mirror of
https://github.com/citra-emu/citra.git
synced 2024-12-20 05:30:09 +00:00
629 lines
20 KiB
C++
629 lines
20 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <fstream>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <boost/serialization/array.hpp>
|
|
#include "audio_core/dsp_interface.h"
|
|
#include "audio_core/hle/hle.h"
|
|
#include "audio_core/lle/lle.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/texture.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#ifdef ARCHITECTURE_x86_64
|
|
#include "core/arm/dynarmic/arm_dynarmic.h"
|
|
#endif
|
|
#include "core/arm/dyncom/arm_dyncom.h"
|
|
#include "core/cheats/cheats.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/dumping/backend.h"
|
|
#ifdef ENABLE_FFMPEG_VIDEO_DUMPER
|
|
#include "core/dumping/ffmpeg_backend.h"
|
|
#endif
|
|
#include "core/custom_tex_cache.h"
|
|
#include "core/gdbstub/gdbstub.h"
|
|
#include "core/global.h"
|
|
#include "core/hle/kernel/client_port.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/service/fs/archive.h"
|
|
#include "core/hle/service/gsp/gsp.h"
|
|
#include "core/hle/service/pm/pm_app.h"
|
|
#include "core/hle/service/service.h"
|
|
#include "core/hle/service/sm/sm.h"
|
|
#include "core/hw/gpu.h"
|
|
#include "core/hw/hw.h"
|
|
#include "core/hw/lcd.h"
|
|
#include "core/loader/loader.h"
|
|
#include "core/movie.h"
|
|
#include "core/rpc/rpc_server.h"
|
|
#include "core/settings.h"
|
|
#include "network/network.h"
|
|
#include "video_core/renderer_base.h"
|
|
#include "video_core/video_core.h"
|
|
|
|
namespace Core {
|
|
|
|
/*static*/ System System::s_instance;
|
|
|
|
template <>
|
|
Core::System& Global() {
|
|
return System::GetInstance();
|
|
}
|
|
|
|
template <>
|
|
Kernel::KernelSystem& Global() {
|
|
return System::GetInstance().Kernel();
|
|
}
|
|
|
|
template <>
|
|
Core::Timing& Global() {
|
|
return System::GetInstance().CoreTiming();
|
|
}
|
|
|
|
System::~System() = default;
|
|
|
|
System::ResultStatus System::RunLoop(bool tight_loop) {
|
|
status = ResultStatus::Success;
|
|
if (std::any_of(cpu_cores.begin(), cpu_cores.end(),
|
|
[](std::shared_ptr<ARM_Interface> ptr) { return ptr == nullptr; })) {
|
|
return ResultStatus::ErrorNotInitialized;
|
|
}
|
|
|
|
if (GDBStub::IsServerEnabled()) {
|
|
Kernel::Thread* thread = kernel->GetCurrentThreadManager().GetCurrentThread();
|
|
if (thread && running_core) {
|
|
running_core->SaveContext(thread->context);
|
|
}
|
|
GDBStub::HandlePacket();
|
|
|
|
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
|
|
// execute. Otherwise, get out of the loop function.
|
|
if (GDBStub::GetCpuHaltFlag()) {
|
|
if (GDBStub::GetCpuStepFlag()) {
|
|
tight_loop = false;
|
|
} else {
|
|
return ResultStatus::Success;
|
|
}
|
|
}
|
|
}
|
|
|
|
Signal signal{Signal::None};
|
|
u32 param{};
|
|
{
|
|
std::lock_guard lock{signal_mutex};
|
|
if (current_signal != Signal::None) {
|
|
signal = current_signal;
|
|
param = signal_param;
|
|
current_signal = Signal::None;
|
|
}
|
|
}
|
|
switch (signal) {
|
|
case Signal::Reset:
|
|
Reset();
|
|
return ResultStatus::Success;
|
|
case Signal::Shutdown:
|
|
return ResultStatus::ShutdownRequested;
|
|
case Signal::Load: {
|
|
LOG_INFO(Core, "Begin load");
|
|
try {
|
|
System::LoadState(param);
|
|
LOG_INFO(Core, "Load completed");
|
|
} catch (const std::exception& e) {
|
|
LOG_ERROR(Core, "Error loading: {}", e.what());
|
|
status_details = e.what();
|
|
return ResultStatus::ErrorSavestate;
|
|
}
|
|
frame_limiter.WaitOnce();
|
|
return ResultStatus::Success;
|
|
}
|
|
case Signal::Save: {
|
|
LOG_INFO(Core, "Begin save");
|
|
try {
|
|
System::SaveState(param);
|
|
LOG_INFO(Core, "Save completed");
|
|
} catch (const std::exception& e) {
|
|
LOG_ERROR(Core, "Error saving: {}", e.what());
|
|
status_details = e.what();
|
|
return ResultStatus::ErrorSavestate;
|
|
}
|
|
frame_limiter.WaitOnce();
|
|
return ResultStatus::Success;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// All cores should have executed the same amount of ticks. If this is not the case an event was
|
|
// scheduled with a cycles_into_future smaller then the current downcount.
