// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/microprofile.h" #include "common/profiler.h" #include "core/settings.h" #include "core/hle/service/gsp_gpu.h" #include "core/hw/gpu.h" #include "video_core/clipper.h" #include "video_core/command_processor.h" #include "video_core/pica.h" #include "video_core/pica_state.h" #include "video_core/primitive_assembly.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/shader/shader_interpreter.h" #include "video_core/vertex_loader.h" namespace Pica { namespace CommandProcessor { static int float_regs_counter = 0; static u32 uniform_write_buffer[4]; static int default_attr_counter = 0; static u32 default_attr_write_buffer[3]; Common::Profiling::TimingCategory category_drawing("Drawing"); // Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF static const u32 expand_bits_to_bytes[] = { 0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff, 0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff, 0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff, 0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff }; MICROPROFILE_DEFINE(GPU_Drawing, "GPU", "Drawing", MP_RGB(50, 50, 240)); static void WritePicaReg(u32 id, u32 value, u32 mask) { auto& regs = g_state.regs; if (id >= regs.NumIds()) return; // If we're skipping this frame, only allow trigger IRQ if (GPU::g_skip_frame && id != PICA_REG_INDEX(trigger_irq)) return; // TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value u32 old_value = regs[id]; const u32 write_mask = expand_bits_to_bytes[mask]; regs[id] = (old_value & ~write_mask) | (value & write_mask); DebugUtils::OnPicaRegWrite({ (u16)id, (u16)mask, regs[id] }); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::PicaCommandLoaded, reinterpret_cast(&id)); switch(id) { // Trigger IRQ case PICA_REG_INDEX(trigger_irq): GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::P3D); break; case PICA_REG_INDEX_WORKAROUND(triangle_topology, 0x25E): g_state.primitive_assembler.Reconfigure(regs.triangle_topology); break; case PICA_REG_INDEX_WORKAROUND(restart_primitive, 0x25F): g_state.primitive_assembler.Reset(); break; case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.index, 0x232): g_state.immediate.current_attribute = 0; default_attr_counter = 0; break; // Load default vertex input attributes case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[0], 0x233): case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[1], 0x234): case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[2], 0x235): { // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? default_attr_write_buffer[default_attr_counter++] = value; // Default attributes are written in a packed format such that four float24 values are encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if (default_attr_counter >= 3) { default_attr_counter = 0; auto& setup = regs.vs_default_attributes_setup; if (setup.index >= 16) { LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index); break; } Math::Vec4 attribute; // NOTE: The destination component order indeed is "backwards" attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8); attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF)); attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF)); attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF); LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index, attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(), attribute.w.ToFloat32()); // TODO: Verify that this actually modifies the register! if (setup.index < 15) { g_state.vs.default_attributes[setup.index] = attribute; setup.index++; } else { // Put each attribute into an immediate input buffer. // When all specified immediate attributes are present, the Vertex Shader is invoked and everything is // sent to the primitive assembler. auto& immediate_input = g_state.immediate.input_vertex; auto& immediate_attribute_id = g_state.immediate.current_attribute; immediate_input.attr[immediate_attribute_id++] = attribute; if (immediate_attribute_id >= regs.vs.num_input_attributes+1) { immediate_attribute_id = 0; Shader::UnitState shader_unit; Shader::Setup(); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, static_cast(&immediate_input)); // Send to vertex shader Shader::OutputVertex output = Shader::Run(shader_unit, immediate_input, regs.vs.num_input_attributes+1); // Send to renderer using Pica::Shader::OutputVertex; auto AddTriangle = [](const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) { VideoCore::g_renderer->Rasterizer()->AddTriangle(v0, v1, v2); }; g_state.primitive_assembler.SubmitVertex(output, AddTriangle); } } } break; } case PICA_REG_INDEX(gpu_mode): if (regs.gpu_mode == Regs::GPUMode::Configuring) { // Draw immediate mode triangles when GPU Mode is set to GPUMode::Configuring VideoCore::g_renderer->Rasterizer()->DrawTriangles(); if (g_debug_context) { g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr); } } break; case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[0], 0x23c): case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[1], 0x23d): { unsigned index = static_cast(id - PICA_REG_INDEX(command_buffer.trigger[0])); u32* head_ptr = (u32*)Memory::GetPhysicalPointer(regs.command_buffer.GetPhysicalAddress(index)); g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr; g_state.cmd_list.length = regs.command_buffer.GetSize(index) / sizeof(u32); break; } // It seems like these trigger vertex rendering case PICA_REG_INDEX(trigger_draw): case PICA_REG_INDEX(trigger_draw_indexed): { Common::Profiling::ScopeTimer scope_timer(category_drawing); MICROPROFILE_SCOPE(GPU_Drawing); #if PICA_LOG_TEV DebugUtils::DumpTevStageConfig(regs.GetTevStages()); #endif if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr); // Processes information about internal vertex attributes to figure out how a vertex is loaded. // Later, these can be compiled and cached. VertexLoader loader; const u32 base_address = regs.vertex_attributes.GetPhysicalBaseAddress(); loader.Setup(regs); // Load vertices bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed)); const auto& index_info = regs.index_array; const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset); const u16* index_address_16 = reinterpret_cast(index_address_8); bool index_u16 = index_info.format != 0; PrimitiveAssembler& primitive_assembler = g_state.primitive_assembler; if (g_debug_context) { for (int i = 0; i < 3; ++i) { const auto texture = regs.GetTextures()[i]; if (!texture.enabled) continue; u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress()); if (g_debug_context && Pica::g_debug_context->recorder) g_debug_context->recorder->MemoryAccessed(texture_data, Pica::Regs::NibblesPerPixel(texture.format) * texture.config.width / 2 * texture.config.height, texture.config.GetPhysicalAddress()); } } DebugUtils::MemoryAccessTracker memory_accesses; // Simple circular-replacement vertex cache // The size has been tuned for optimal balance between hit-rate and the cost of lookup const size_t VERTEX_CACHE_SIZE = 32; std::array vertex_cache_ids; std::array vertex_cache; unsigned int vertex_cache_pos = 0; vertex_cache_ids.fill(-1); Shader::UnitState shader_unit; Shader::Setup(); for (unsigned int index = 0; index < regs.num_vertices; ++index) { // Indexed rendering doesn't use the start offset unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : (index + regs.vertex_offset); // -1 is a common special value used for primitive restart. Since it's unknown if // the PICA supports it, and it would mess up the caching, guard against it here. ASSERT(vertex != -1); bool vertex_cache_hit = false; Shader::OutputVertex output; if (is_indexed) { if (g_debug_context && Pica::g_debug_context->recorder) { int size = index_u16 ? 