// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/math_util.h" #include "video_core/swrasterizer/proctex.h" namespace Pica { namespace Rasterizer { using ProcTexClamp = TexturingRegs::ProcTexClamp; using ProcTexShift = TexturingRegs::ProcTexShift; using ProcTexCombiner = TexturingRegs::ProcTexCombiner; using ProcTexFilter = TexturingRegs::ProcTexFilter; static float LookupLUT(const std::array& lut, float coord) { // For NoiseLUT/ColorMap/AlphaMap, coord=0.0 is lut[0], coord=127.0/128.0 is lut[127] and // coord=1.0 is lut[127]+lut_diff[127]. For other indices, the result is interpolated using // value entries and difference entries. coord *= 128; const int index_int = std::min(static_cast(coord), 127); const float frac = coord - index_int; return lut[index_int].ToFloat() + frac * lut[index_int].DiffToFloat(); } // These function are used to generate random noise for procedural texture. Their results are // verified against real hardware, but it's not known if the algorithm is the same as hardware. static unsigned int NoiseRand1D(unsigned int v) { static constexpr std::array table{ {0, 4, 10, 8, 4, 9, 7, 12, 5, 15, 13, 14, 11, 15, 2, 11}}; return ((v % 9 + 2) * 3 & 0xF) ^ table[(v / 9) & 0xF]; } static float NoiseRand2D(unsigned int x, unsigned int y) { static constexpr std::array table{ {10, 2, 15, 8, 0, 7, 4, 5, 5, 13, 2, 6, 13, 9, 3, 14}}; unsigned int u2 = NoiseRand1D(x); unsigned int v2 = NoiseRand1D(y); v2 += ((u2 & 3) == 1) ? 4 : 0; v2 ^= (u2 & 1) * 6; v2 += 10 + u2; v2 &= 0xF; v2 ^= table[u2]; return -1.0f + v2 * 2.0f / 15.0f; } static float NoiseCoef(float u, float v, TexturingRegs regs, State::ProcTex state) { const float freq_u = float16::FromRaw(regs.proctex_noise_frequency.u).ToFloat32(); const float freq_v = float16::FromRaw(regs.proctex_noise_frequency.v).ToFloat32(); const float phase_u = float16::FromRaw(regs.proctex_noise_u.phase).ToFloat32(); const float phase_v = float16::FromRaw(regs.proctex_noise_v.phase).ToFloat32(); const float x = 9 * freq_u * std::abs(u + phase_u); const float y = 9 * freq_v * std::abs(v + phase_v); const int x_int = static_cast(x); const int y_int = static_cast(y); const float x_frac = x - x_int; const float y_frac = y - y_int; const float g0 = NoiseRand2D(x_int, y_int) * (x_frac + y_frac); const float g1 = NoiseRand2D(x_int + 1, y_int) * (x_frac + y_frac - 1); const float g2 = NoiseRand2D(x_int, y_int + 1) * (x_frac + y_frac - 1); const float g3 = NoiseRand2D(x_int + 1, y_int + 1) * (x_frac + y_frac - 2); const float x_noise = LookupLUT(state.noise_table, x_frac); const float y_noise = LookupLUT(state.noise_table, y_frac); return Math::BilinearInterp(g0, g1, g2, g3, x_noise, y_noise); } static float GetShiftOffset(float v, ProcTexShift mode, ProcTexClamp clamp_mode) { const float offset = (clamp_mode == ProcTexClamp::MirroredRepeat) ? 1 : 0.5f; switch (mode) { case ProcTexShift::None: return 0; case ProcTexShift::Odd: return offset * (((int)v / 2) % 2); case ProcTexShift::Even: return offset * ((((int)v + 1) / 2) % 2); default: LOG_CRITICAL(HW_GPU, "Unknown shift mode {}", static_cast(mode)); return 0; } }; static void ClampCoord(float& coord, ProcTexClamp mode) { switch (mode) { case ProcTexClamp::ToZero: if (coord > 1.0f) coord = 0.0f; break; case ProcTexClamp::ToEdge: coord = std::min(coord, 1.0f); break; case ProcTexClamp::SymmetricalRepeat: coord = coord - std::floor(coord); break; case ProcTexClamp::MirroredRepeat: { int integer = static_cast(coord); float frac = coord - integer; coord = (integer % 2) == 0 ? frac : (1.0f - frac); break; } case ProcTexClamp::Pulse: if (coord <= 0.5f) coord = 0.0f; else coord = 1.0f; break; default: LOG_CRITICAL(HW_GPU, "Unknown clamp mode {}", static_cast(mode)); coord = std::min(coord, 1.0f); break; } } float CombineAndMap(float u, float v, ProcTexCombiner combiner, const std::array& map_table) { float f; switch (combiner) { case ProcTexCombiner::U: f = u; break; case ProcTexCombiner::U2: f = u * u; break; case TexturingRegs::ProcTexCombiner::V: f = v; break; case TexturingRegs::ProcTexCombiner::V2: f = v * v; break; case TexturingRegs::ProcTexCombiner::Add: f = (u + v) * 0.5f; break; case TexturingRegs::ProcTexCombiner::Add2: f = (u * u + v * v) * 0.5f; break; case TexturingRegs::ProcTexCombiner::SqrtAdd2: f = std::min(std::sqrt(u * u + v * v), 1.0f); break; case TexturingRegs::ProcTexCombiner::Min: f = std::min(u, v); break; case TexturingRegs::ProcTexCombiner::Max: f = std::max(u, v); break; case TexturingRegs::ProcTexCombiner::RMax: f = std::min(((u + v) * 0.5f + std::sqrt(u * u + v * v)) * 0.5f, 1.0f); break; default: LOG_CRITICAL(HW_GPU, "Unknown combiner {}", static_cast(combiner)); f = 0.0f; break; } return LookupLUT(map_table, f); } Math::Vec4 ProcTex(float u, float v, TexturingRegs regs, State::ProcTex state) { u = std::abs(u); v = std::abs(v); // Get shift offset before noise generation const float u_shift = GetShiftOffset(v, regs.proctex.u_shift, regs.proctex.u_clamp); const float v_shift = GetShiftOffset(u, regs.proctex.v_shift, regs.proctex.v_clamp); // Generate noise if (regs.proctex.noise_enable) { float noise = NoiseCoef(u, v, regs, state); u += noise * regs.proctex_noise_u.amplitude / 4095.0f; v += noise * regs.proctex_noise_v.amplitude / 4095.0f; u = std::abs(u); v = std::abs(v); } // Shift u += u_shift; v += v_shift; // Clamp ClampCoord(u, regs.proctex.u_clamp); ClampCoord(v, regs.proctex.v_clamp); // Combine and map const float lut_coord = CombineAndMap(u, v, regs.proctex.color_combiner, state.color_map_table); // Look up the color // For the color lut, coord=0.0 is lut[offset] and coord=1.0 is lut[offset+width-1] const u32 offset = regs.proctex_lut_offset.level0; const u32 width = regs.proctex_lut.width; const float index = offset + (lut_coord * (width - 1)); Math::Vec4 final_color; // TODO(wwylele): implement mipmap switch (regs.proctex_lut.filter) { case ProcTexFilter::Linear: case ProcTexFilter::LinearMipmapLinear: case ProcTexFilter::LinearMipmapNearest: { const int index_int = static_cast(index); const float frac = index - index_int; const auto color_value = state.color_table[index_int].ToVector().Cast(); const auto color_diff = state.color_diff_table[index_int].ToVector().Cast(); final_color = (color_value + frac * color_diff).Cast(); break; } case ProcTexFilter::Nearest: case ProcTexFilter::NearestMipmapLinear: case ProcTexFilter::NearestMipmapNearest: final_color = state.color_table[static_cast(std::round(index))].ToVector(); break; } if (regs.proctex.separate_alpha) { // Note: in separate alpha mode, the alpha channel skips the color LUT look up stage. It // uses the output of CombineAndMap directly instead. const float final_alpha = CombineAndMap(u, v, regs.proctex.alpha_combiner, state.alpha_map_table); return Math::MakeVec(final_color.rgb(), static_cast(final_alpha * 255)); } else { return final_color; } } } // namespace Rasterizer } // namespace Pica