citra/src/core/memory.h
GPUCode 88ea66053e
Miscallenious fixes to gl backend and qt frontend (#6834)
* renderer_gl: Make rasterizer normal class member

* It doesn't need to be heap allocated anymore

* gl_rasterizer: Remove default_texture

* It's unused

* gl_rasterizer: General cleanup

* gl_rasterizer: Lower case lambdas

* Match style with review comments from vulkan backend

* rasterizer_cache: Prevent memory leak

* Since the switch from shared_ptr these surfaces were no longer being destroyed properly. Use our garbage collector for that purpose to destroy it safely for both backends

* rasterizer_cache: Make temp copy of old surface

* The custom surface would override the memory region of the old region resulting in garbage data, this ensures the custom surface is constructed correctly

* citra_qt: Manually create dialog tabs

* Allows for custom constructors which is very useful. While at it, global state is now eliminated from configuration

* citra_qt: Eliminate global system usage

* core: Remove global system usage in memory and HIO

* citra_qt: Use qOverload

* tests: Run clang format

* gl_texture_runtime: Fix surface scaling
2023-08-02 01:40:39 +03:00

656 lines
24 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <cstddef>
#include <string>
#include <boost/serialization/array.hpp>
#include <boost/serialization/vector.hpp>
#include "common/common_types.h"
#include "common/memory_ref.h"
#include "core/mmio.h"
class ARM_Interface;
namespace Kernel {
class Process;
}
namespace Core {
class System;
}
namespace AudioCore {
class DspInterface;
}
namespace Memory {
/**
* Page size used by the ARM architecture. This is the smallest granularity with which memory can
* be mapped.
*/
constexpr u32 CITRA_PAGE_SIZE = 0x1000;
constexpr u32 CITRA_PAGE_MASK = CITRA_PAGE_SIZE - 1;
constexpr int CITRA_PAGE_BITS = 12;
constexpr std::size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - CITRA_PAGE_BITS);
enum class PageType {
/// Page is unmapped and should cause an access error.
Unmapped,
/// Page is mapped to regular memory. This is the only type you can get pointers to.
Memory,
/// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and
/// invalidation
RasterizerCachedMemory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special,
};
struct SpecialRegion {
VAddr base;
u32 size;
MMIORegionPointer handler;
private:
template <class Archive>
void serialize(Archive& ar, const unsigned int file_version) {
ar& base;
ar& size;
ar& handler;
}
friend class boost::serialization::access;
};
/**
* A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
* fetching requirements when accessing. In the usual case of an access to regular memory, it only
* requires an indexed fetch and a check for NULL.
*/
struct PageTable {
/**
* Array of memory pointers backing each page. An entry can only be non-null if the
* corresponding entry in the `attributes` array is of type `Memory`.
*/
// The reason for this rigmarole is to keep the 'raw' and 'refs' arrays in sync.
// We need 'raw' for dynarmic and 'refs' for serialization
struct Pointers {
struct Entry {
Entry(Pointers& pointers_, VAddr idx_) : pointers(pointers_), idx(idx_) {}
Entry& operator=(MemoryRef value) {
pointers.raw[idx] = value.GetPtr();
pointers.refs[idx] = std::move(value);
return *this;
}
operator u8*() {
return pointers.raw[idx];
}
private:
Pointers& pointers;
VAddr idx;
};
Entry operator[](std::size_t idx) {
return Entry(*this, static_cast<VAddr>(idx));
}
private:
std::array<u8*, PAGE_TABLE_NUM_ENTRIES> raw;
std::array<MemoryRef, PAGE_TABLE_NUM_ENTRIES> refs;
friend struct PageTable;
};
Pointers pointers;
/**
* Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of
* type `Special`.
*/
std::vector<SpecialRegion> special_regions;
/**
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
* the corresponding entry in `pointers` MUST be set to null.
*/
std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes;
std::array<u8*, PAGE_TABLE_NUM_ENTRIES>& GetPointerArray() {
return pointers.raw;
}
void Clear();
private:
template <class Archive>
void serialize(Archive& ar, const unsigned int) {
ar& pointers.refs;
ar& special_regions;
ar& attributes;
