// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/logging/log.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/service/fs/archive.h" #include "core/hle/service/fs/fs_user.h" #include "core/loader/3dsx.h" #include "core/memory.h" namespace Loader { /* * File layout: * - File header * - Code, rodata and data relocation table headers * - Code segment * - Rodata segment * - Loadable (non-BSS) part of the data segment * - Code relocation table * - Rodata relocation table * - Data relocation table * * Memory layout before relocations are applied: * [0..codeSegSize) -> code segment * [codeSegSize..rodataSegSize) -> rodata segment * [rodataSegSize..dataSegSize) -> data segment * * Memory layout after relocations are applied: well, however the loader sets it up :) * The entrypoint is always the start of the code segment. * The BSS section must be cleared manually by the application. */ enum THREEDSX_Error { ERROR_NONE = 0, ERROR_READ = 1, ERROR_FILE = 2, ERROR_ALLOC = 3 }; static const u32 RELOCBUFSIZE = 512; static const unsigned int NUM_SEGMENTS = 3; // File header #pragma pack(1) struct THREEDSX_Header { u32 magic; u16 header_size, reloc_hdr_size; u32 format_ver; u32 flags; // Sizes of the code, rodata and data segments + // size of the BSS section (uninitialized latter half of the data segment) u32 code_seg_size, rodata_seg_size, data_seg_size, bss_size; // offset and size of smdh u32 smdh_offset, smdh_size; // offset to filesystem u32 fs_offset; }; // Relocation header: all fields (even extra unknown fields) are guaranteed to be relocation counts. struct THREEDSX_RelocHdr { // # of absolute relocations (that is, fix address to post-relocation memory layout) u32 cross_segment_absolute; // # of cross-segment relative relocations (that is, 32bit signed offsets that need to be // patched) u32 cross_segment_relative; // more? // Relocations are written in this order: // - Absolute relocations // - Relative relocations }; // Relocation entry: from the current pointer, skip X words and patch Y words struct THREEDSX_Reloc { u16 skip, patch; }; #pragma pack() struct THREEloadinfo { u8* seg_ptrs[3]; // code, rodata & data u32 seg_addrs[3]; u32 seg_sizes[3]; }; static u32 TranslateAddr(u32 addr, const THREEloadinfo* loadinfo, u32* offsets) { if (addr < offsets[0]) return loadinfo->seg_addrs[0] + addr; if (addr < offsets[1]) return loadinfo->seg_addrs[1] + addr - offsets[0]; return loadinfo->seg_addrs[2] + addr - offsets[1]; } using Kernel::CodeSet; static THREEDSX_Error Load3DSXFile(FileUtil::IOFile& file, u32 base_addr, std::shared_ptr* out_codeset) { if (!file.IsOpen()) return ERROR_FILE; // Reset read pointer in case this file has been read before. file.Seek(0, SEEK_SET); THREEDSX_Header hdr; if (file.ReadBytes(&hdr, sizeof(hdr)) != sizeof(hdr)) return ERROR_READ; THREEloadinfo loadinfo; // loadinfo segments must be a multiple of 0x1000 loadinfo.seg_sizes[0] = (hdr.code_seg_size + 0xFFF) & ~0xFFF; loadinfo.seg_sizes[1] = (hdr.rodata_seg_size + 0xFFF) & ~0xFFF; loadinfo.seg_sizes[2] = (hdr.data_seg_size + 0xFFF) & ~0xFFF; // prevent integer overflow leading to heap-buffer-overflow if (loadinfo.seg_sizes[0] < hdr.code_seg_size || loadinfo.seg_sizes[1] < hdr.rodata_seg_size || loadinfo.seg_sizes[2] < hdr.data_seg_size) { return ERROR_READ; } u32 offsets[2] = {loadinfo.seg_sizes[0], loadinfo.seg_sizes[0] + loadinfo.seg_sizes[1]}; u32 n_reloc_tables = hdr.reloc_hdr_size / sizeof(u32); std::vector