// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/core_timing.h" namespace Core { // Sort by time, unless the times are the same, in which case sort by the order added to the queue bool Timing::Event::operator>(const Timing::Event& right) const { return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order); } bool Timing::Event::operator<(const Timing::Event& right) const { return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order); } Timing::Timing(std::size_t num_cores, u32 cpu_clock_percentage) { timers.resize(num_cores); for (std::size_t i = 0; i < num_cores; ++i) { timers[i] = std::make_shared(); } UpdateClockSpeed(cpu_clock_percentage); current_timer = timers[0].get(); } void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) { for (auto& timer : timers) { timer->cpu_clock_scale = 100.0 / cpu_clock_percentage; } } TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. auto info = event_types.emplace(name, TimingEventType{}); TimingEventType* event_type = &info.first->second; event_type->name = &info.first->first; if (callback != nullptr) { event_type->callback = callback; } return event_type; } void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, std::uintptr_t user_data, std::size_t core_id) { if (event_queue_locked) { return; } ASSERT(event_type != nullptr); Timing::Timer* timer = nullptr; if (core_id == std::numeric_limits::max()) { timer = current_timer; } else { ASSERT(core_id < timers.size()); timer = timers.at(core_id).get(); } s64 timeout = timer->GetTicks() + cycles_into_future; if (current_timer == timer) { // If this event needs to be scheduled before the next advance(), force one early if (!timer->is_timer_sane) timer->ForceExceptionCheck(cycles_into_future); timer->event_queue.emplace_back( Event{timeout, timer->event_fifo_id++, user_data, event_type}); std::push_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } else { timer->ts_queue.Push(Event{static_cast(timer->GetTicks() + cycles_into_future), 0, user_data, event_type}); } } void Timing::UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data) { if (event_queue_locked) { return; } for (auto timer : timers) { auto itr = std::remove_if( timer->event_queue.begin(), timer->event_queue.end(), [&](const Event& e) { return e.type == event_type && e.user_data == user_data; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != timer->event_queue.end()) { timer->event_queue.erase(itr, timer->event_queue.end()); std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } } // TODO:remove events from ts_queue } void Timing::RemoveEvent(const TimingEventType* event_type) { if (event_queue_locked) { return; } for (auto timer : timers) { auto itr = std::remove_if(timer->event_queue.begin(), timer->event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != timer->event_queue.end()) { timer->event_queue.erase(itr, timer->event_queue.end()); std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>()); } } // TODO:remove events from ts_queue } void Timing::SetCurrentTimer(std::size_t core_id) { current_timer = timers[core_id].get(); } s64 Timing::GetTicks() const { return current_timer->GetTicks(); } s64 Timing::GetGlobalTicks() const { const auto& timer = std::max_element(timers.cbegin(), timers.cend(), [](const auto& a, const auto& b) { return a->GetTicks() < b->GetTicks(); }); return (*timer)->GetTicks(); } std::chrono::microseconds Timing::GetGlobalTimeUs() const { return std::chrono::microseconds{GetGlobalTicks() * 1000000 / BASE_CLOCK_RATE_ARM11}; } std::shared_ptr Timing::GetTimer(std::size_t cpu_id) { return timers[cpu_id]; } Timing::Timer::Timer() = default; Timing::Timer::~Timer() { MoveEvents(); } u64 Timing::Timer::GetTicks() const { u64 ticks = static_cast(executed_ticks); if (!is_timer_sane) { ticks += slice_length - downcount; } return ticks; } void Timing::Timer::AddTicks(u64 ticks) { downcount -= static_cast(ticks * cpu_clock_scale); } u64 Timing::Timer::GetIdleTicks() const { return static_cast(idled_cycles); } void Timing::Timer::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); if (downcount > cycles) { slice_length -= downcount - cycles; downcount = cycles; } } void Timing::Timer::MoveEvents() { for (Event ev; ts_queue.Pop(ev);) { ev.fifo_order = event_fifo_id++; event_queue.emplace_back(std::move(ev)); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } u32 Timing::Timer::StartAdjust() { ASSERT((adjust_value_curr_handle & 1) == 0); // Should always be even adjust_value_last = std::chrono::steady_clock::now(); return ++adjust_value_curr_handle; } void Timing::Timer::EndAdjust(u32 start_adjust_handle) { std::chrono::time_point new_timer = std::chrono::steady_clock::now(); ASSERT(new_timer >= adjust_value_last && start_adjust_handle == adjust_value_curr_handle); AddTicks(nsToCycles(static_cast( std::chrono::duration_cast(new_timer - adjust_value_last) .count() / cpu_clock_scale))); ++adjust_value_curr_handle; } s64 Timing::Timer::GetMaxSliceLength() const { const auto& next_event = event_queue.begin(); if (next_event != event_queue.end()) { ASSERT(next_event->time - executed_ticks > 0); return next_event->time - executed_ticks; } return MAX_SLICE_LENGTH; } void Timing::Timer::Advance() { MoveEvents(); s64 cycles_executed = slice_length - downcount; idled_cycles = 0; executed_ticks += cycles_executed; slice_length = 0; downcount = 0; is_timer_sane = true; while (!event_queue.empty() && event_queue.front().time <= executed_ticks) { Event evt = std::move(event_queue.front()); std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); event_queue.pop_back(); if (evt.type->callback != nullptr) { evt.type->callback(evt.user_data, static_cast(executed_ticks - evt.time)); } else { LOG_ERROR(Core, "Event '{}' has no callback", *evt.type->name); } } is_timer_sane = false; } void Timing::Timer::SetNextSlice(s64 max_slice_length) { slice_length = max_slice_length; // Still events left (scheduled in the future) if (!event_queue.empty()) { slice_length = static_cast( std::min(event_queue.front().time - executed_ticks, max_slice_length)); } downcount = slice_length; } void Timing::Timer::Idle() { idled_cycles += downcount; downcount = 0; } s64 Timing::Timer::GetDowncount() const { return downcount; } } // namespace Core