferLayout FFmpegBackend::GetLayout() const {
return video_layout;
}
void FFmpegBackend::EndDumping() {
LOG_INFO(Render, "Ending frame dumping");
ffmpeg.WriteTrailer();
ffmpeg.Free();
processing_ended.Set();
}
// To std string, but handles nullptr
std::string ToStdString(const char* str, const std::string& fallback = "") {
return str ? std::string{str} : fallback;
}
std::string FormatDuration(s64 duration) {
// The following is implemented according to libavutil code (opt.c)
std::string out;
if (duration < 0 && duration != std::numeric_limits<s64>::min()) {
out.append("-");
duration = -duration;
}
if (duration == std::numeric_limits<s64>::max()) {
return "INT64_MAX";
} else if (duration == std::numeric_limits<s64>::min()) {
return "INT64_MIN";
} else if (duration > 3600ll * 1000000ll) {
out.append(fmt::format("{}:{:02d}:{:02d}.{:06d}", duration / 3600000000ll,
((duration / 60000000ll) % 60), ((duration / 1000000ll) % 60),
duration % 1000000));
} else if (duration > 60ll * 1000000ll) {
out.append(fmt::format("{}:{:02d}.{:06d}", duration / 60000000ll,
((duration / 1000000ll) % 60), duration % 1000000));
} else {
out.append(fmt::format("{}.{:06d}", duration / 1000000ll, duration % 1000000));
}
while (out.back() == '0') {
out.erase(out.size() - 1, 1);
}
if (out.back() == '.') {
out.erase(out.size() - 1, 1);
}
return out;
}
std::string FormatDefaultValue(const AVOption* option,
const std::vector<OptionInfo::NamedConstant>& named_constants) {
// The following is taken and modified from libavutil code (opt.c)
switch (option->type) {
case AV_OPT_TYPE_BOOL: {
const auto value = option->default_val.i64;
if (value < 0) {
return "auto";
}
return value ? "true" : "false";
}
case AV_OPT_TYPE_FLAGS: {
const auto value = option->default_val.i64;
std::string out;
for (const auto& constant : named_constants) {
if (!(value & constant.value)) {
continue;
}
if (!out.empty()) {
out.append("+");
}
out.append(constant.name);
}
return out.empty() ? fmt::format("{}", value) : out;
}
case AV_OPT_TYPE_DURATION: {
return FormatDuration(option->default_val.i64);
}
case AV_OPT_TYPE_INT:
case AV_OPT_TYPE_UINT64:
case AV_OPT_TYPE_INT64: {
const auto value = option->default_val.i64;
for (const auto& constant : named_constants) {
if (constant.value == value) {
return constant.name;
}
}
return fmt::format("{}", value);
}
case AV_OPT_TYPE_DOUBLE:
case AV_OPT_TYPE_FLOAT: {
return fmt::format("{}", option->default_val.dbl);
}
case AV_OPT_TYPE_RATIONAL: {
const auto q = FFmpeg::av_d2q(option->default_val.dbl, std::numeric_limits<int>::max());
return fmt::format("{}/{}", q.num, q.den);
}
case AV_OPT_TYPE_PIXEL_FMT: {
const char* name =
FFmpeg::av_get_pix_fmt_name(static_cast<AVPixelFormat>(option->default_val.i64));
return ToStdString(name, "none");
}
case AV_OPT_TYPE_SAMPLE_FMT: {
const char* name =
FFmpeg::av_get_sample_fmt_name(static_cast<AVSampleFormat>(option->default_val.i64));
return ToStdString(name, "none");
}
case AV_OPT_TYPE_COLOR:
case AV_OPT_TYPE_IMAGE_SIZE:
case AV_OPT_TYPE_STRING:
case AV_OPT_TYPE_DICT:
case AV_OPT_TYPE_VIDEO_RATE: {
return ToStdString(option->default_val.str);
}
case AV_OPT_TYPE_CHANNEL_LAYOUT: {
return fmt::format("{:#x}", option->default_val.i64);
}
default:
return "";
}
}
void GetOptionListSingle(std::vector<OptionInfo>& out, const AVClass* av_class) {
if (av_class == nullptr) {
return;
}
const AVOption* current = nullptr;
std::unordered_map<std::string, std::vector<OptionInfo::NamedConstant>> named_constants_map;
// First iteration: find and place all named constants
while ((current = FFmpeg::av_opt_next(&av_class, current))) {
if (current->type != AV_OPT_TYPE_CONST || !current->unit) {
continue;
}
named_constants_map[current->unit].push_back(
{current->name, ToStdString(current->help), current->default_val.i64});
