# Conflicts:
#	src/video_core/command_processor.cpp
#	src/video_core/renderer_opengl/gl_rasterizer.cpp
This commit is contained in:
citra 2017-10-19 19:04:31 +01:00
commit adcbdb2b5f
8 changed files with 438 additions and 239 deletions

View File

@ -76,6 +76,7 @@ set(HEADERS
synchronized_wrapper.h
telemetry.h
thread.h
thread_pool.h
thread_queue_list.h
timer.h
vector_math.h

120
src/common/thread_pool.h Normal file
View File

@ -0,0 +1,120 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <functional>
#include <future>
#include <mutex>
#include <thread>
#include <vector>
#include "common/assert.h"
namespace Common {
class ThreadPool {
private:
explicit ThreadPool(size_t num_threads) : num_threads(num_threads), workers(num_threads) {
ASSERT(num_threads);
}
public:
static ThreadPool& GetPool() {
static ThreadPool thread_pool(std::thread::hardware_concurrency());
return thread_pool;
}
template <typename F, typename... Args>
auto push(F&& f, Args&&... args) {
auto ret = workers[next_worker].push(std::forward<F>(f), std::forward<Args>(args)...);
next_worker = (next_worker + 1) % num_threads;
return ret;
}
const size_t total_threads() const {
return num_threads;
}
private:
template <typename T>
class ThreadsafeQueue {
private:
const size_t capacity;
std::vector<T> queue_storage;
std::mutex mutex;
std::condition_variable queue_changed;
public:
explicit ThreadsafeQueue(const size_t capacity) : capacity(capacity) {
queue_storage.reserve(capacity);
}
void push(const T& element) {
std::unique_lock<std::mutex> lock(mutex);
while (queue_storage.size() >= capacity) {
queue_changed.wait(lock);
}
queue_storage.push_back(element);
queue_changed.notify_one();
}
T Pop() {
std::unique_lock<std::mutex> lock(mutex);
while (queue_storage.empty()) {
queue_changed.wait(lock);
}
T element(std::move(queue_storage.back()));
queue_storage.pop_back();
queue_changed.notify_one();
return element;
}
void push(T&& element) {
std::unique_lock<std::mutex> lock(mutex);
while (queue_storage.size() >= capacity) {
queue_changed.wait(lock);
}
queue_storage.emplace_back(std::move(element));
queue_changed.notify_one();
}
};
class Worker {
private:
ThreadsafeQueue<std::function<void()>> queue;
std::thread thread;
static constexpr size_t MAX_QUEUE_CAPACITY = 50;
public:
Worker() : queue(MAX_QUEUE_CAPACITY), thread([this] { Loop(); }) {}
~Worker() {
queue.push(nullptr); // Exit the loop
thread.join();
}
void Loop() {
while (true) {
std::function<void()> fn(queue.Pop());
if (!fn) // a nullptr function is the signal to exit the loop
break;
fn();
}
}
template <typename F, typename... Args>
auto push(F&& f, Args&&... args) {
auto task = std::make_shared<std::packaged_task<decltype(f(args...))()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
queue.push([task] { (*task)(); });
return task->get_future();
}
};
const size_t num_threads;
size_t next_worker = 0;
std::vector<Worker> workers;
};
} // namespace Common

