// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/assert.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "core/memory_setup.h" #include "core/mmio.h" namespace Kernel { static const char* GetMemoryStateName(MemoryState state) { static const char* names[] = { "Free", "Reserved", "IO", "Static", "Code", "Private", "Shared", "Continuous", "Aliased", "Alias", "AliasCode", "Locked", }; return names[(int)state]; } bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { ASSERT(base + size == next.base); if (permissions != next.permissions || meminfo_state != next.meminfo_state || type != next.type) { return false; } if (type == VMAType::AllocatedMemoryBlock && (backing_block != next.backing_block || offset + size != next.offset)) { return false; } if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) { return false; } if (type == VMAType::MMIO && paddr + size != next.paddr) { return false; } return true; } VMManager::VMManager() { Reset(); } VMManager::~VMManager() { Reset(); } void VMManager::Reset() { vma_map.clear(); // Initialize the map with a single free region covering the entire managed space. VirtualMemoryArea initial_vma; initial_vma.size = MAX_ADDRESS; vma_map.emplace(initial_vma.base, initial_vma); page_table.pointers.fill(nullptr); page_table.attributes.fill(Memory::PageType::Unmapped); UpdatePageTableForVMA(initial_vma); } VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { if (target >= MAX_ADDRESS) { return vma_map.end(); } else { return std::prev(vma_map.upper_bound(target)); } } ResultVal VMManager::MapMemoryBlock(VAddr target, std::shared_ptr> block, size_t offset, u32 size, MemoryState state) { ASSERT(block != nullptr); ASSERT(offset + size <= block->size()); // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::AllocatedMemoryBlock; final_vma.permissions = VMAPermission::ReadWrite; final_vma.meminfo_state = state; final_vma.backing_block = block; final_vma.offset = offset; UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } ResultVal VMManager::MapMemoryBlockToBase(VAddr base, u32 region_size, std::shared_ptr> block, size_t offset, u32 size, MemoryState state) { // Find the first Free VMA. VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) { if (vma.second.type != VMAType::Free) return false; VAddr vma_end = vma.second.base + vma.second.size; return vma_end > base && vma_end >= base + size; }); VAddr target = std::max(base, vma_handle->second.base); // Do not try to allocate the block if there are no available addresses within the desired // region. if (vma_handle == vma_map.end() || target + size > base + region_size) { return ResultCode(ErrorDescription::OutOfMemory, ErrorModule::Kernel, ErrorSummary::OutOfResource, ErrorLevel::Permanent); } auto result = MapMemoryBlock(target, block, offset, size, state); if (result.Failed()) return result.Code(); return MakeResult(target); } ResultVal VMManager::MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state) { ASSERT(memory != nullptr); // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::BackingMemory; final_vma.permissions = VMAPermission::ReadWrite; final_vma.meminfo_state = state; final_vma.backing_memory = memory; UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } ResultVal VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state, Memory::MMIORegionPointer mmio_handler) { // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::MMIO; final_vma.permissions = VMAPermission::ReadWrite; final_vma.meminfo_state = state; final_vma.paddr = paddr; final_vma.mmio_handler = mmio_handler; UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } ResultCode VMManager::ChangeMemoryState(VAddr target, u32 size, MemoryState expected_state, VMAPermission expected_perms, MemoryState new_state, VMAPermission new_perms) { VAddr target_end = target + size; VMAIter begin_vma = StripIterConstness(FindVMA(target)); VMAIter i_end = vma_map.lower_bound(target_end); if (begin_vma == vma_map.end()) return ERR_INVALID_ADDRESS; for (auto i = begin_vma; i != i_end; ++i) { auto& vma = i->second; if (vma.meminfo_state != expected_state) { return ERR_INVALID_ADDRESS_STATE; } u32 perms = static_cast(expected_perms); if ((static_cast(vma.permissions) & perms) != perms) { return ERR_INVALID_ADDRESS_STATE; } } CASCADE_RESULT(auto vma, CarveVMARange(target, size)); ASSERT(vma->second.size == size); vma->second.permissions = new_perms; vma->second.meminfo_state = new_state; UpdatePageTableForVMA(vma->second); MergeAdjacent(vma); return RESULT_SUCCESS; } VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) { VirtualMemoryArea& vma = vma_handle->second; vma.type = VMAType::Free; vma.permissions = VMAPermission::None; vma.meminfo_state = MemoryState::Free; vma.backing_block = nullptr; vma.offset = 0; vma.backing_memory = nullptr; vma.paddr = 0; UpdatePageTableForVMA(vma); return MergeAdjacent(vma_handle); } ResultCode VMManager::UnmapRange(VAddr target, u32 size) { CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); VAddr target_end = target + size; VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(Unmap(vma)); } ASSERT(FindVMA(target)->second.size >= size); return RESULT_SUCCESS; } VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) { VMAIter iter = StripIterConstness(vma_handle); VirtualMemoryArea& vma = iter->second; vma.permissions = new_perms; UpdatePageTableForVMA(vma); return MergeAdjacent(iter); } ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) { CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); VAddr target_end = target + size; VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(StripIterConstness(Reprotect(vma, new_perms))); } return RESULT_SUCCESS; } void VMManager::RefreshMemoryBlockMappings(const std::vector* block) { // If this ever proves to have a noticeable performance impact, allow users of the function to // specify a specific range of addresses to limit the scan to. for (const auto& p : vma_map) { const VirtualMemoryArea& vma = p.second; if (block == vma.backing_block.get()) { UpdatePageTableForVMA(vma); } } } void VMManager::LogLayout(Log::Level log_level) const { for (const auto& p : vma_map) { const VirtualMemoryArea& vma = p.second; LOG_GENERIC(Log::Class::Kernel, log_level, "%08X - %08X size: %8X %c%c%c %s", vma.base, vma.base + vma.size, vma.size, (u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-', (u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-', (u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-', GetMemoryStateName(vma.meminfo_state)); } } VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) { // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given // non-const access to its container. return vma_map.erase(iter, iter); // Erases an empty range of elements } ResultVal VMManager::CarveVMA(VAddr base, u32 size) { ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base); VMAIter vma_handle = StripIterConstness(FindVMA(base)); if (vma_handle == vma_map.end()) { // Target address is outside the range managed by the kernel return ERR_INVALID_ADDRESS; } VirtualMemoryArea& vma = vma_handle->second; if (vma.type != VMAType::Free) { // Region is already allocated return ERR_INVALID_ADDRESS_STATE; } u32 start_in_vma = base - vma.base; u32 end_in_vma = start_in_vma + size; if (end_in_vma > vma.size) { // Requested allocation doesn't fit inside VMA return ERR_INVALID_ADDRESS_STATE; } if (end_in_vma != vma.size) { // Split VMA at the end of the allocated region SplitVMA(vma_handle, end_in_vma); } if (start_in_vma != 0) { // Split VMA at the start of the allocated region vma_handle = SplitVMA(vma_handle, start_in_vma); } return MakeResult(vma_handle); } ResultVal VMManager::CarveVMARange(VAddr target, u32 size) { ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target); VAddr target_end = target + size; ASSERT(target_end >= target); ASSERT(target_end <= MAX_ADDRESS); ASSERT(size > 0); VMAIter begin_vma = StripIterConstness(FindVMA(target)); VMAIter i_end = vma_map.lower_bound(target_end); for (auto i = begin_vma; i != i_end; ++i) { if (i->second.type == VMAType::Free) { return ERR_INVALID_ADDRESS_STATE; } } if (target != begin_vma->second.base) { begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); } VMAIter end_vma = StripIterConstness(FindVMA(target_end)); if (end_vma != vma_map.end() && target_end != end_vma->second.base) { end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); } return MakeResult(begin_vma); } VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably // a bug. This restriction might be removed later. ASSERT(offset_in_vma < old_vma.size); ASSERT(offset_in_vma > 0); old_vma.size = offset_in_vma; new_vma.base += offset_in_vma; new_vma.size -= offset_in_vma; switch (new_vma.type) { case VMAType::Free: break; case VMAType::AllocatedMemoryBlock: new_vma.offset += offset_in_vma; break; case VMAType::BackingMemory: new_vma.backing_memory += offset_in_vma; break; case VMAType::MMIO: new_vma.paddr += offset_in_vma; break; } ASSERT(old_vma.CanBeMergedWith(new_vma)); return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma); } VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { VMAIter next_vma = std::next(iter); if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { iter->second.size += next_vma->second.size; vma_map.erase(next_vma); } if (iter != vma_map.begin()) { VMAIter prev_vma = std::prev(iter); if (prev_vma->second.CanBeMergedWith(iter->second)) { prev_vma->second.size += iter->second.size; vma_map.erase(iter); iter = prev_vma; } } return iter; } void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { switch (vma.type) { case VMAType::Free: Memory::UnmapRegion(page_table, vma.base, vma.size); break; case VMAType::AllocatedMemoryBlock: Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_block->data() + vma.offset); break; case VMAType::BackingMemory: Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory); break; case VMAType::MMIO: Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler); break; } } } // namespace Kernel