|
|
// So we have to get those cores to the same global time first
|
|
u64 global_ticks = timing->GetGlobalTicks();
|
|
s64 max_delay = 0;
|
|
ARM_Interface* current_core_to_execute = nullptr;
|
|
for (auto& cpu_core : cpu_cores) {
|
|
if (cpu_core->GetTimer().GetTicks() < global_ticks) {
|
|
s64 delay = global_ticks - cpu_core->GetTimer().GetTicks();
|
|
kernel->SetRunningCPU(cpu_core.get());
|
|
cpu_core->GetTimer().Advance();
|
|
cpu_core->PrepareReschedule();
|
|
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
|
|
cpu_core->GetTimer().SetNextSlice(delay);
|
|
if (max_delay < delay) {
|
|
max_delay = delay;
|
|
current_core_to_execute = cpu_core.get();
|
|
}
|
|
}
|
|
}
|
|
|
|
// jit sometimes overshoot by a few ticks which might lead to a minimal desync in the cores.
|
|
// This small difference shouldn't make it necessary to sync the cores and would only cost
|
|
// performance. Thus we don't sync delays below min_delay
|
|
static constexpr s64 min_delay = 100;
|
|
if (max_delay > min_delay) {
|
|
LOG_TRACE(Core_ARM11, "Core {} running (delayed) for {} ticks",
|
|
current_core_to_execute->GetID(),
|
|
current_core_to_execute->GetTimer().GetDowncount());
|
|
if (running_core != current_core_to_execute) {
|
|
running_core = current_core_to_execute;
|
|
kernel->SetRunningCPU(running_core);
|
|
}
|
|
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
|
|
LOG_TRACE(Core_ARM11, "Core {} idling", current_core_to_execute->GetID());
|
|
current_core_to_execute->GetTimer().Idle();
|
|
PrepareReschedule();
|
|
} else {
|
|
if (tight_loop) {
|
|
current_core_to_execute->Run();
|
|
} else {
|
|
current_core_to_execute->Step();
|
|
}
|
|
}
|
|
} else {
|
|
// Now all cores are at the same global time. So we will run them one after the other
|
|
// with a max slice that is the minimum of all max slices of all cores
|
|
// TODO: Make special check for idle since we can easily revert the time of idle cores
|
|
s64 max_slice = Timing::MAX_SLICE_LENGTH;
|
|
for (const auto& cpu_core : cpu_cores) {
|
|
kernel->SetRunningCPU(cpu_core.get());
|
|
cpu_core->GetTimer().Advance();
|
|
cpu_core->PrepareReschedule();
|
|
kernel->GetThreadManager(cpu_core->GetID()).Reschedule();
|
|
max_slice = std::min(max_slice, cpu_core->GetTimer().GetMaxSliceLength());
|
|
}
|
|
for (auto& cpu_core : cpu_cores) {
|
|
cpu_core->GetTimer().SetNextSlice(max_slice);
|
|
auto start_ticks = cpu_core->GetTimer().GetTicks();
|
|
LOG_TRACE(Core_ARM11, "Core {} running for {} ticks", cpu_core->GetID(),
|
|
cpu_core->GetTimer().GetDowncount());
|
|
running_core = cpu_core.get();
|
|
kernel->SetRunningCPU(running_core);
|
|
// If we don't have a currently active thread then don't execute instructions,
|
|
// instead advance to the next event and try to yield to the next thread
|
|
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
|
|
LOG_TRACE(Core_ARM11, "Core {} idling", cpu_core->GetID());
|
|
cpu_core->GetTimer().Idle();
|
|
PrepareReschedule();
|
|
} else {
|
|
if (tight_loop) {
|
|
cpu_core->Run();
|
|
} else {
|
|
cpu_core->Step();
|
|
}
|
|
}
|
|
max_slice = cpu_core->GetTimer().GetTicks() - start_ticks;
|
|
}
|
|
}
|
|
|
|
if (GDBStub::IsServerEnabled()) {