2 : 1; memory_accesses.AddAccess(base_address + index_info.offset + size * index, size); } for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) { if (vertex == vertex_cache_ids[i]) { output = vertex_cache[i]; vertex_cache_hit = true; break; } } } if (!vertex_cache_hit) { // Initialize data for the current vertex Shader::InputVertex input; loader.LoadVertex(base_address, index, vertex, input, memory_accesses); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, (void*)&input); // Send to vertex shader output = Shader::Run(shader_unit, input, loader.GetNumTotalAttributes()); if (is_indexed) { vertex_cache[vertex_cache_pos] = output; vertex_cache_ids[vertex_cache_pos] = vertex; vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE; } } // Send to renderer using Pica::Shader::OutputVertex; auto AddTriangle = []( const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) { VideoCore::g_renderer->Rasterizer()->AddTriangle(v0, v1, v2); }; primitive_assembler.SubmitVertex(output, AddTriangle); } for (auto& range : memory_accesses.ranges) { g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first), range.second, range.first); } break; } case PICA_REG_INDEX(vs.bool_uniforms): for (unsigned i = 0; i < 16; ++i) g_state.vs.uniforms.b[i] = (regs.vs.bool_uniforms.Value() & (1 << i)) != 0; break; case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[1], 0x2b2): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[2], 0x2b3): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[3], 0x2b4): { int index = (id - PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1)); auto values = regs.vs.int_uniforms[index]; g_state.vs.uniforms.i[index] = Math::Vec4(values.x, values.y, values.z, values.w); LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x", index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value()); break; } case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[0], 0x2c1): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[1], 0x2c2): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[2], 0x2c3): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[3], 0x2c4): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[4], 0x2c5): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[5], 0x2c6): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[6], 0x2c7): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[7], 0x2c8): { auto& uniform_setup = regs.vs.uniform_setup; // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? uniform_write_buffer[float_regs_counter++] = value; // Uniforms are written in a packed format such that four float24 values are encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) || (float_regs_counter >= 3 && !uniform_setup.IsFloat32())) { float_regs_counter = 0; auto& uniform = g_state.vs.uniforms.f[uniform_setup.index]; if (uniform_setup.index > 95) { LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index); break; } // NOTE: The destination component order indeed is "backwards" if (uniform_setup.IsFloat32()) { for (auto i : {0,1,2,3}) uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i])); } else { // TODO: Untested uniform.w = float24::FromRaw(uniform_write_buffer[0] >> 8); uniform.z = float24::FromRaw(((uniform_write_buffer[0] & 0xFF) << 16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF)); uniform.y = float24::FromRaw(((uniform_write_buffer[1] & 0xFFFF) << 8) | ((uniform_write_buffer[2] >> 24) & 0xFF)); uniform.x = float24::FromRaw(uniform_write_buffer[2] & 0xFFFFFF); } LOG_TRACE(HW_GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index, uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(), uniform.w.ToFloat32()); // TODO: Verify that this actually modifies the register! uniform_setup.index.Assign(uniform_setup.index + 1); } break; } // Load shader program code case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[0], 0x2cc): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[1], 0x2cd): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[2], 0x2ce): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[3], 0x2cf): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[4], 0x2d0): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[5], 0x2d1): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[6], 0x2d2): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[7], 0x2d3): { g_state.vs.program_code[regs.vs.program.offset] = value; regs.vs.program.offset++; break; } // Load swizzle pattern data case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[0], 0x2d6): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[1], 0x2d7): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[2], 0x2d8): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[3], 0x2d9): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[4], 0x2da): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[5], 0x2db): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[6], 0x2dc): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[7], 0x2dd): { g_state.vs.swizzle_data[regs.vs.swizzle_patterns.offset] = value; regs.vs.swizzle_patterns.offset++; break; } case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf): { auto& lut_config = regs.lighting.lut_config; ASSERT_MSG(lut_config.index < 256, "lut_config.index exceeded maximum value of 255!"); g_state.lighting.luts[lut_config.type][lut_config.index].raw = value; lut_config.index.Assign(lut_config.index + 1); break; } default: break; } VideoCore::g_renderer->Rasterizer()->NotifyPicaRegisterChanged(id); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::PicaCommandProcessed, reinterpret_cast(&id)); } void ProcessCommandList(const u32* list, u32 size) { g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = list; g_state.cmd_list.length = size / sizeof(u32); while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) { // Align read pointer to 8 bytes if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0) ++g_state.cmd_list.current_ptr; u32 value = *g_state.cmd_list.current_ptr++; const CommandHeader header = { *g_state.cmd_list.current_ptr++ }; WritePicaReg(header.cmd_id, value, header.parameter_mask); for (unsigned i = 0; i < header.extra_data_length; ++i) { u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0); WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, header.parameter_mask); } } } } // namespace } // namespace