View File

@ -4,11 +4,13 @@
#include <array>
#include <cstddef>
#include <future>
#include <memory>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/thread_pool.h"
#include "common/vector_math.h"
#include "core/hle/service/gsp_gpu.h"
#include "core/hw/gpu.h"
@ -119,228 +121,6 @@ static void WriteUniformFloatReg(ShaderRegs& config, Shader::ShaderSetup& setup,
}
}
static void LoadDefaultVertexAttributes(u32 register_value) {
auto& regs = g_state.regs;
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
default_attr_write_buffer[default_attr_counter++] = register_value;
// Default attributes are written in a packed format such that four float24 values are encoded
// in three 32-bit numbers.
// We write to internal memory once a full such vector is written.
if (default_attr_counter >= 3) {
default_attr_counter = 0;
auto& setup = regs.pipeline.vs_default_attributes_setup;
if (setup.index >= 16) {
LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index);
return;
}
Math::Vec4<float24> attribute;
// NOTE: The destination component order indeed is "backwards"
attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8);
attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) |
((default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) |
((default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF);
LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index,
attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
attribute.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
if (setup.index < 15) {
g_state.input_default_attributes.attr[setup.index] = attribute;
setup.index++;
} else {
// Put each attribute into an immediate input buffer. When all specified immediate
// attributes are present, the Vertex Shader is invoked and everything is sent to
// the primitive assembler.
auto& immediate_input = g_state.immediate.input_vertex;
auto& immediate_attribute_id = g_state.immediate.current_attribute;
immediate_input.attr[immediate_attribute_id] = attribute;
if (immediate_attribute_id < regs.pipeline.max_input_attrib_index) {
immediate_attribute_id += 1;
} else {
MICROPROFILE_SCOPE(GPU_Drawing);
immediate_attribute_id = 0;
auto* shader_engine = Shader::GetEngine();
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation,
static_cast<void*>(&immediate_input));
Shader::UnitState shader_unit;
Shader::AttributeBuffer output{};
shader_unit.LoadInput(regs.vs, immediate_input);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, output);
// Send to geometry pipeline
if (g_state.immediate.reset_geometry_pipeline) {
g_state.geometry_pipeline.Reconfigure();
g_state.immediate.reset_geometry_pipeline = false;
}
ASSERT(!g_state.geometry_pipeline.NeedIndexInput());
g_state.geometry_pipeline.Setup(shader_engine);
g_state.geometry_pipeline.SubmitVertex(output);
// TODO: If drawing after every immediate mode triangle kills performance,
// change it to flush triangles whenever a drawing config register changes
// See: https://github.com/citra-emu/citra/pull/2866#issuecomment-327011550
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
}
}
}
}
static void Draw(u32 command_id) {
MICROPROFILE_SCOPE(GPU_Drawing);
auto& regs = g_state.regs;
#if PICA_LOG_TEV
DebugUtils::DumpTevStageConfig(regs.GetTevStages());
#endif
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);
// Processes information about internal vertex attributes to figure out how a vertex is
// loaded.
// Later, these can be compiled and cached.
const u32 base_address = regs.pipeline.vertex_attributes.GetPhysicalBaseAddress();
VertexLoader loader(regs.pipeline);
// Load vertices
bool is_indexed = (command_id == PICA_REG_INDEX(pipeline.trigger_draw_indexed));
const auto& index_info = regs.pipeline.index_array;
const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
if (!index_address_8) {
LOG_CRITICAL(HW_GPU, "Invalid index_address_8 %08x", index_address_8);
return;
}
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
PrimitiveAssembler<Shader::OutputVertex>& primitive_assembler = g_state.primitive_assembler;
if (g_debug_context && g_debug_context->recorder) {
for (int i = 0; i < 3; ++i) {
const auto texture = regs.texturing.GetTextures()[i];
if (!texture.enabled)
continue;