for (std::size_t i = 0; i < PAGE_TABLE_NUM_ENTRIES; i++) {
pointers.raw[i] = pointers.refs[i].GetPtr();
}
}
friend class boost::serialization::access;
};
/// Physical memory regions as seen from the ARM11
enum : PAddr {
/// IO register area
IO_AREA_PADDR = 0x10100000,
IO_AREA_SIZE = 0x00400000, ///< IO area size (4MB)
IO_AREA_PADDR_END = IO_AREA_PADDR + IO_AREA_SIZE,
/// MPCore internal memory region
MPCORE_RAM_PADDR = 0x17E00000,
MPCORE_RAM_SIZE = 0x00002000, ///< MPCore internal memory size (8KB)
MPCORE_RAM_PADDR_END = MPCORE_RAM_PADDR + MPCORE_RAM_SIZE,
/// Video memory
VRAM_PADDR = 0x18000000,
VRAM_SIZE = 0x00600000, ///< VRAM size (6MB)
VRAM_PADDR_END = VRAM_PADDR + VRAM_SIZE,
/// New 3DS additional memory. Supposedly faster than regular FCRAM. Part of it can be used by
/// applications and system modules if mapped via the ExHeader.
N3DS_EXTRA_RAM_PADDR = 0x1F000000,
N3DS_EXTRA_RAM_SIZE = 0x00400000, ///< New 3DS additional memory size (4MB)
N3DS_EXTRA_RAM_PADDR_END = N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_SIZE,
/// DSP memory
DSP_RAM_PADDR = 0x1FF00000,
DSP_RAM_SIZE = 0x00080000, ///< DSP memory size (512KB)
DSP_RAM_PADDR_END = DSP_RAM_PADDR + DSP_RAM_SIZE,
/// AXI WRAM
AXI_WRAM_PADDR = 0x1FF80000,
AXI_WRAM_SIZE = 0x00080000, ///< AXI WRAM size (512KB)
AXI_WRAM_PADDR_END = AXI_WRAM_PADDR + AXI_WRAM_SIZE,
/// Main FCRAM
FCRAM_PADDR = 0x20000000,
FCRAM_SIZE = 0x08000000, ///< FCRAM size on the Old 3DS (128MB)
FCRAM_N3DS_SIZE = 0x10000000, ///< FCRAM size on the New 3DS (256MB)
FCRAM_PADDR_END = FCRAM_PADDR + FCRAM_SIZE,
FCRAM_N3DS_PADDR_END = FCRAM_PADDR + FCRAM_N3DS_SIZE,
};
enum class Region { FCRAM, VRAM, DSP, N3DS };
/// Virtual user-space memory regions
enum : VAddr {
/// Where the application text, data and bss reside.
PROCESS_IMAGE_VADDR = 0x00100000,
PROCESS_IMAGE_MAX_SIZE = 0x03F00000,
PROCESS_IMAGE_VADDR_END = PROCESS_IMAGE_VADDR + PROCESS_IMAGE_MAX_SIZE,
/// Area where IPC buffers are mapped onto.
IPC_MAPPING_VADDR = 0x04000000,
IPC_MAPPING_SIZE = 0x04000000,
IPC_MAPPING_VADDR_END = IPC_MAPPING_VADDR + IPC_MAPPING_SIZE,
/// Application heap (includes stack).
HEAP_VADDR = 0x08000000,
HEAP_SIZE = 0x08000000,
HEAP_VADDR_END = HEAP_VADDR + HEAP_SIZE,
/// Area where shared memory buffers are mapped onto.
SHARED_MEMORY_VADDR = 0x10000000,
SHARED_MEMORY_SIZE = 0x04000000,
SHARED_MEMORY_VADDR_END = SHARED_MEMORY_VADDR + SHARED_MEMORY_SIZE,
/// Maps 1:1 to an offset in FCRAM. Used for HW allocations that need to be linear in physical
/// memory.
LINEAR_HEAP_VADDR = 0x14000000,
LINEAR_HEAP_SIZE = 0x08000000,
LINEAR_HEAP_VADDR_END = LINEAR_HEAP_VADDR + LINEAR_HEAP_SIZE,
/// Maps 1:1 to New 3DS additional memory
N3DS_EXTRA_RAM_VADDR = 0x1E800000,
N3DS_EXTRA_RAM_VADDR_END = N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_SIZE,
/// Maps 1:1 to the IO register area.
IO_AREA_VADDR = 0x1EC00000,
IO_AREA_VADDR_END = IO_AREA_VADDR + IO_AREA_SIZE,
/// Maps 1:1 to VRAM.
VRAM_VADDR = 0x1F000000,
VRAM_VADDR_END = VRAM_VADDR + VRAM_SIZE,
/// Maps 1:1 to DSP memory.
DSP_RAM_VADDR = 0x1FF00000,
DSP_RAM_VADDR_END = DSP_RAM_VADDR + DSP_RAM_SIZE,
/// Read-only page containing kernel and system configuration values.
CONFIG_MEMORY_VADDR = 0x1FF80000,
CONFIG_MEMORY_SIZE = 0x00001000,
CONFIG_MEMORY_VADDR_END = CONFIG_MEMORY_VADDR + CONFIG_MEMORY_SIZE,
/// Usually read-only page containing mostly values read from hardware.
SHARED_PAGE_VADDR = 0x1FF81000,
SHARED_PAGE_SIZE = 0x00001000,
SHARED_PAGE_VADDR_END = SHARED_PAGE_VADDR + SHARED_PAGE_SIZE,
/// Area where TLS (Thread-Local Storage) buffers are allocated.
TLS_AREA_VADDR = 0x1FF82000,
TLS_ENTRY_SIZE = 0x200,
/// Equivalent to LINEAR_HEAP_VADDR, but expanded to cover the extra memory in the New 3DS.
NEW_LINEAR_HEAP_VADDR = 0x30000000,
NEW_LINEAR_HEAP_SIZE = 0x10000000,
NEW_LINEAR_HEAP_VADDR_END = NEW_LINEAR_HEAP_VADDR + NEW_LINEAR_HEAP_SIZE,
/// Area where 3GX plugin framebuffers are stored
PLUGIN_3GX_FB_VADDR = 0x06000000,
PLUGIN_3GX_FB_SIZE = 0x000A9000,
PLUGIN_3GX_FB_VADDR_END = PLUGIN_3GX_FB_VADDR + PLUGIN_3GX_FB_SIZE
};
/**
* Flushes any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushRegion(PAddr start, u32 size);
/**
* Invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerInvalidateRegion(PAddr start, u32 size);
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size);
enum class FlushMode {
/// Write back modified surfaces to RAM
Flush,
/// Remove region from the cache
Invalidate,
/// Write back modified surfaces to RAM, and also remove them from the cache
FlushAndInvalidate,
};
/**
* Flushes and invalidates all memory in the rasterizer cache and removes any leftover state
* If flush is true, the rasterizer should flush any cached resources to RAM before clearing
*/
void RasterizerClearAll(bool flush);
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual
* address region.
*/
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode);
class MemorySystem {
public:
explicit MemorySystem(Core::System& system);
~MemorySystem();
/**
* Maps an allocated buffer onto a region of the emulated process address space.
*
* @param page_table The page table of the emulated process.
* @param base The address to start mapping at. Must be page-aligned.
* @param size The amount of bytes to map. Must be page-aligned.
* @param target Buffer with the memory backing the mapping. Must be of length at least `size`.
*/
void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target);
/**
* Maps a region of the emulated process address space as a IO region.
* @param page_table The page table of the emulated process.
* @param base The address to start mapping at. Must be page-aligned.
* @param size The amount of bytes to map. Must be page-aligned.
* @param mmio_handler The handler that backs the mapping.
*/
void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler);
void UnmapRegion(PageTable& page_table, VAddr base, u32 size);
/// Currently active page table
void SetCurrentPageTable(std::shared_ptr<PageTable> page_table);
std::shared_ptr<PageTable> GetCurrentPageTable() const;
/**
* Gets a pointer to the given address.
*
* @param vaddr Virtual address to retrieve a pointer to.
*
* @returns The pointer to the given address, if the address is valid.
* If the address is not valid, nullptr will be returned.
*/
u8* GetPointer(VAddr vaddr);
/**
* Gets a pointer to the given address.
*
* @param vaddr Virtual address to retrieve a pointer to.
*
* @returns The pointer to the given address, if the address is valid.
* If the address is not valid, nullptr will be returned.
*/
const u8* GetPointer(VAddr vaddr) const;
/**
* Reads an 8-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 8-bit value from.
*
* @returns the read 8-bit unsigned value.
*/
u8 Read8(VAddr addr);
/**
* Reads a 16-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 16-bit value from.
*
* @returns the read 16-bit unsigned value.
*/
u16 Read16(VAddr addr);
/**
* Reads a 32-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 32-bit value from.
*
* @returns the read 32-bit unsigned value.
*/
u32 Read32(VAddr addr);
/**
* Reads a 64-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 64-bit value from.
*
* @returns the read 64-bit value.
*/
u64 Read64(VAddr addr);
/**
* Writes an 8-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 8-bit unsigned integer to.
* @param data The 8-bit unsigned integer to write to the given virtual address.
*
* @post The memory at the given virtual address contains the specified data value.
*/
void Write8(VAddr addr, u8 data);
/**
* Writes a 16-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 16-bit unsigned integer to.
* @param data The 16-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write16(VAddr addr, u16 data);
/**
* Writes a 32-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 32-bit unsigned integer to.
* @param data The 32-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write32(VAddr addr, u32 data);
/**
* Writes a 64-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 64-bit unsigned integer to.
* @param data The 64-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write64(VAddr addr, u64 data);
/**
* Writes a {8, 16, 32, 64}-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the X-bit unsigned integer to.
* @param data The X-bit unsigned integer to write to the given virtual address.