}
// Second iteration: find all options
current = nullptr;
while ((current = FFmpeg::av_opt_next(&av_class, current))) {
// Currently we cannot handle binary options
if (current->type == AV_OPT_TYPE_CONST || current->type == AV_OPT_TYPE_BINARY) {
continue;
}
std::vector<OptionInfo::NamedConstant> named_constants;
if (current->unit && named_constants_map.count(current->unit)) {
named_constants = named_constants_map.at(current->unit);
}
const auto default_value = FormatDefaultValue(current, named_constants);
out.push_back({current->name, ToStdString(current->help), current->type, default_value,
std::move(named_constants), current->min, current->max});
}
}
void GetOptionList(std::vector<OptionInfo>& out, const AVClass* av_class, bool search_children) {
if (av_class == nullptr) {
return;
}
GetOptionListSingle(out, av_class);
if (!search_children) {
return;
}
const AVClass* child_class = nullptr;
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(56, 53, 100) // lavu 56.53.100
void* iter = nullptr;
while ((child_class = FFmpeg::av_opt_child_class_iterate(av_class, &iter))) {
#else
while ((child_class = FFmpeg::av_opt_child_class_next(av_class, child_class))) {
#endif
GetOptionListSingle(out, child_class);
}
}
std::vector<OptionInfo> GetOptionList(const AVClass* av_class, bool search_children) {
std::vector<OptionInfo> out;
GetOptionList(out, av_class, search_children);
return out;
}
std::vector<EncoderInfo> ListEncoders(AVMediaType type) {
InitializeFFmpegLibraries();
std::vector<EncoderInfo> out;
const AVCodec* current = nullptr;
void* data = nullptr; // For libavcodec to save the iteration state
while ((current = FFmpeg::av_codec_iterate(&data))) {
if (!FFmpeg::av_codec_is_encoder(current) || current->type != type) {
continue;
}
out.push_back({current->name, ToStdString(current->long_name), current->id,
GetOptionList(current->priv_class, true)});
}
return out;
}
std::vector<OptionInfo> GetEncoderGenericOptions() {
return GetOptionList(FFmpeg::avcodec_get_class(), false);
}
std::vector<FormatInfo> ListFormats() {
InitializeFFmpegLibraries();
std::vector<FormatInfo> out;
const AVOutputFormat* current = nullptr;
void* data = nullptr; // For libavformat to save the iteration state
while ((current = FFmpeg::av_muxer_iterate(&data))) {
const auto extensions = Common::SplitString(ToStdString(current->extensions), ',');
std::set<AVCodecID> supported_video_codecs;
std::set<AVCodecID> supported_audio_codecs;
// Go through all codecs
const AVCodecDescriptor* codec = nullptr;
while ((codec = FFmpeg::avcodec_descriptor_next(codec))) {
if (FFmpeg::avformat_query_codec(current, codec->id, FF_COMPLIANCE_NORMAL) == 1) {
if (codec->type == AVMEDIA_TYPE_VIDEO) {
supported_video_codecs.emplace(codec->id);
} else if (codec->type == AVMEDIA_TYPE_AUDIO) {
supported_audio_codecs.emplace(codec->id);
}
}
}
if (supported_video_codecs.empty() || supported_audio_codecs.empty()) {
continue;
}
out.push_back({current->name, ToStdString(current->long_name), std::move(extensions),
std::move(supported_video_codecs), std::move(supported_audio_codecs),
GetOptionList(current->priv_class, true)});
}
return out;
}
std::vector<OptionInfo> GetFormatGenericOptions() {
return GetOptionList(FFmpeg::avformat_get_class(), false);
}
std::vector<std::string> GetPixelFormats() {
std::vector<std::string> out;
const AVPixFmtDescriptor* current = nullptr;
while ((current = FFmpeg::av_pix_fmt_desc_next(current))) {
out.emplace_back(current->name);
}
return out;
}
std::vector<std::string> GetSampleFormats() {
std::vector<std::string> out;
for (int current = AV_SAMPLE_FMT_U8; current < AV_SAMPLE_FMT_NB; current++) {
out.emplace_back(FFmpeg::av_get_sample_fmt_name(static_cast<AVSampleFormat>(current)));
}
return out;
}
} // namespace VideoDumper