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
g_debug_context->recorder->MemoryAccessed(
texture_data, Pica::TexturingRegs::NibblesPerPixel(texture.format) *
texture.config.width / 2 * texture.config.height,
texture.config.GetPhysicalAddress());
}
}
DebugUtils::MemoryAccessTracker memory_accesses;
// Simple circular-replacement vertex cache
// The size has been tuned for optimal balance between hit-rate and the cost of lookup
const size_t VERTEX_CACHE_SIZE = 32;
std::array<u16, VERTEX_CACHE_SIZE> vertex_cache_ids;
std::array<Shader::AttributeBuffer, VERTEX_CACHE_SIZE> vertex_cache;
Shader::AttributeBuffer vs_output;
unsigned int vertex_cache_pos = 0;
vertex_cache_ids.fill(-1);
auto* shader_engine = Shader::GetEngine();
Shader::UnitState shader_unit;
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
g_state.geometry_pipeline.Reconfigure();
g_state.geometry_pipeline.Setup(shader_engine);
if (g_state.geometry_pipeline.NeedIndexInput())
ASSERT(is_indexed);
for (unsigned int index = 0; index < regs.pipeline.num_vertices; ++index) {
// Indexed rendering doesn't use the start offset
unsigned int vertex = is_indexed
? (index_u16 ? index_address_16[index] : index_address_8[index])
: (index + regs.pipeline.vertex_offset);
// -1 is a common special value used for primitive restart. Since it's unknown if
// the PICA supports it, and it would mess up the caching, guard against it here.
ASSERT(vertex != -1);
bool vertex_cache_hit = false;
if (is_indexed) {
if (g_state.geometry_pipeline.NeedIndexInput()) {
g_state.geometry_pipeline.SubmitIndex(vertex);
continue;
}
if (g_debug_context && Pica::g_debug_context->recorder) {
int size = index_u16 ? 2 : 1;
memory_accesses.AddAccess(base_address + index_info.offset + size * index, size);
}
for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) {
if (vertex == vertex_cache_ids[i]) {
vs_output = vertex_cache[i];
vertex_cache_hit = true;
break;
}
}
}
if (!vertex_cache_hit) {
// Initialize data for the current vertex
Shader::AttributeBuffer input;
loader.LoadVertex(base_address, index, vertex, input, memory_accesses);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation,
(void*)&input);
shader_unit.LoadInput(regs.vs, input);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, vs_output);
if (is_indexed) {
vertex_cache[vertex_cache_pos] = vs_output;
vertex_cache_ids[vertex_cache_pos] = vertex;
vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE;
}
}
// Send to geometry pipeline
g_state.geometry_pipeline.SubmitVertex(vs_output);
}
for (auto& range : memory_accesses.ranges) {
g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first),
range.second, range.first);
}
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
}
static void WritePicaReg(u32 id, u32 value, u32 mask) {
auto& regs = g_state.regs;
@ -390,9 +170,95 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
// Load default vertex input attributes
case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[0], 0x233):
case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[1], 0x234):
case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[2], 0x235):
LoadDefaultVertexAttributes(value);
case PICA_REG_INDEX_WORKAROUND(pipeline.vs_default_attributes_setup.set_value[2], 0x235): {
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
default_attr_write_buffer[default_attr_counter++] = value;
// Default attributes are written in a packed format such that four float24 values are
// encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if (default_attr_counter >= 3) {
default_attr_counter = 0;
auto& setup = regs.pipeline.vs_default_attributes_setup;
if (setup.index >= 16) {
LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index);
break;
}
Math::Vec4<float24> attribute;
// NOTE: The destination component order indeed is "backwards"
attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8);
attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) |
((default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) |
((default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF);
LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index,
attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
attribute.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