* @param expected The X-bit unsigned integer to check against the given virtual address.
* @returns true if the operation failed
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive8(const VAddr addr, const u8 data, const u8 expected);
bool WriteExclusive16(const VAddr addr, const u16 data, const u16 expected);
bool WriteExclusive32(const VAddr addr, const u32 data, const u32 expected);
bool WriteExclusive64(const VAddr addr, const u64 data, const u64 expected);
/**
* Reads a null-terminated string from the given virtual address.
* This function will continually read characters until either:
*
* - A null character ('\0') is reached.
* - max_length characters have been read.
*
* @note The final null-terminating character (if found) is not included
* in the returned string.
*
* @param vaddr The address to begin reading the string from.
* @param max_length The maximum length of the string to read in characters.
*
* @returns The read string.
*/
std::string ReadCString(VAddr vaddr, std::size_t max_length);
/**
* Reads a contiguous block of bytes from a specified process' address space.
*
* @param process The process to read the data from.
* @param src_addr The virtual address to begin reading from.
* @param dest_buffer The buffer to place the read bytes into.
* @param size The amount of data to read, in bytes.
*
* @note If a size of 0 is specified, then this function reads nothing and
* no attempts to access memory are made at all.
*
* @pre dest_buffer must be at least size bytes in length, otherwise a
* buffer overrun will occur.
*
* @post The range [dest_buffer, size) contains the read bytes from the
* process' address space.
*/
void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer,
std::size_t size);
/**
* Reads a contiguous block of bytes from the current process' address space.
*
* @param src_addr The virtual address to begin reading from.
* @param dest_buffer The buffer to place the read bytes into.
* @param size The amount of data to read, in bytes.
*
* @note If a size of 0 is specified, then this function reads nothing and
* no attempts to access memory are made at all.
*
* @pre dest_buffer must be at least size bytes in length, otherwise a
* buffer overrun will occur.
*
* @post The range [dest_buffer, size) contains the read bytes from the
* current process' address space.
*/
void ReadBlock(VAddr src_addr, void* dest_buffer, std::size_t size);
/**
* Writes a range of bytes into a given process' address space at the specified
* virtual address.
*
* @param process The process to write data into the address space of.
* @param dest_addr The destination virtual address to begin writing the data at.
* @param src_buffer The data to write into the process' address space.
* @param size The size of the data to write, in bytes.
*
* @post The address range [dest_addr, size) in the process' address space
* contains the data that was within src_buffer.
*
* @post If an attempt is made to write into an unmapped region of memory, the writes
* will be ignored and an error will be logged.
*
* @post If a write is performed into a region of memory that is considered cached
* rasterizer memory, will cause the currently active rasterizer to be notified
* and will mark that region as invalidated to caches that the active
* graphics backend may be maintaining over the course of execution.
*/
void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer,
std::size_t size);
/**
* Writes a range of bytes into a given process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to begin writing the data at.
* @param src_buffer The data to write into the process' address space.
* @param size The size of the data to write, in bytes.
*
* @post The address range [dest_addr, size) in the process' address space
* contains the data that was within src_buffer.
*
* @post If an attempt is made to write into an unmapped region of memory, the writes
* will be ignored and an error will be logged.
*
* @post If a write is performed into a region of memory that is considered cached
* rasterizer memory, will cause the currently active rasterizer to be notified
* and will mark that region as invalidated to caches that the active
* graphics backend may be maintaining over the course of execution.