|
|
GDBStub::SetCpuStepFlag(false);
|
|
}
|
|
|
|
HW::Update();
|
|
Reschedule();
|
|
|
|
return status;
|
|
}
|
|
|
|
bool System::SendSignal(System::Signal signal, u32 param) {
|
|
std::lock_guard lock{signal_mutex};
|
|
if (current_signal != signal && current_signal != Signal::None) {
|
|
LOG_ERROR(Core, "Unable to {} as {} is ongoing", signal, current_signal);
|
|
return false;
|
|
}
|
|
current_signal = signal;
|
|
signal_param = param;
|
|
return true;
|
|
}
|
|
|
|
System::ResultStatus System::SingleStep() {
|
|
return RunLoop(false);
|
|
}
|
|
|
|
System::ResultStatus System::Load(Frontend::EmuWindow& emu_window, const std::string& filepath) {
|
|
FileUtil::SetCurrentRomPath(filepath);
|
|
app_loader = Loader::GetLoader(filepath);
|
|
if (!app_loader) {
|
|
LOG_CRITICAL(Core, "Failed to obtain loader for {}!", filepath);
|
|
return ResultStatus::ErrorGetLoader;
|
|
}
|
|
std::pair<std::optional<u32>, Loader::ResultStatus> system_mode =
|
|
app_loader->LoadKernelSystemMode();
|
|
|
|
if (system_mode.second != Loader::ResultStatus::Success) {
|
|
LOG_CRITICAL(Core, "Failed to determine system mode (Error {})!",
|
|
static_cast<int>(system_mode.second));
|
|
|
|
switch (system_mode.second) {
|
|
case Loader::ResultStatus::ErrorEncrypted:
|
|
return ResultStatus::ErrorLoader_ErrorEncrypted;
|
|
case Loader::ResultStatus::ErrorInvalidFormat:
|
|
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
|
|
default:
|
|
return ResultStatus::ErrorSystemMode;
|
|
}
|
|
}
|
|
|
|
ASSERT(system_mode.first);
|
|
auto n3ds_mode = app_loader->LoadKernelN3dsMode();
|
|
ASSERT(n3ds_mode.first);
|
|
u32 num_cores = 2;
|
|
if (Settings::values.is_new_3ds) {
|
|
num_cores = 4;
|
|
}
|
|
ResultStatus init_result{Init(emu_window, *system_mode.first, *n3ds_mode.first, num_cores)};
|
|
if (init_result != ResultStatus::Success) {
|
|
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
|
|
static_cast<u32>(init_result));
|
|
System::Shutdown();
|
|
return init_result;
|
|
}
|
|
|
|
telemetry_session->AddInitialInfo(*app_loader);
|
|
std::shared_ptr<Kernel::Process> process;
|
|
const Loader::ResultStatus load_result{app_loader->Load(process)};
|
|
kernel->SetCurrentProcess(process);
|
|
if (Loader::ResultStatus::Success != load_result) {
|
|
LOG_CRITICAL(Core, "Failed to load ROM (Error {})!", static_cast<u32>(load_result));
|
|
System::Shutdown();
|
|
|
|
switch (load_result) {
|
|
case Loader::ResultStatus::ErrorEncrypted:
|
|
return ResultStatus::ErrorLoader_ErrorEncrypted;
|
|
case Loader::ResultStatus::ErrorInvalidFormat:
|
|
return ResultStatus::ErrorLoader_ErrorInvalidFormat;
|
|
default:
|
|
return ResultStatus::ErrorLoader;
|
|
}
|
|
}
|
|
cheat_engine = std::make_unique<Cheats::CheatEngine>(*this);
|
|
title_id = 0;
|
|
if (app_loader->ReadProgramId(title_id) != Loader::ResultStatus::Success) {
|
|
LOG_ERROR(Core, "Failed to find title id for ROM (Error {})",
|
|
static_cast<u32>(load_result));
|
|
}
|
|
perf_stats = std::make_unique<PerfStats>(title_id);
|
|
custom_tex_cache = std::make_unique<Core::CustomTexCache>();
|
|
|
|
if (Settings::values.custom_textures) {
|
|
const u64 program_id = Kernel().GetCurrentProcess()->codeset->program_id;