if (setup.index < 15) {
g_state.input_default_attributes.attr[setup.index] = attribute;
setup.index++;
} else {
// Put each attribute into an immediate input buffer. When all specified immediate
// attributes are present, the Vertex Shader is invoked and everything is sent to
// the primitive assembler.
auto& immediate_input = g_state.immediate.input_vertex;
auto& immediate_attribute_id = g_state.immediate.current_attribute;
immediate_input.attr[immediate_attribute_id] = attribute;
if (immediate_attribute_id < regs.pipeline.max_input_attrib_index) {
immediate_attribute_id += 1;
} else {
MICROPROFILE_SCOPE(GPU_Drawing);
immediate_attribute_id = 0;
auto* shader_engine = Shader::GetEngine();
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation,
static_cast<void*>(&immediate_input));
Shader::UnitState shader_unit;
Shader::AttributeBuffer output{};
shader_unit.LoadInput(regs.vs, immediate_input);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, output);
// Send to geometry pipeline
if (g_state.immediate.reset_geometry_pipeline) {
g_state.geometry_pipeline.Reconfigure();
g_state.immediate.reset_geometry_pipeline = false;
}
ASSERT(!g_state.geometry_pipeline.NeedIndexInput());
g_state.geometry_pipeline.Setup(shader_engine);
g_state.geometry_pipeline.SubmitVertex(output);
// TODO: If drawing after every immediate mode triangle kills performance,
// change it to flush triangles whenever a drawing config register changes
// See: https://github.com/citra-emu/citra/pull/2866#issuecomment-327011550
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch,
nullptr);
}
}
}
}
break;
}
case PICA_REG_INDEX(pipeline.gpu_mode):
// This register likely just enables vertex processing and doesn't need any special handling
@ -411,9 +277,213 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
// It seems like these trigger vertex rendering
case PICA_REG_INDEX(pipeline.trigger_draw):
case PICA_REG_INDEX(pipeline.trigger_draw_indexed):
Draw(id);
case PICA_REG_INDEX(pipeline.trigger_draw_indexed): {
MICROPROFILE_SCOPE(GPU_Drawing);
const bool is_indexed = (id == PICA_REG_INDEX(pipeline.trigger_draw_indexed));
#if PICA_LOG_TEV
DebugUtils::DumpTevStageConfig(regs.GetTevStages());
#endif
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);
struct CachedVertex {
explicit CachedVertex() : batch(0), lock{ ATOMIC_FLAG_INIT } {}
CachedVertex(const CachedVertex& other) : CachedVertex() {}
union {
Shader::AttributeBuffer output_attr; // GS used
Shader::OutputVertex output_vertex; // No GS
};
std::atomic<u32> batch;
std::atomic_flag lock;
};
static std::vector<CachedVertex> vs_output(0x10000);
if (!is_indexed && vs_output.size() < regs.pipeline.num_vertices)
vs_output.resize(regs.pipeline.num_vertices);
// used as a mean to invalidate data from the previous batch without clearing it
static u32 batch_id = std::numeric_limits<u32>::max();
++batch_id;
if (batch_id == 0) { // reset cache when id overflows for safety
++batch_id;
for (auto& entry : vs_output)
entry.batch = 0;
}
// Processes information about internal vertex attributes to figure out how a vertex is
// loaded.
// Later, these can be compiled and cached.
const u32 base_address = regs.pipeline.vertex_attributes.GetPhysicalBaseAddress();
VertexLoader loader(regs.pipeline);
const auto& index_info = regs.pipeline.index_array;
const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
if (!index_address_8) {
LOG_CRITICAL(HW_GPU, "Invalid index_address_8 %08x", index_address_8);
return;
}
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
auto VertexIndex = [&](unsigned int index) {
// Indexed rendering doesn't use the start offset
return is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index])
: (index + regs.pipeline.vertex_offset);
};
PrimitiveAssembler<Shader::OutputVertex>& primitive_assembler = g_state.primitive_assembler;
if (g_debug_context && g_debug_context->recorder) {
for (int i = 0; i < 3; ++i) {
const auto texture = regs.texturing.GetTextures()[i];
if (!texture.enabled)
continue;
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
g_debug_context->recorder->MemoryAccessed(
texture_data, Pica::TexturingRegs::NibblesPerPixel(texture.format) *
texture.config.width / 2 * texture.config.height,
