// Copyright 2014 Citra Emulator Project / PPSSPP Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/thread_queue_list.h" #include "core/arm/arm_interface.h" #include "core/arm/skyeye_common/armstate.h" #include "core/core.h" #include "core/core_timing.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/thread.h" #include "core/hle/result.h" #include "core/memory.h" namespace Kernel { /// Event type for the thread wake up event static int ThreadWakeupEventType; bool Thread::ShouldWait(Thread* thread) const { return status != THREADSTATUS_DEAD; } void Thread::Acquire(Thread* thread) { ASSERT_MSG(!ShouldWait(thread), "object unavailable!"); } // TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing // us to simply use a pool index or similar. static Kernel::HandleTable wakeup_callback_handle_table; // Lists all thread ids that aren't deleted/etc. static std::vector> thread_list; // Lists only ready thread ids. static Common::ThreadQueueList ready_queue; static SharedPtr current_thread; // The first available thread id at startup static u32 next_thread_id; /** * Creates a new thread ID * @return The new thread ID */ inline static u32 const NewThreadId() { return next_thread_id++; } Thread::Thread() {} Thread::~Thread() {} Thread* GetCurrentThread() { return current_thread.get(); } /** * Check if the specified thread is waiting on the specified address to be arbitrated * @param thread The thread to test * @param wait_address The address to test against * @return True if the thread is waiting, false otherwise */ static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) { return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address; } void Thread::Stop() { // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); wakeup_callback_handle_table.Close(callback_handle); callback_handle = 0; // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == THREADSTATUS_READY) { ready_queue.remove(current_priority, this); } status = THREADSTATUS_DEAD; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } wait_objects.clear(); // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Mark the TLS slot in the thread's page as free. u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE; u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot); } Thread* ArbitrateHighestPriorityThread(u32 address) { Thread* highest_priority_thread = nullptr; u32 priority = THREADPRIO_LOWEST; // Iterate through threads, find highest priority thread that is waiting to be arbitrated... for (auto& thread : thread_list) { if (!CheckWait_AddressArbiter(thread.get(), address)) continue; if (thread == nullptr) continue; if (thread->current_priority <= priority) { highest_priority_thread = thread.get(); priority = thread->current_priority; } } // If a thread was arbitrated, resume it if (nullptr != highest_priority_thread) { highest_priority_thread->ResumeFromWait(); } return highest_priority_thread; } void ArbitrateAllThreads(u32 address) { // Resume all threads found to be waiting on the address for (auto& thread : thread_list) { if (CheckWait_AddressArbiter(thread.get(), address)) thread->ResumeFromWait(); } } /** * Switches the CPU's active thread context to that of the specified thread * @param new_thread The thread to switch to */ static void SwitchContext(Thread* new_thread) { Thread* previous_thread = GetCurrentThread(); // Save context for previous thread if (previous_thread) { previous_thread->last_running_ticks = CoreTiming::GetTicks(); Core::CPU().SaveContext(previous_thread->context); if (previous_thread->status == THREADSTATUS_RUNNING) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = THREADSTATUS_READY; } } // Load context of new thread if (new_thread) { ASSERT_MSG(new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running."); // Cancel any outstanding wakeup events for this thread CoreTiming::UnscheduleEvent(ThreadWakeupEventType, new_thread->callback_handle); auto previous_process = Kernel::g_current_process; current_thread = new_thread; ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = THREADSTATUS_RUNNING; if (previous_process != current_thread->owner_process) { Kernel::g_current_process = current_thread->owner_process; SetCurrentPageTable(&Kernel::g_current_process->vm_manager.page_table); } Core::CPU().LoadContext(new_thread->context); Core::CPU().SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress()); } else { current_thread = nullptr; // Note: We do not reset the current process and current page table when idling because // technically we haven't changed processes, our threads are just paused. } } /** * Pops and returns the next thread from the thread queue * @return A pointer to the next ready thread */ static Thread* PopNextReadyThread() { Thread* next; Thread* thread = GetCurrentThread(); if (thread && thread->status == THREADSTATUS_RUNNING) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); if (!next) { // Otherwise just keep going with the current thread next = thread; } } else { next = ready_queue.pop_first(); } return next; } void WaitCurrentThread_Sleep() { Thread* thread = GetCurrentThread(); thread->status = THREADSTATUS_WAIT_SLEEP; } void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) { Thread* thread = GetCurrentThread(); thread->wait_address = wait_address; thread->status = THREADSTATUS_WAIT_ARB; } void ExitCurrentThread() { Thread* thread = GetCurrentThread(); thread->Stop(); thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread), thread_list.end()); } /** * Callback that will wake up the thread it was scheduled for * @param thread_handle The handle of the thread that's been awoken * @param cycles_late The number of CPU cycles that have passed since the desired wakeup time */ static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) { SharedPtr thread = wakeup_callback_handle_table.Get((Handle)thread_handle); if (thread == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle); return; } if (thread->status == THREADSTATUS_WAIT_SYNCH_ANY || thread->status == THREADSTATUS_WAIT_SYNCH_ALL || thread->status == THREADSTATUS_WAIT_ARB) { // Invoke the wakeup callback before clearing the wait objects if (thread->wakeup_callback) thread->wakeup_callback(ThreadWakeupReason::Timeout, thread, nullptr); // Remove the thread from each of its waiting objects' waitlists for (auto& object : thread->wait_objects) object->RemoveWaitingThread(thread.get()); thread->wait_objects.clear(); } thread->ResumeFromWait(); } void Thread::WakeAfterDelay(s64 nanoseconds) { // Don't schedule a wakeup if the thread wants to wait forever if (nanoseconds == -1) return; u64 microseconds = nanoseconds / 1000; CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle); } void Thread::ResumeFromWait() { ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects"); switch (status) { case THREADSTATUS_WAIT_SYNCH_ALL: case THREADSTATUS_WAIT_SYNCH_ANY: case THREADSTATUS_WAIT_HLE_EVENT: case THREADSTATUS_WAIT_ARB: case THREADSTATUS_WAIT_SLEEP: break; case THREADSTATUS_READY: // The thread's wakeup callback must have already been cleared when the thread was first // awoken. ASSERT(wakeup_callback == nullptr); // If the thread is waiting on multiple wait objects, it might be awoken more than once // before actually resuming. We can ignore subsequent wakeups if the thread status has // already been set to THREADSTATUS_READY. return; case THREADSTATUS_RUNNING: DEBUG_ASSERT_MSG(false, "Thread with object id %u has already resumed.", GetObjectId()); return; case THREADSTATUS_DEAD: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id %u cannot be resumed because it's DEAD.", GetObjectId()); return; } wakeup_callback = nullptr; ready_queue.push_back(current_priority, this); status = THREADSTATUS_READY; Core::System::GetInstance().PrepareReschedule(); } /** * Prints the thread queue for debugging purposes */ static void DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { u32 priority = ready_queue.contains(t.get()); if (priority != -1) { LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId()); } } } /** * Finds a free location for the TLS section of a thread. * @param tls_slots The TLS page array of the thread's owner process. * Returns a tuple of (page, slot, alloc_needed) where: * page: The index of the first allocated TLS page that has free slots. * slot: The index of the first free slot in the indicated page. * alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full). */ std::tuple GetFreeThreadLocalSlot(std::vector>& tls_slots) { // Iterate over all the allocated pages, and try to find one where not all slots are used. for (unsigned page = 0; page < tls_slots.size(); ++page) { const auto& page_tls_slots = tls_slots[page]; if (!page_tls_slots.all()) { // We found a page with at least one free slot, find which slot it is for (unsigned slot = 0; slot < page_tls_slots.size(); ++slot) { if (!page_tls_slots.test(slot)) { return std::make_tuple(page, slot, false); } } } } return std::make_tuple(0, 0, true); } /** * Resets a thread context, making it ready to be scheduled and run by the CPU * @param context Thread context to reset * @param stack_top Address of the top of the stack * @param entry_point Address of entry point for execution * @param arg User argument for thread */ static void ResetThreadContext(ARM_Interface::ThreadContext& context, u32 stack_top, u32 entry_point, u32 arg) { memset(&context, 0, sizeof(ARM_Interface::ThreadContext)); context.cpu_registers[0] = arg; context.pc = entry_point; context.sp = stack_top; context.cpsr = USER32MODE | ((entry_point & 1) << 5); // Usermode and THUMB mode } ResultVal> Thread::Create(std::string name, VAddr entry_point, u32 priority, u32 arg, s32 processor_id, VAddr stack_top, SharedPtr owner_process) { // Check if priority is in ranged. Lowest priority -> highest priority id. if (priority > THREADPRIO_LOWEST) { LOG_ERROR(Kernel_SVC, "Invalid thread priority: %d", priority); return ERR_OUT_OF_RANGE; } if (processor_id > THREADPROCESSORID_MAX) { LOG_ERROR(Kernel_SVC, "Invalid processor id: %d", processor_id); return ERR_OUT_OF_RANGE_KERNEL; } // TODO(yuriks): Other checks, returning 0xD9001BEA if (!Memory::IsValidVirtualAddress(*owner_process, entry_point)) { LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } SharedPtr thread(new