// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/bit_field.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/vector_math.h" #include "video_core/pica_state.h" #include "video_core/pica_types.h" #include "video_core/shader/shader.h" #include "video_core/swrasterizer/clipper.h" #include "video_core/swrasterizer/rasterizer.h" using Pica::Rasterizer::Vertex; namespace Pica { namespace Clipper { struct ClippingEdge { public: ClippingEdge(Math::Vec4 coeffs, Math::Vec4 bias = Math::Vec4( float24::FromFloat32(0), float24::FromFloat32(0), float24::FromFloat32(0), float24::FromFloat32(0))) : coeffs(coeffs), bias(bias) {} bool IsInside(const Vertex& vertex) const { return Math::Dot(vertex.pos + bias, coeffs) >= float24::FromFloat32(0); } bool IsOutSide(const Vertex& vertex) const { return !IsInside(vertex); } Vertex GetIntersection(const Vertex& v0, const Vertex& v1) const { float24 dp = Math::Dot(v0.pos + bias, coeffs); float24 dp_prev = Math::Dot(v1.pos + bias, coeffs); float24 factor = dp_prev / (dp_prev - dp); return Vertex::Lerp(factor, v0, v1); } private: float24 pos; Math::Vec4 coeffs; Math::Vec4 bias; }; static void InitScreenCoordinates(Vertex& vtx) { struct { float24 halfsize_x; float24 offset_x; float24 halfsize_y; float24 offset_y; float24 zscale; float24 offset_z; } viewport; const auto& regs = g_state.regs; viewport.halfsize_x = float24::FromRaw(regs.rasterizer.viewport_size_x); viewport.halfsize_y = float24::FromRaw(regs.rasterizer.viewport_size_y); viewport.offset_x = float24::FromFloat32(static_cast(regs.rasterizer.viewport_corner.x)); viewport.offset_y = float24::FromFloat32(static_cast(regs.rasterizer.viewport_corner.y)); float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w; vtx.pos.w = inv_w; vtx.quat *= inv_w; vtx.color *= inv_w; vtx.tc0 *= inv_w; vtx.tc1 *= inv_w; vtx.tc0_w *= inv_w; vtx.view *= inv_w; vtx.tc2 *= inv_w; vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; vtx.screenpos[2] = vtx.pos.z * inv_w; } void ProcessTriangle(const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) { using boost::container::static_vector; // Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at // the new edge (or less in degenerate cases). As such, we can say that each clipping plane // introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a // fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9. static const std::size_t MAX_VERTICES = 9; static_vector buffer_a = {v0, v1, v2}; static_vector buffer_b; auto FlipQuaternionIfOpposite = [](auto& a, const auto& b) { if (Math::Dot(a, b) < float24::Zero()) a = a * float24::FromFloat32(-1.0f); }; // Flip the quaternions if they are opposite to prevent interpolating them over the wrong // direction. FlipQuaternionIfOpposite(buffer_a[1].quat, buffer_a[0].quat); FlipQuaternionIfOpposite(buffer_a[2].quat, buffer_a[0].quat); auto* output_list = &buffer_a; auto* input_list = &buffer_b; // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value. // TODO: Not sure if this is a valid approach. Also should probably instead use the smallest // epsilon possible within float24 accuracy. static const float24 EPSILON = float24::FromFloat32(0.00001f); static const float24 f0 = float24::FromFloat32(0.0); static const float24 f1 = float24::FromFloat32(1.0); static const std::array clipping_edges = {{ {Math::MakeVec(-f1, f0, f0, f1)}, // x = +w {Math::MakeVec(f1, f0, f0, f1)}, // x = -w {Math::MakeVec(f0, -f1, f0, f1)}, // y = +w {Math::MakeVec(f0, f1, f0, f1)}, // y = -w {Math::MakeVec(f0, f0, -f1, f0)}, // z = 0 {Math::MakeVec(f0, f0, f1, f1)}, // z = -w {Math::MakeVec(f0, f0, f0, f1), Math::Vec4(f0, f0, f0, EPSILON)}, // w = EPSILON }}; // Simple implementation of the Sutherland-Hodgman clipping algorithm. // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here) auto Clip = [&](const ClippingEdge& edge) { std::swap(input_list, output_list); output_list->clear(); const Vertex* reference_vertex = &input_list->back(); for (const auto& vertex : *input_list) { // NOTE: This algorithm changes vertex order in some cases! if (edge.IsInside(vertex)) { if (edge.IsOutSide(*reference_vertex)) { output_list->push_back(edge.GetIntersection(vertex, *reference_vertex)); } output_list->push_back(vertex); } else if (edge.IsInside(*reference_vertex)) { output_list->push_back(edge.GetIntersection(vertex, *reference_vertex)); } reference_vertex = &vertex; } }; for (auto edge : clipping_edges) { Clip(edge); // Need to have at least a full triangle to continue... if (output_list->size() < 3) return; } if (g_state.regs.rasterizer.clip_enable) { ClippingEdge custom_edge{g_state.regs.rasterizer.GetClipCoef()}; Clip(custom_edge); if (output_list->size() < 3) return; } InitScreenCoordinates((*output_list)[0]); InitScreenCoordinates((*output_list)[1]); for (std::size_t i = 0; i < output_list->size() - 2; i++) { Vertex& vtx0 = (*output_list)[0]; Vertex& vtx1 = (*output_list)[i + 1]; Vertex& vtx2 = (*output_list)[i + 2]; InitScreenCoordinates(vtx2); LOG_TRACE( Render_Software, "Triangle {}/{} at position ({:.3}, {:.3}, {:.3}, {:.3f}), " "({:.3}, {:.3}, {:.3}, {:.3}), ({:.3}, {:.3}, {:.3}, {:.3}) and " "screen position ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2}), ({:.2}, {:.2}, {:.2})", i + 1, output_list->size() - 2, vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(), vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(), vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(), vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(), vtx2.pos.w.ToFloat32(), vtx0.screenpos.x.ToFloat32(), vtx0.screenpos.y.ToFloat32(), vtx0.screenpos.z.ToFloat32(), vtx1.screenpos.x.ToFloat32(), vtx1.screenpos.y.ToFloat32(), vtx1.screenpos.z.ToFloat32(), vtx2.screenpos.x.ToFloat32(), vtx2.screenpos.y.ToFloat32(), vtx2.screenpos.z.ToFloat32()); Rasterizer::ProcessTriangle(vtx0, vtx1, vtx2); } } } // namespace Clipper } // namespace Pica