|
|
FileUtil::CreateFullPath(fmt::format(
|
|
"{}textures/{:016X}/", FileUtil::GetUserPath(FileUtil::UserPath::LoadDir), program_id));
|
|
custom_tex_cache->FindCustomTextures(program_id);
|
|
}
|
|
if (Settings::values.preload_textures) {
|
|
custom_tex_cache->PreloadTextures(*GetImageInterface());
|
|
}
|
|
|
|
status = ResultStatus::Success;
|
|
m_emu_window = &emu_window;
|
|
m_filepath = filepath;
|
|
|
|
// Reset counters and set time origin to current frame
|
|
GetAndResetPerfStats();
|
|
perf_stats->BeginSystemFrame();
|
|
return status;
|
|
}
|
|
|
|
void System::PrepareReschedule() {
|
|
running_core->PrepareReschedule();
|
|
reschedule_pending = true;
|
|
}
|
|
|
|
PerfStats::Results System::GetAndResetPerfStats() {
|
|
return (perf_stats && timing) ? perf_stats->GetAndResetStats(timing->GetGlobalTimeUs())
|
|
: PerfStats::Results{};
|
|
}
|
|
|
|
void System::Reschedule() {
|
|
if (!reschedule_pending) {
|
|
return;
|
|
}
|
|
|
|
reschedule_pending = false;
|
|
for (const auto& core : cpu_cores) {
|
|
LOG_TRACE(Core_ARM11, "Reschedule core {}", core->GetID());
|
|
kernel->GetThreadManager(core->GetID()).Reschedule();
|
|
}
|
|
}
|
|
|
|
System::ResultStatus System::Init(Frontend::EmuWindow& emu_window, u32 system_mode, u8 n3ds_mode,
|
|
u32 num_cores) {
|
|
LOG_DEBUG(HW_Memory, "initialized OK");
|
|
|
|
memory = std::make_unique<Memory::MemorySystem>();
|
|
|
|
timing = std::make_unique<Timing>(num_cores, Settings::values.cpu_clock_percentage);
|
|
|
|
kernel = std::make_unique<Kernel::KernelSystem>(
|
|
*memory, *timing, [this] { PrepareReschedule(); }, system_mode, num_cores, n3ds_mode);
|
|
|
|
if (Settings::values.use_cpu_jit) {
|
|
#ifdef ARCHITECTURE_x86_64
|
|
for (u32 i = 0; i < num_cores; ++i) {
|
|
cpu_cores.push_back(
|
|
std::make_shared<ARM_Dynarmic>(this, *memory, i, timing->GetTimer(i)));
|
|
}
|
|
#else
|
|
for (u32 i = 0; i < num_cores; ++i) {
|
|
cpu_cores.push_back(
|
|
std::make_shared<ARM_DynCom>(this, *memory, USER32MODE, i, timing->GetTimer(i)));
|
|
}
|
|
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
|
|
#endif
|
|
} else {
|
|
for (u32 i = 0; i < num_cores; ++i) {
|
|
cpu_cores.push_back(
|
|
std::make_shared<ARM_DynCom>(this, *memory, USER32MODE, i, timing->GetTimer(i)));
|
|
}
|
|
}
|
|
running_core = cpu_cores[0].get();
|
|
|
|
kernel->SetCPUs(cpu_cores);
|
|
kernel->SetRunningCPU(cpu_cores[0].get());
|
|
|
|
if (Settings::values.enable_dsp_lle) {
|
|
dsp_core = std::make_unique<AudioCore::DspLle>(*memory,
|
|
Settings::values.enable_dsp_lle_multithread);
|
|
} else {
|
|
dsp_core = std::make_unique<AudioCore::DspHle>(*memory);
|
|
}
|
|
|
|
memory->SetDSP(*dsp_core);
|
|
|
|
dsp_core->SetSink(Settings::values.sink_id, Settings::values.audio_device_id);
|
|
dsp_core->EnableStretching(Settings::values.enable_audio_stretching);
|
|
|
|
telemetry_session = std::make_unique<Core::TelemetrySession>();
|
|
|
|
rpc_server = std::make_unique<RPC::RPCServer>();
|
|
|
|
service_manager = std::make_unique<Service::SM::ServiceManager>(*this);
|
|
archive_manager = std::make_unique<Service::FS::ArchiveManager>(*this);
|
|
|
|
HW::Init(*memory);
|
|
Service::Init(*this);
