Style and code convention fixes

This commit is contained in:
tfarley 2015-05-12 15:31:24 -07:00
parent 5578c80c48
commit abd79abefa
10 changed files with 301 additions and 318 deletions

View File

@ -26,9 +26,9 @@ public:
/// Draw the current batch of triangles /// Draw the current batch of triangles
virtual void DrawTriangles() = 0; virtual void DrawTriangles() = 0;
/// Notify rasterizer that a copy within 3ds memory will occur after this notification /// Notify rasterizer that a copy within 3DS memory will occur after this notification
virtual void NotifyPreCopy(u32 src_paddr, u32 size) = 0; virtual void NotifyPreCopy(u32 src_paddr, u32 size) = 0;
/// Notify rasterizer that a 3ds memory region has been changed /// Notify rasterizer that a 3DS memory region has been changed
virtual void NotifyFlush(u32 paddr, u32 size) = 0; virtual void NotifyFlush(u32 paddr, u32 size) = 0;
}; };

View File

@ -21,7 +21,8 @@ static GLenum WrapMode(Pica::Regs::TextureConfig::WrapMode mode) {
case Pica::Regs::TextureConfig::WrapMode::MirroredRepeat: case Pica::Regs::TextureConfig::WrapMode::MirroredRepeat:
return GL_MIRRORED_REPEAT; return GL_MIRRORED_REPEAT;
default: default:
LOG_ERROR(Render_OpenGL, "Unknown texture wrap mode %d", mode); LOG_CRITICAL(Render_OpenGL, "Unknown texture wrap mode %d", mode);
UNIMPLEMENTED();
return GL_CLAMP_TO_EDGE; return GL_CLAMP_TO_EDGE;
} }
} }
@ -59,7 +60,8 @@ static GLenum BlendFunc(u32 factor) {
case Pica::registers.output_merger.alpha_blending.SourceAlphaSaturate: case Pica::registers.output_merger.alpha_blending.SourceAlphaSaturate:
return GL_SRC_ALPHA_SATURATE; return GL_SRC_ALPHA_SATURATE;
default: default:
LOG_ERROR(Render_OpenGL, "Unknown blend factor %d", factor); LOG_CRITICAL(Render_OpenGL, "Unknown blend factor %d", factor);
UNIMPLEMENTED();
return GL_ONE; return GL_ONE;
} }
} }
@ -83,7 +85,8 @@ static GLenum CompareFunc(u32 func) {
case Pica::registers.output_merger.GreaterThanOrEqual: case Pica::registers.output_merger.GreaterThanOrEqual:
return GL_GEQUAL; return GL_GEQUAL;
default: default:
LOG_ERROR(Render_OpenGL, "Unknown compare function %d", func); LOG_CRITICAL(Render_OpenGL, "Unknown compare function %d", func);
UNIMPLEMENTED();
return GL_ALWAYS; return GL_ALWAYS;
} }
} }