texture.config.GetPhysicalAddress());
}
}
DebugUtils::MemoryAccessTracker memory_accesses;
auto* shader_engine = Shader::GetEngine();
shader_engine->SetupBatch(g_state.vs, regs.vs.main_offset);
const bool use_gs = regs.pipeline.use_gs == PipelineRegs::UseGS::Yes;
auto VSUnitLoop = [&](u32 thread_id, auto num_threads) {
constexpr bool single_thread = std::is_same_v<std::integral_constant<u32, 1>, decltype(num_threads)>;
Shader::UnitState shader_unit;
for (unsigned int index = thread_id; index < regs.pipeline.num_vertices; index += num_threads) {
unsigned int vertex = VertexIndex(index);
auto& cached_vertex = vs_output[is_indexed ? vertex : index];
// -1 is a common special value used for primitive restart. Since it's unknown if
// the PICA supports it, and it would mess up the caching, guard against it here.
ASSERT(vertex != -1);
if (is_indexed) {
if (g_debug_context && Pica::g_debug_context->recorder) {
int size = index_u16 ? 2 : 1;
memory_accesses.AddAccess(base_address + index_info.offset + size * index,
size);
}
if (!single_thread) {
// Try locking this vertex
if (cached_vertex.lock.test_and_set(std::memory_order_acquire)) {
// Another thread is processing this vertex
continue;
}
// Vertex is not being processed and is from the correct batch
else if (cached_vertex.batch.load(std::memory_order_acquire) == batch_id) {
// Unlock
cached_vertex.lock.clear(std::memory_order_release);
continue;
}
}
else if (cached_vertex.batch.load(std::memory_order_relaxed) == batch_id) {
continue;
}
}
Shader::AttributeBuffer attribute_buffer;
Shader::AttributeBuffer& output_attr = use_gs ? cached_vertex.output_attr : attribute_buffer;
// Initialize data for the current vertex
loader.LoadVertex(base_address, index, vertex, attribute_buffer, memory_accesses);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation, &attribute_buffer);
shader_unit.LoadInput(regs.vs, attribute_buffer);
shader_engine->Run(g_state.vs, shader_unit);
shader_unit.WriteOutput(regs.vs, output_attr);
if (!use_gs)
cached_vertex.output_vertex = Shader::OutputVertex::FromAttributeBuffer(regs.rasterizer, output_attr);
if (!single_thread) {
cached_vertex.batch.store(batch_id, std::memory_order_release);
if (is_indexed) {
cached_vertex.lock.clear(std::memory_order_release);
}
}
else if (is_indexed) {
cached_vertex.batch.store(batch_id, std::memory_order_relaxed);
}
}
};
auto& thread_pool = Common::ThreadPool::GetPool();
std::vector<std::future<void>> futures;
constexpr unsigned int MIN_VERTICES_PER_THREAD = 10;
unsigned int vs_threads = regs.pipeline.num_vertices / MIN_VERTICES_PER_THREAD;
vs_threads = std::min(vs_threads, std::thread::hardware_concurrency() - 1);
if (!vs_threads) {
VSUnitLoop(0, std::integral_constant<u32, 1>{});
} else {
for (unsigned int thread_id = 0; thread_id < vs_threads; ++thread_id) {
futures.emplace_back(thread_pool.push(VSUnitLoop, thread_id, vs_threads));
}
}
g_state.geometry_pipeline.Reconfigure();
g_state.geometry_pipeline.Setup(shader_engine);
if (g_state.geometry_pipeline.NeedIndexInput())
ASSERT(is_indexed);
for (unsigned int index = 0; index < regs.pipeline.num_vertices; ++index) {
unsigned int vertex = VertexIndex(index);
auto& cached_vertex = vs_output[is_indexed ? vertex : index];
if (use_gs && is_indexed && g_state.geometry_pipeline.NeedIndexInput()) {
g_state.geometry_pipeline.SubmitIndex(vertex);
continue;
}
// Synchronize threads
if (vs_threads) {
while (cached_vertex.batch.load(std::memory_order_acquire) != batch_id) {
std::this_thread::yield();
}
}
if (use_gs) {
// Send to geometry pipeline
g_state.geometry_pipeline.SubmitVertex(cached_vertex.output_attr);
} else {
primitive_assembler.SubmitVertex(cached_vertex.output_vertex,
std::bind(&std::decay_t<decltype(*VideoCore::g_renderer->Rasterizer())>::AddTriangle,
VideoCore::g_renderer->Rasterizer(),
std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));
}
}
for (auto& future : futures)
future.get();
for (auto& range : memory_accesses.ranges) {
g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first),
range.second, range.first);
}
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
break;
}
case PICA_REG_INDEX(gs.bool_uniforms):
WriteUniformBoolReg(g_state.gs, g_state.regs.gs.bool_uniforms.Value());