|
|
GDBStub::DeferStart();
|
|
|
|
#ifdef ENABLE_FFMPEG_VIDEO_DUMPER
|
|
video_dumper = std::make_unique<VideoDumper::FFmpegBackend>();
|
|
#else
|
|
video_dumper = std::make_unique<VideoDumper::NullBackend>();
|
|
#endif
|
|
|
|
VideoCore::ResultStatus result = VideoCore::Init(emu_window, *memory);
|
|
if (result != VideoCore::ResultStatus::Success) {
|
|
switch (result) {
|
|
case VideoCore::ResultStatus::ErrorGenericDrivers:
|
|
return ResultStatus::ErrorVideoCore_ErrorGenericDrivers;
|
|
case VideoCore::ResultStatus::ErrorBelowGL33:
|
|
return ResultStatus::ErrorVideoCore_ErrorBelowGL33;
|
|
default:
|
|
return ResultStatus::ErrorVideoCore;
|
|
}
|
|
}
|
|
|
|
LOG_DEBUG(Core, "Initialized OK");
|
|
|
|
initalized = true;
|
|
|
|
return ResultStatus::Success;
|
|
}
|
|
|
|
RendererBase& System::Renderer() {
|
|
return *VideoCore::g_renderer;
|
|
}
|
|
|
|
Service::SM::ServiceManager& System::ServiceManager() {
|
|
return *service_manager;
|
|
}
|
|
|
|
const Service::SM::ServiceManager& System::ServiceManager() const {
|
|
return *service_manager;
|
|
}
|
|
|
|
Service::FS::ArchiveManager& System::ArchiveManager() {
|
|
return *archive_manager;
|
|
}
|
|
|
|
const Service::FS::ArchiveManager& System::ArchiveManager() const {
|
|
return *archive_manager;
|
|
}
|
|
|
|
Kernel::KernelSystem& System::Kernel() {
|
|
return *kernel;
|
|
}
|
|
|
|
const Kernel::KernelSystem& System::Kernel() const {
|
|
return *kernel;
|
|
}
|
|
|
|
Timing& System::CoreTiming() {
|
|
return *timing;
|
|
}
|
|
|
|
const Timing& System::CoreTiming() const {
|
|
return *timing;
|
|
}
|
|
|
|
Memory::MemorySystem& System::Memory() {
|
|
return *memory;
|
|
}
|
|
|
|
const Memory::MemorySystem& System::Memory() const {
|
|
return *memory;
|
|
}
|
|
|
|
Cheats::CheatEngine& System::CheatEngine() {
|
|
return *cheat_engine;
|
|
}
|
|
|
|
const Cheats::CheatEngine& System::CheatEngine() const {
|
|
return *cheat_engine;
|
|
}
|
|
|
|
VideoDumper::Backend& System::VideoDumper() {
|
|
return *video_dumper;
|
|
}
|
|
|
|
const VideoDumper::Backend& System::VideoDumper() const {
|
|
return *video_dumper;
|
|
}
|
|
|
|
Core::CustomTexCache& System::CustomTexCache() {
|
|
return *custom_tex_cache;
|
|
}
|
|
|
|
const Core::CustomTexCache& System::CustomTexCache() const {
|
|
return *custom_tex_cache;
|
|
}
|
|
|
|
void System::RegisterMiiSelector(std::shared_ptr<Frontend::MiiSelector> mii_selector) {
|
|
registered_mii_selector = std::move(mii_selector);
|
|
}
|
|
|
|
void System::RegisterSoftwareKeyboard(std::shared_ptr<Frontend::SoftwareKeyboard> swkbd) {
|
|
registered_swkbd = std::move(swkbd);
|
|
}
|
|
|
|
void System::RegisterImageInterface(std::shared_ptr<Frontend::ImageInterface> image_interface) {
|
|
registered_image_interface = std::move(image_interface);
|
|
}
|
|
|
|
void System::Shutdown(bool is_deserializing) {
|
|
// Log last frame performance stats
|
|
const auto perf_results = GetAndResetPerfStats();
|
|
telemetry_session->AddField(Telemetry::FieldType::Performance, "Shutdown_EmulationSpeed",
|
|
perf_results.emulation_speed * 100.0);
|
|
telemetry_session->AddField(Telemetry::FieldType::Performance, "Shutdown_Framerate",
|
|
