// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/bit_set.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "video_core/pica_state.h" #include "video_core/regs_rasterizer.h" #include "video_core/regs_shader.h" #include "video_core/shader/shader.h" #include "video_core/shader/shader_interpreter.h" #ifdef ARCHITECTURE_x86_64 #include "video_core/shader/shader_jit_x64.h" #endif // ARCHITECTURE_x86_64 #include "video_core/video_core.h" namespace Pica { namespace Shader { void OutputVertex::ValidateSemantics(const RasterizerRegs& regs) { unsigned int num_attributes = regs.vs_output_total; ASSERT(num_attributes <= 7); for (size_t attrib = 0; attrib < num_attributes; ++attrib) { u32 output_register_map = regs.vs_output_attributes[attrib].raw; for (size_t comp = 0; comp < 4; ++comp) { u32 semantic = (output_register_map >> (8 * comp)) & 0x1F; ASSERT_MSG(semantic < 24 || semantic == RasterizerRegs::VSOutputAttributes::INVALID, "Invalid/unknown semantic id: {}", semantic); } } } OutputVertex OutputVertex::FromAttributeBuffer(const RasterizerRegs& regs, const AttributeBuffer& input) { // Setup output data union { OutputVertex ret{}; // Allow us to overflow OutputVertex to avoid branches, since // RasterizerRegs::VSOutputAttributes::INVALID would write to slot 31, which // would be out of bounds otherwise. std::array vertex_slots_overflow; }; // Assert that OutputVertex has enough space for 24 semantic registers static_assert(sizeof(std::array) == sizeof(ret), "Struct and array have different sizes."); unsigned int num_attributes = regs.vs_output_total & 7; for (size_t attrib = 0; attrib < num_attributes; ++attrib) { const auto output_register_map = regs.vs_output_attributes[attrib]; vertex_slots_overflow[output_register_map.map_x] = input.attr[attrib][0]; vertex_slots_overflow[output_register_map.map_y] = input.attr[attrib][1]; vertex_slots_overflow[output_register_map.map_z] = input.attr[attrib][2]; vertex_slots_overflow[output_register_map.map_w] = input.attr[attrib][3]; } // The hardware takes the absolute and saturates vertex colors like this, *before* doing // interpolation for (unsigned i = 0; i < 4; ++i) { float c = std::fabs(ret.color[i].ToFloat32()); ret.color[i] = float24::FromFloat32(c < 1.0f ? c : 1.0f); } LOG_TRACE(HW_GPU, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), " "col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)", ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(), ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(), ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(), ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(), ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32()); return ret; } void UnitState::LoadInput(const ShaderRegs& config, const AttributeBuffer& input) { const unsigned max_attribute = config.max_input_attribute_index; for (unsigned attr = 0; attr <= max_attribute; ++attr) { unsigned reg = config.GetRegisterForAttribute(attr); registers.input[reg] = input.attr[attr]; } } static void CopyRegistersToOutput(const Math::Vec4* regs, u32 mask, AttributeBuffer& buffer) { int output_i = 0; for (int reg : Common::BitSet(mask)) { buffer.attr[output_i++] = regs[reg]; } } void UnitState::WriteOutput(const ShaderRegs& config, AttributeBuffer& output) { CopyRegistersToOutput(registers.output, config.output_mask, output); } UnitState::UnitState(GSEmitter* emitter) : emitter_ptr(emitter) {} GSEmitter::GSEmitter() { handlers = new Handlers; } GSEmitter::~GSEmitter() { delete handlers; } void GSEmitter::Emit(Math::Vec4 (&output_regs)[16]) { ASSERT(vertex_id < 3); // TODO: This should be merged with UnitState::WriteOutput somehow CopyRegistersToOutput(output_regs, output_mask, buffer[vertex_id]); if (prim_emit) { if (winding) handlers->winding_setter(); for (size_t i = 0; i < buffer.size(); ++i) { handlers->vertex_handler(buffer[i]); } } } GSUnitState::GSUnitState() : UnitState(&emitter) {} void GSUnitState::SetVertexHandler(VertexHandler vertex_handler, WindingSetter winding_setter) { emitter.handlers->vertex_handler = std::move(vertex_handler); emitter.handlers->winding_setter = std::move(winding_setter); } void GSUnitState::ConfigOutput(const ShaderRegs& config) { emitter.output_mask = config.output_mask; } MICROPROFILE_DEFINE(GPU_Shader, "GPU", "Shader", MP_RGB(50, 50, 240)); #ifdef ARCHITECTURE_x86_64 static std::unique_ptr jit_engine; #endif // ARCHITECTURE_x86_64 static InterpreterEngine interpreter_engine; ShaderEngine* GetEngine() { #ifdef ARCHITECTURE_x86_64 // TODO(yuriks): Re-initialize on each change rather than being persistent if (VideoCore::g_shader_jit_enabled) { if (jit_engine == nullptr) { jit_engine = std::make_unique(); } return jit_engine.get(); } #endif // ARCHITECTURE_x86_64 return &interpreter_engine; } void Shutdown() { #ifdef ARCHITECTURE_x86_64 jit_engine = nullptr; #endif // ARCHITECTURE_x86_64 } } // namespace Shader } // namespace Pica