View File

@ -28,6 +28,7 @@ u32 ColorFormatBytesPerPixel(u32 format) {
case Pica::registers.framebuffer.RGBA4: case Pica::registers.framebuffer.RGBA4:
return 2; return 2;
default: default:
LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer color format %x", format);
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
@ -35,7 +36,7 @@ u32 ColorFormatBytesPerPixel(u32 format) {
return 0; return 0;
} }
RasterizerOpenGL::RasterizerOpenGL() : last_fb_color_addr(-1), last_fb_depth_addr(-1) { RasterizerOpenGL::RasterizerOpenGL() : last_fb_color_addr(0), last_fb_depth_addr(0) {
} }
@ -44,7 +45,6 @@ RasterizerOpenGL::~RasterizerOpenGL() {
render_window->MakeCurrent(); render_window->MakeCurrent();
} }
/// Initialize API-specific GPU objects
void RasterizerOpenGL::InitObjects() { void RasterizerOpenGL::InitObjects() {
// Create the hardware shader program and get attrib/uniform locations // Create the hardware shader program and get attrib/uniform locations
shader.Create(GLShaders::g_vertex_shader_hw, GLShaders::g_fragment_shader_hw); shader.Create(GLShaders::g_vertex_shader_hw, GLShaders::g_fragment_shader_hw);
@ -57,7 +57,7 @@ void RasterizerOpenGL::InitObjects() {
uniform_tex = glGetUniformLocation(shader.GetHandle(), "tex"); uniform_tex = glGetUniformLocation(shader.GetHandle(), "tex");
for (int i = 0; i < 6; i++) { for (int i = 0; i < 6; ++i) {
auto& uniform_tev = uniform_tev_cfgs[i]; auto& uniform_tev = uniform_tev_cfgs[i];
std::string tev_ref_str = "tev_cfgs[" + std::to_string(i) + "]"; std::string tev_ref_str = "tev_cfgs[" + std::to_string(i) + "]";
@ -82,8 +82,8 @@ void RasterizerOpenGL::InitObjects() {
state.draw.vertex_buffer = vertex_buffer.GetHandle(); state.draw.vertex_buffer = vertex_buffer.GetHandle();
state.draw.shader_program = shader.GetHandle(); state.draw.shader_program = shader.GetHandle();
for (int i = 0; i < 3; i++) { for (auto& texture_unit : state.texture_units) {
state.texture_unit[i].enabled_2d = true; texture_unit.enabled_2d = true;
} }
state.Apply(); state.Apply();
@ -128,8 +128,8 @@ void RasterizerOpenGL::InitObjects() {
framebuffer.Create(); framebuffer.Create();
state.draw.framebuffer = framebuffer.GetHandle(); state.draw.framebuffer = framebuffer.GetHandle();
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = 0; state.texture_units[0].texture_2d = 0;
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -137,16 +137,14 @@ void RasterizerOpenGL::InitObjects() {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fb_depth_texture.texture.GetHandle(), 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fb_depth_texture.texture.GetHandle(), 0);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
LOG_ERROR(Render_OpenGL, "Framebuffer setup failed, status %X", glCheckFramebufferStatus(GL_FRAMEBUFFER)); LOG_CRITICAL(Render_OpenGL, "Framebuffer setup failed, status %X", glCheckFramebufferStatus(GL_FRAMEBUFFER));
} }
} }
/// Set the window (context) to draw with
void RasterizerOpenGL::SetWindow(EmuWindow* window) { void RasterizerOpenGL::SetWindow(EmuWindow* window) {
render_window = window; render_window = window;
} }
/// Converts the triangle verts to hardware data format and adds them to the current batch
void RasterizerOpenGL::AddTriangle(const Pica::VertexShader::OutputVertex& v0, void RasterizerOpenGL::AddTriangle(const Pica::VertexShader::OutputVertex& v0,
const Pica::VertexShader::OutputVertex& v1, const Pica::VertexShader::OutputVertex& v1,
const Pica::VertexShader::OutputVertex& v2) { const Pica::VertexShader::OutputVertex& v2) {
@ -155,7 +153,6 @@ void RasterizerOpenGL::AddTriangle(const Pica::VertexShader::OutputVertex& v0,
vertex_batch.push_back(HardwareVertex(v2)); vertex_batch.push_back(HardwareVertex(v2));
} }
/// Draw the current batch of triangles
void RasterizerOpenGL::DrawTriangles() { void RasterizerOpenGL::DrawTriangles() {
render_window->MakeCurrent(); render_window->MakeCurrent();
@ -170,70 +167,67 @@ void RasterizerOpenGL::DrawTriangles() {
vertex_batch.clear(); vertex_batch.clear();
} }
/// Notify rasterizer that a copy within 3ds memory will occur after this notification void RasterizerOpenGL::NotifyPreCopy(PAddr src_addr, u32 size) {
void RasterizerOpenGL::NotifyPreCopy(u32 src_paddr, u32 size) {
render_window->MakeCurrent(); render_window->MakeCurrent();
state.Apply(); state.Apply();
u32 cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress();
u32 cur_fb_color_size = ColorFormatBytesPerPixel(Pica::registers.framebuffer.color_format.Value()) u32 cur_fb_color_size = ColorFormatBytesPerPixel(Pica::registers.framebuffer.color_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight();