program_image(loadinfo.seg_sizes[0] + loadinfo.seg_sizes[1] + loadinfo.seg_sizes[2]); loadinfo.seg_addrs[0] = base_addr; loadinfo.seg_addrs[1] = loadinfo.seg_addrs[0] + loadinfo.seg_sizes[0]; loadinfo.seg_addrs[2] = loadinfo.seg_addrs[1] + loadinfo.seg_sizes[1]; loadinfo.seg_ptrs[0] = program_image.data(); loadinfo.seg_ptrs[1] = loadinfo.seg_ptrs[0] + loadinfo.seg_sizes[0]; loadinfo.seg_ptrs[2] = loadinfo.seg_ptrs[1] + loadinfo.seg_sizes[1]; // Skip header for future compatibility file.Seek(hdr.header_size, SEEK_SET); // Read the relocation headers std::vector relocs(n_reloc_tables * NUM_SEGMENTS); for (unsigned int current_segment = 0; current_segment < NUM_SEGMENTS; ++current_segment) { std::size_t size = n_reloc_tables * sizeof(u32); if (file.ReadBytes(&relocs[current_segment * n_reloc_tables], size) != size) return ERROR_READ; } // Read the segments if (file.ReadBytes(loadinfo.seg_ptrs[0], hdr.code_seg_size) != hdr.code_seg_size) return ERROR_READ; if (file.ReadBytes(loadinfo.seg_ptrs[1], hdr.rodata_seg_size) != hdr.rodata_seg_size) return ERROR_READ; if (file.ReadBytes(loadinfo.seg_ptrs[2], hdr.data_seg_size - hdr.bss_size) != hdr.data_seg_size - hdr.bss_size) return ERROR_READ; // BSS clear std::memset((char*)loadinfo.seg_ptrs[2] + hdr.data_seg_size - hdr.bss_size, 0, hdr.bss_size); // Relocate the segments for (unsigned int current_segment = 0; current_segment < NUM_SEGMENTS; ++current_segment) { for (unsigned current_segment_reloc_table = 0; current_segment_reloc_table < n_reloc_tables; current_segment_reloc_table++) { u32 n_relocs = relocs[current_segment * n_reloc_tables + current_segment_reloc_table]; if (current_segment_reloc_table >= 2) { // We are not using this table - ignore it because we don't know what it dose file.Seek(n_relocs * sizeof(THREEDSX_Reloc), SEEK_CUR); continue; } THREEDSX_Reloc reloc_table[RELOCBUFSIZE]; u32* pos = (u32*)loadinfo.seg_ptrs[current_segment]; const u32* end_pos = pos + (loadinfo.seg_sizes[current_segment] / 4); while (n_relocs) { u32 remaining = std::min(RELOCBUFSIZE, n_relocs); n_relocs -= remaining; if (file.ReadBytes(reloc_table, remaining * sizeof(THREEDSX_Reloc)) != remaining * sizeof(THREEDSX_Reloc)) return ERROR_READ; for (unsigned current_inprogress = 0; current_inprogress < remaining && pos < end_pos; current_inprogress++) { const auto& table = reloc_table[current_inprogress]; LOG_TRACE(Loader, "(t={},skip={},patch={})", current_segment_reloc_table, static_cast(table.skip), static_cast(table.patch)); pos += table.skip; s32 num_patches = table.patch; while (0 < num_patches && pos < end_pos) { u32 in_addr = base_addr + static_cast(reinterpret_cast(pos) - program_image.data()); u32 orig_data = *pos; u32 sub_type = orig_data >> (32 - 4); u32 addr = TranslateAddr(orig_data & ~0xF0000000, &loadinfo, offsets); LOG_TRACE(Loader, "Patching {:08X} <-- rel({:08X},{}) ({:08X})", in_addr, addr, current_segment_reloc_table, *pos); switch (current_segment_reloc_table) { case 0: { if (sub_type != 0) return ERROR_READ; *pos = addr; break; } case 1: { u32 data = addr - in_addr; switch (sub_type) { case 0: // 32-bit signed offset *pos = data; break; case 1: // 31-bit signed offset *pos = data & ~(1U << 31); break; default: return ERROR_READ; } break; } default: break; // this should never happen } pos++; num_patches--; } } } } } // Create the CodeSet std::shared_ptr code_set = Core::System::GetInstance().Kernel().CreateCodeSet("", 0); code_set->CodeSegment().offset = loadinfo.seg_ptrs[0] - program_image.data(); code_set->CodeSegment().addr = loadinfo.seg_addrs[0]; code_set->CodeSegment().size = loadinfo.seg_sizes[0]; code_set->RODataSegment().offset = loadinfo.seg_ptrs[1] - program_image.data(); code_set->RODataSegment().addr = loadinfo.seg_addrs[1]; code_set->RODataSegment().size = loadinfo.seg_sizes[1]; code_set->DataSegment().offset = loadinfo.seg_ptrs[2] - program_image.data(); code_set->DataSegment().addr = loadinfo.seg_addrs[2]; code_set->DataSegment().size = loadinfo.seg_sizes[2]; code_set->entrypoint = code_set->CodeSegment().addr; code_set->memory = std::move(program_image); LOG_DEBUG(Loader, "code size: {:#X}", loadinfo.seg_sizes[0]); LOG_DEBUG(Loader, "rodata size: {:#X}", loadinfo.seg_sizes[1]); LOG_DEBUG(Loader, "data size: {:#X} (including {:#X} of bss)", loadinfo.seg_sizes[2], hdr.bss_size); *out_codeset = code_set; return ERROR_NONE; } FileType AppLoader_THREEDSX::IdentifyType(FileUtil::IOFile& file) { u32 magic; file.Seek(0, SEEK_SET); if (1 != file.ReadArray(&magic, 1)) return FileType::Error; if (MakeMagic('3', 'D', 'S', 'X') == magic) return FileType::THREEDSX; return FileType::Error; } ResultStatus AppLoader_THREEDSX::Load(std::shared_ptr& process) { if (is_loaded) return ResultStatus::ErrorAlreadyLoaded; if (!file.IsOpen()) return ResultStatus::Error; std::shared_ptr codeset; if (Load3DSXFile(file, Memory::PROCESS_IMAGE_VADDR, &codeset) != ERROR_NONE) return ResultStatus::Error; codeset->name = filename; process = Core::System::GetInstance().Kernel().CreateProcess(std::move(codeset)); process->Set3dsxKernelCaps(); // Attach the default resource limit (APPLICATION) to the process process->resource_limit = Core::System::GetInstance().Kernel().ResourceLimit().GetForCategory( Kernel::ResourceLimitCategory::APPLICATION); // On real HW this is done with FS:Reg, but we can be lazy auto fs_user = Core::System::GetInstance().ServiceManager().GetService("fs:USER"); fs_user->Register(process->GetObjectId(), process->codeset->program_id, filepath); process->Run(48, Kernel::DEFAULT_STACK_SIZE); Core::System::GetInstance().ArchiveManager().RegisterSelfNCCH(*this); is_loaded = true; return ResultStatus::Success; } ResultStatus AppLoader_THREEDSX::ReadRomFS(std::shared_ptr& romfs_file) { if (!file.IsOpen()) return ResultStatus::Error; // Reset read pointer in case this file has been read before. file.Seek(0, SEEK_SET); THREEDSX_Header hdr; if (file.ReadBytes(&hdr, sizeof(THREEDSX_Header)) != sizeof(THREEDSX_Header)) return ResultStatus::Error; if (hdr.header_size != sizeof(THREEDSX_Header)) return ResultStatus::Error; // Check if the 3DSX has a RomFS... if (hdr.fs_offset != 0) { u32 romfs_offset = hdr.fs_offset; u32 romfs_size = static_cast(file.GetSize()) - hdr.fs_offset; LOG_DEBUG(Loader, "RomFS offset: {:#010X}", romfs_offset); LOG_DEBUG(Loader, "RomFS size: {:#010X}", romfs_size); // We reopen the file, to allow its position to be independent from file's FileUtil::IOFile romfs_file_inner(filepath, "rb"); if (!romfs_file_inner.IsOpen()) return ResultStatus::Error; romfs_file = std::make_shared(std::move(romfs_file_inner), romfs_offset, romfs_size); return ResultStatus::Success; } LOG_DEBUG(Loader, "3DSX has no RomFS"); return ResultStatus::ErrorNotUsed; } ResultStatus AppLoader_THREEDSX::ReadIcon(std::vector& buffer) { if (!file.IsOpen()) return ResultStatus::Error; // Reset read pointer in case this file has been read before. file.Seek(0, SEEK_SET); THREEDSX_Header hdr; if (file.ReadBytes(&hdr, sizeof(THREEDSX_Header)) != sizeof(THREEDSX_Header)) return ResultStatus::Error; if (hdr.header_size != sizeof(THREEDSX_Header)) return ResultStatus::Error; // Check if the 3DSX has a SMDH... if (hdr.smdh_offset != 0) { file.Seek(hdr.smdh_offset, SEEK_SET); buffer.resize(hdr.smdh_size); if (file.ReadBytes(buffer.data(), hdr.smdh_size) != hdr.smdh_size) return ResultStatus::Error; return ResultStatus::Success; } return ResultStatus::ErrorNotUsed; } } // namespace Loader