perf_results.game_fps);
|
|
telemetry_session->AddField(Telemetry::FieldType::Performance, "Shutdown_Frametime",
|
|
perf_results.frametime * 1000.0);
|
|
telemetry_session->AddField(Telemetry::FieldType::Performance, "Mean_Frametime_MS",
|
|
perf_stats->GetMeanFrametime());
|
|
|
|
// Shutdown emulation session
|
|
VideoCore::Shutdown();
|
|
HW::Shutdown();
|
|
if (!is_deserializing) {
|
|
GDBStub::Shutdown();
|
|
perf_stats.reset();
|
|
cheat_engine.reset();
|
|
app_loader.reset();
|
|
}
|
|
telemetry_session.reset();
|
|
rpc_server.reset();
|
|
archive_manager.reset();
|
|
service_manager.reset();
|
|
dsp_core.reset();
|
|
cpu_cores.clear();
|
|
kernel.reset();
|
|
timing.reset();
|
|
|
|
if (video_dumper->IsDumping()) {
|
|
video_dumper->StopDumping();
|
|
}
|
|
|
|
if (auto room_member = Network::GetRoomMember().lock()) {
|
|
Network::GameInfo game_info{};
|
|
room_member->SendGameInfo(game_info);
|
|
}
|
|
|
|
LOG_DEBUG(Core, "Shutdown OK");
|
|
}
|
|
|
|
void System::Reset() {
|
|
// This is NOT a proper reset, but a temporary workaround by shutting down the system and
|
|
// reloading.
|
|
// TODO: Properly implement the reset
|
|
|
|
Shutdown();
|
|
// Reload the system with the same setting
|
|
Load(*m_emu_window, m_filepath);
|
|
}
|
|
|
|
template <class Archive>
|
|
void System::serialize(Archive& ar, const unsigned int file_version) {
|
|
|
|
u32 num_cores;
|
|
if (Archive::is_saving::value) {
|
|
num_cores = this->GetNumCores();
|
|
}
|
|
ar& num_cores;
|
|
|
|
if (Archive::is_loading::value) {
|
|
// When loading, we want to make sure any lingering state gets cleared out before we begin.
|
|
// Shutdown, but persist a few things between loads...
|
|
Shutdown(true);
|
|
|
|
// Re-initialize everything like it was before
|
|
auto system_mode = this->app_loader->LoadKernelSystemMode();
|
|
auto n3ds_mode = this->app_loader->LoadKernelN3dsMode();
|
|
Init(*m_emu_window, *system_mode.first, *n3ds_mode.first, num_cores);
|
|
}
|
|
|
|
// flush on save, don't flush on load
|
|
bool should_flush = !Archive::is_loading::value;
|
|
Memory::RasterizerClearAll(should_flush);
|
|
ar&* timing.get();
|
|
for (u32 i = 0; i < num_cores; i++) {
|
|
ar&* cpu_cores[i].get();
|
|
}
|
|
ar&* service_manager.get();
|
|
ar&* archive_manager.get();
|
|
ar& GPU::g_regs;
|
|
ar& LCD::g_regs;
|
|
|
|
// NOTE: DSP doesn't like being destroyed and recreated. So instead we do an inline
|
|
// serialization; this means that the DSP Settings need to match for loading to work.
|
|
auto dsp_hle = dynamic_cast<AudioCore::DspHle*>(dsp_core.get());
|
|
if (dsp_hle) {
|
|
ar&* dsp_hle;
|
|
} else {
|
|
throw std::runtime_error("LLE audio not supported for save states");
|
|
}
|
|
|
|
ar&* memory.get();
|
|
ar&* kernel.get();
|
|
VideoCore::serialize(ar, file_version);
|
|
if (file_version >= 1) {
|
|
ar& Movie::GetInstance();
|
|
}
|
|
|
|
// This needs to be set from somewhere - might as well be here!
|
|
if (Archive::is_loading::value) {
|
|
Service::GSP::SetGlobalModule(*this);
|
|
memory->SetDSP(*dsp_core);
|
|
cheat_engine->Connect();
|
|
VideoCore::g_renderer->Sync();
|
|
}
|
|
}
|
|
|
|
SERIALIZE_IMPL(System)
|
|
|
|
} // namespace Core
|