Thread); thread_list.push_back(thread); ready_queue.prepare(priority); thread->thread_id = NewThreadId(); thread->status = THREADSTATUS_DORMANT; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->nominal_priority = thread->current_priority = priority; thread->last_running_ticks = CoreTiming::GetTicks(); thread->processor_id = processor_id; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread->callback_handle = wakeup_callback_handle_table.Create(thread).Unwrap(); thread->owner_process = owner_process; // Find the next available TLS index, and mark it as used auto& tls_slots = owner_process->tls_slots; bool needs_allocation = true; u32 available_page; // Which allocated page has free space u32 available_slot; // Which slot within the page is free std::tie(available_page, available_slot, needs_allocation) = GetFreeThreadLocalSlot(tls_slots); if (needs_allocation) { // There are no already-allocated pages with free slots, lets allocate a new one. // TLS pages are allocated from the BASE region in the linear heap. MemoryRegionInfo* memory_region = GetMemoryRegion(MemoryRegion::BASE); auto& linheap_memory = memory_region->linear_heap_memory; if (linheap_memory->size() + Memory::PAGE_SIZE > memory_region->size) { LOG_ERROR(Kernel_SVC, "Not enough space in region to allocate a new TLS page for thread"); return ERR_OUT_OF_MEMORY; } size_t offset = linheap_memory->size(); // Allocate some memory from the end of the linear heap for this region. linheap_memory->insert(linheap_memory->end(), Memory::PAGE_SIZE, 0); memory_region->used += Memory::PAGE_SIZE; owner_process->linear_heap_used += Memory::PAGE_SIZE; tls_slots.emplace_back(0); // The page is completely available at the start available_page = static_cast(tls_slots.size() - 1); available_slot = 0; // Use the first slot in the new page auto& vm_manager = owner_process->vm_manager; vm_manager.RefreshMemoryBlockMappings(linheap_memory.get()); // Map the page to the current process' address space. // TODO(Subv): Find the correct MemoryState for this region. vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE, linheap_memory, offset, Memory::PAGE_SIZE, MemoryState::Private); } // Mark the slot as used tls_slots[available_page].set(available_slot); thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE; // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context ResetThreadContext(thread->context, stack_top, entry_point, arg); ready_queue.push_back(thread->current_priority, thread.get()); thread->status = THREADSTATUS_READY; return MakeResult>(std::move(thread)); } void Thread::SetPriority(u32 priority) { ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST, "Invalid priority value."); // If thread was ready, adjust queues if (status == THREADSTATUS_READY) ready_queue.move(this, current_priority, priority); else ready_queue.prepare(priority); nominal_priority = current_priority = priority; } void Thread::UpdatePriority() { u32 best_priority = nominal_priority; for (auto& mutex : held_mutexes) { if (mutex->priority < best_priority) best_priority = mutex->priority; } BoostPriority(best_priority); } void Thread::BoostPriority(u32 priority) { // If thread was ready, adjust queues if (status == THREADSTATUS_READY) ready_queue.move(this, current_priority, priority); else ready_queue.prepare(priority); current_priority = priority; } SharedPtr SetupMainThread(u32 entry_point, u32 priority, SharedPtr owner_process) { // Initialize new "main" thread auto thread_res = Thread::Create("main", entry_point, priority, 0, THREADPROCESSORID_0, Memory::HEAP_VADDR_END, owner_process); SharedPtr thread = std::move(thread_res).Unwrap(); thread->context.fpscr = FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC; // 0x03C00010 // Note: The newly created thread will be run when the scheduler fires. return thread; } bool HaveReadyThreads() { return ready_queue.get_first() != nullptr; } void Reschedule() { Thread* cur = GetCurrentThread(); Thread* next = PopNextReadyThread(); if (cur && next) { LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId()); } else if (cur) { LOG_TRACE(Kernel, "context switch %u -> idle", cur->GetObjectId()); } else if (next) { LOG_TRACE(Kernel, "context switch idle -> %u", next->GetObjectId()); } SwitchContext(next); } void Thread::SetWaitSynchronizationResult(ResultCode result) { context.cpu_registers[0] = result.raw; } void Thread::SetWaitSynchronizationOutput(s32 output) { context.cpu_registers[1] = output; } s32 Thread::GetWaitObjectIndex(WaitObject* object) const { ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything"); auto match = std::find(wait_objects.rbegin(), wait_objects.rend(), object); return static_cast(std::distance(match, wait_objects.rend()) - 1); } //////////////////////////////////////////////////////////////////////////////////////////////////// void ThreadingInit() { ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback); current_thread = nullptr; next_thread_id = 1; } void ThreadingShutdown() { current_thread = nullptr; for (auto& t : thread_list) { t->Stop(); } thread_list.clear(); ready_queue.clear(); } const std::vector>& GetThreadList() { return thread_list; } } // namespace