u32 cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress();
u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format) u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight();
// If source memory region overlaps 3ds framebuffers, commit them before the copy happens // If source memory region overlaps 3DS framebuffers, commit them before the copy happens
u32 max_lower = std::max(src_paddr, cur_fb_color_addr); PAddr max_low_addr_bound = std::max(src_addr, cur_fb_color_addr);
u32 min_upper = std::min(src_paddr + size, cur_fb_color_addr + cur_fb_color_size); PAddr min_hi_addr_bound = std::min(src_addr + size, cur_fb_color_addr + cur_fb_color_size);
if (max_lower <= min_upper) { if (max_low_addr_bound <= min_hi_addr_bound) {
CommitFramebuffer(); CommitFramebuffer();
} }
max_lower = std::max(src_paddr, cur_fb_depth_addr); max_low_addr_bound = std::max(src_addr, cur_fb_depth_addr);
min_upper = std::min(src_paddr + size, cur_fb_depth_addr + cur_fb_depth_size); min_hi_addr_bound = std::min(src_addr + size, cur_fb_depth_addr + cur_fb_depth_size);
if (max_lower <= min_upper) { if (max_low_addr_bound <= min_hi_addr_bound) {
CommitFramebuffer(); CommitFramebuffer();
} }
} }
/// Notify rasterizer that a 3ds memory region has been changed void RasterizerOpenGL::NotifyFlush(PAddr addr, u32 size) {
void RasterizerOpenGL::NotifyFlush(u32 paddr, u32 size) {
render_window->MakeCurrent(); render_window->MakeCurrent();
state.Apply(); state.Apply();
u32 cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress();
u32 cur_fb_color_size = ColorFormatBytesPerPixel(Pica::registers.framebuffer.color_format.Value()) u32 cur_fb_color_size = ColorFormatBytesPerPixel(Pica::registers.framebuffer.color_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight();
u32 cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress();
u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format) u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight();
// If modified memory region overlaps 3ds framebuffers, reload their contents into OpenGL // If modified memory region overlaps 3DS framebuffers, reload their contents into OpenGL
u32 max_lower = std::max(paddr, cur_fb_color_addr); PAddr max_low_addr_bound = std::max(addr, cur_fb_color_addr);
u32 min_upper = std::min(paddr + size, cur_fb_color_addr + cur_fb_color_size); PAddr min_hi_addr_bound = std::min(addr + size, cur_fb_color_addr + cur_fb_color_size);
if (max_lower <= min_upper) { if (max_low_addr_bound <= min_hi_addr_bound) {
ReloadColorBuffer(); ReloadColorBuffer();
} }
max_lower = std::max(paddr, cur_fb_depth_addr); max_low_addr_bound = std::max(addr, cur_fb_depth_addr);
min_upper = std::min(paddr + size, cur_fb_depth_addr + cur_fb_depth_size); min_hi_addr_bound = std::min(addr + size, cur_fb_depth_addr + cur_fb_depth_size);
if (max_lower <= min_upper) { if (max_low_addr_bound <= min_hi_addr_bound) {
ReloadDepthBuffer(); ReloadDepthBuffer();
} }
// Notify cache of flush in case the region touches a cached resource // Notify cache of flush in case the region touches a cached resource
res_cache.NotifyFlush(paddr, size); res_cache.NotifyFlush(addr, size);
} }
/// Reconfigure the OpenGL color texture to use the given format and dimensions
void RasterizerOpenGL::ReconfigColorTexture(TextureInfo& texture, u32 format, u32 width, u32 height) { void RasterizerOpenGL::ReconfigColorTexture(TextureInfo& texture, u32 format, u32 width, u32 height) {
GLint internal_format; GLint internal_format;
@ -277,12 +271,13 @@ void RasterizerOpenGL::ReconfigColorTexture(TextureInfo& texture, u32 format, u3
break; break;
default: default:
LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer texture color format %x", format);
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.texture.GetHandle(); state.texture_units[0].texture_2d = texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -290,7 +285,6 @@ void RasterizerOpenGL::ReconfigColorTexture(TextureInfo& texture, u32 format, u3
texture.gl_format, texture.gl_type, nullptr); texture.gl_format, texture.gl_type, nullptr);
} }
/// Reconfigure the OpenGL depth texture to use the given format and dimensions
void RasterizerOpenGL::ReconfigDepthTexture(DepthTextureInfo& texture, Pica::Regs::DepthFormat format, u32 width, u32 height) { void RasterizerOpenGL::ReconfigDepthTexture(DepthTextureInfo& texture, Pica::Regs::DepthFormat format, u32 width, u32 height) {
GLint internal_format; GLint internal_format;
@ -318,12 +312,13 @@ void RasterizerOpenGL::ReconfigDepthTexture(DepthTextureInfo& texture, Pica::Reg