View File

@ -235,6 +235,8 @@ class MemoryAccessTracker {
public:
/// Record a particular memory access in the list
void AddAccess(u32 paddr, u32 size) {
std::lock_guard<std::mutex> lock(mutex);
// Create new range or extend existing one
ranges[paddr] = std::max(ranges[paddr], size);
@ -242,6 +244,8 @@ public:
SimplifyRanges();
}
std::mutex mutex;
/// Map of accessed ranges (mapping start address to range size)
std::map<u32, u32> ranges;
};

View File

@ -15,7 +15,7 @@ PrimitiveAssembler<VertexType>::PrimitiveAssembler(PipelineRegs::TriangleTopolog
template <typename VertexType>
void PrimitiveAssembler<VertexType>::SubmitVertex(const VertexType& vtx,
TriangleHandler triangle_handler) {
const TriangleHandler& triangle_handler) {
switch (topology) {
case PipelineRegs::TriangleTopology::List:
case PipelineRegs::TriangleTopology::Shader:

View File

@ -27,7 +27,7 @@ struct PrimitiveAssembler {
* NOTE: We could specify the triangle handler in the constructor, but this way we can
* keep event and handler code next to each other.
*/
void SubmitVertex(const VertexType& vtx, TriangleHandler triangle_handler);
void SubmitVertex(const VertexType& vtx, const TriangleHandler& triangle_handler);
/**
* Invert the vertex order of the next triangle. Called by geometry shader emitter.

View File

@ -29,7 +29,7 @@ MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
RasterizerOpenGL::RasterizerOpenGL() : shader_dirty(true) {
RasterizerOpenGL::RasterizerOpenGL() : shader_dirty(true), vertex_buffer_size(0) {
// Clipping plane 0 is always enabled for PICA fixed clip plane z <= 0
state.clip_distance[0] = true;
@ -277,23 +277,23 @@ void RasterizerOpenGL::DrawTriangles() {
state.Apply();
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color_surface != nullptr ? color_surface->texture.handle : 0, 0);
color_surface != nullptr ? color_surface->texture.handle : 0, 0);
if (depth_surface != nullptr) {
if (has_stencil) {
// attach both depth and stencil
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0);
depth_surface->texture.handle, 0);
} else {
// attach depth
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0);
depth_surface->texture.handle, 0);
// clear stencil attachment
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
}
} else {
// clear both depth and stencil attachment
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
0);
}
// Sync the viewport
@ -405,7 +405,7 @@ void RasterizerOpenGL::DrawTriangles() {
// Sync the uniform data
if (uniform_block_data.dirty) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data,
GL_STATIC_DRAW);
GL_STATIC_DRAW);
uniform_block_data.dirty = false;
}
@ -421,15 +421,18 @@ void RasterizerOpenGL::DrawTriangles() {
state.Apply();
// Draw the vertex batch
glBufferData(GL_ARRAY_BUFFER, vertex_batch.size() * sizeof(HardwareVertex), vertex_batch.data(),
GL_STREAM_DRAW);
glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size());
GLsizeiptr target_size = vertex_batch.size() * sizeof(HardwareVertex);
if (vertex_buffer_size < target_size) {
vertex_buffer_size = target_size * 2;
glBufferData(GL_ARRAY_BUFFER, vertex_buffer_size, nullptr, GL_STREAM_DRAW);
}
glBufferSubData(GL_ARRAY_BUFFER, 0, target_size, vertex_batch.data());
glDrawArrays(GL_TRIANGLES, 0, static_cast<GLsizei>(vertex_batch.size()));
vertex_batch.clear();
// Disable scissor test
state.scissor.enabled = false;
vertex_batch.clear();
// Unbind textures for potential future use as framebuffer attachments
for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) {
state.texture_units[texture_index].texture_2d = 0;

View File

@ -284,6 +284,7 @@ private:
std::array<SamplerInfo, 3> texture_samplers;
OGLVertexArray vertex_array;
OGLBuffer vertex_buffer;
GLsizeiptr vertex_buffer_size;
OGLBuffer uniform_buffer;
OGLFramebuffer framebuffer;