*/
void WriteBlock(VAddr dest_addr, const void* src_buffer, std::size_t size);
/**
* Zeros a range of bytes within the current process' address space at the specified
* virtual address.
*
* @param process The process that will have data zeroed within its address space.
* @param dest_addr The destination virtual address to zero the data from.
* @param size The size of the range to zero out, in bytes.
*
* @post The range [dest_addr, size) within the process' address space contains the
* value 0.
*/
void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size);
/**
* Copies data within a process' address space to another location within the
* same address space.
*
* @param process The process that will have data copied within its address space.
* @param dest_addr The destination virtual address to begin copying the data into.
* @param src_addr The source virtual address to begin copying the data from.
* @param size The size of the data to copy, in bytes.
*
* @post The range [dest_addr, size) within the process' address space contains the
* same data within the range [src_addr, size).
*/
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
std::size_t size);
void CopyBlock(const Kernel::Process& dest_process, const Kernel::Process& src_process,
VAddr dest_addr, VAddr src_addr, std::size_t size);
/**
* Marks each page within the specified address range as cached or uncached.
*
* @param vaddr The virtual address indicating the start of the address range.
* @param size The size of the address range in bytes.
* @param cached Whether or not any pages within the address range should be
* marked as cached or uncached.
*/
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached);
/// For a rasterizer-accessible PAddr, gets a list of all possible VAddr
std::vector<VAddr> PhysicalToVirtualAddressForRasterizer(PAddr addr);
/// Gets a pointer to the memory region beginning at the specified physical address.
u8* GetPhysicalPointer(PAddr address) const;
/// Returns a reference to the memory region beginning at the specified physical address
MemoryRef GetPhysicalRef(PAddr address) const;
/// Determines if the given VAddr is valid for the specified process.
bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr);
/// Returns true if the address refers to a valid memory region
bool IsValidPhysicalAddress(PAddr paddr) const;
/// Gets offset in FCRAM from a pointer inside FCRAM range
u32 GetFCRAMOffset(const u8* pointer) const;
/// Gets pointer in FCRAM with given offset
u8* GetFCRAMPointer(std::size_t offset);
/// Gets pointer in FCRAM with given offset
const u8* GetFCRAMPointer(std::size_t offset) const;
/// Gets a serializable ref to FCRAM with the given offset
MemoryRef GetFCRAMRef(std::size_t offset) const;
/// Registers page table for rasterizer cache marking
void RegisterPageTable(std::shared_ptr<PageTable> page_table);
/// Unregisters page table for rasterizer cache marking
void UnregisterPageTable(std::shared_ptr<PageTable> page_table);
void SetDSP(AudioCore::DspInterface& dsp);
private:
template <typename T>
T Read(const VAddr vaddr);
template <typename T>
void Write(const VAddr vaddr, const T data);
template <typename T>
bool WriteExclusive(const VAddr vaddr, const T data, const T expected);
/**
* Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory.
* This is used to access the memory where the page pointer is nullptr due to rasterizer cache.
* Since the cache only happens on linear heap or VRAM, we know the exact physical address and
* pointer of such virtual address
*/
MemoryRef GetPointerForRasterizerCache(VAddr addr) const;
void MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory, PageType type);
private:
class Impl;
std::unique_ptr<Impl> impl;
friend class boost::serialization::access;
template <class Archive>
void serialize(Archive& ar, const unsigned int file_version);
public:
template <Region R>
class BackingMemImpl;
};
} // namespace Memory
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::FCRAM>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::VRAM>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::DSP>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::N3DS>)