break; break;
default: default:
LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer texture depth format %x", format);
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.texture.GetHandle(); state.texture_units[0].texture_2d = texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -331,12 +326,11 @@ void RasterizerOpenGL::ReconfigDepthTexture(DepthTextureInfo& texture, Pica::Reg
texture.gl_format, texture.gl_type, nullptr); texture.gl_format, texture.gl_type, nullptr);
} }
/// Syncs the state and contents of the OpenGL framebuffer to match the current PICA framebuffer
void RasterizerOpenGL::SyncFramebuffer() { void RasterizerOpenGL::SyncFramebuffer() {
u32 cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress();
u32 new_fb_color_format = Pica::registers.framebuffer.color_format.Value(); u32 new_fb_color_format = Pica::registers.framebuffer.color_format;
u32 cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress();
Pica::Regs::DepthFormat new_fb_depth_format = Pica::registers.framebuffer.depth_format; Pica::Regs::DepthFormat new_fb_depth_format = Pica::registers.framebuffer.depth_format;
bool fb_prop_changed = (fb_color_texture.format != new_fb_color_format || bool fb_prop_changed = (fb_color_texture.format != new_fb_color_format ||
@ -372,6 +366,7 @@ void RasterizerOpenGL::SyncFramebuffer() {
break; break;
default: default:
LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer depth format %x", new_fb_depth_format);
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
@ -391,21 +386,20 @@ void RasterizerOpenGL::SyncFramebuffer() {
} }
} }
/// Syncs the OpenGL drawing state to match the current PICA state
void RasterizerOpenGL::SyncDrawState() { void RasterizerOpenGL::SyncDrawState() {
// Sync the viewport // Sync the viewport
GLsizei viewportWidth = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_x.Value()).ToFloat32() * 2; GLsizei viewport_width = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_x).ToFloat32() * 2;
GLsizei viewportHeight = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_y.Value()).ToFloat32() * 2; GLsizei viewport_height = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_y).ToFloat32() * 2;
// OpenGL uses different y coordinates, so negate corner offset and flip origin // OpenGL uses different y coordinates, so negate corner offset and flip origin
// TODO: Ensure viewport_corner.x should not be negated or origin flipped // TODO: Ensure viewport_corner.x should not be negated or origin flipped
glViewport((GLsizei)static_cast<float>(Pica::registers.viewport_corner.x.Value()), glViewport((GLsizei)static_cast<float>(Pica::registers.viewport_corner.x),
-(GLsizei)static_cast<float>(Pica::registers.viewport_corner.y.Value()) -(GLsizei)static_cast<float>(Pica::registers.viewport_corner.y)
+ Pica::registers.framebuffer.GetHeight() - viewportHeight, + Pica::registers.framebuffer.GetHeight() - viewport_height,
viewportWidth, viewportHeight); viewport_width, viewport_height);
// Sync the cull mode // Sync the cull mode
switch (Pica::registers.cull_mode.Value()) { switch (Pica::registers.cull_mode) {
case Pica::Regs::CullMode::KeepAll: case Pica::Regs::CullMode::KeepAll:
state.cull.enabled = false; state.cull.enabled = false;
break; break;
@ -421,88 +415,72 @@ void RasterizerOpenGL::SyncDrawState() {
break; break;
default: default:
LOG_ERROR(Render_OpenGL, "Unknown cull mode %d", Pica::registers.cull_mode.Value()); LOG_CRITICAL(Render_OpenGL, "Unknown cull mode %d", Pica::registers.cull_mode.Value());
UNIMPLEMENTED();
break; break;
} }
// Sync depth test // Sync depth test
if (Pica::registers.output_merger.depth_test_enable.Value()) { if (Pica::registers.output_merger.depth_test_enable) {
state.depth.test_enabled = true; state.depth.test_enabled = true;
state.depth.test_func = PicaToGL::CompareFunc(Pica::registers.output_merger.depth_test_func.Value()); state.depth.test_func = PicaToGL::CompareFunc(Pica::registers.output_merger.depth_test_func);
} else { } else {
state.depth.test_enabled = false; state.depth.test_enabled = false;
} }
// Sync depth writing // Sync depth writing
if (Pica::registers.output_merger.depth_write_enable.Value()) { if (Pica::registers.output_merger.depth_write_enable) {
state.depth.write_mask = GL_TRUE; state.depth.write_mask = GL_TRUE;
} else { } else {
state.depth.write_mask = GL_FALSE; state.depth.write_mask = GL_FALSE;
} }
// Stencil functionality commented out until a good test case and verified info crop up // TODO: Implement stencil test, mask, and op via: state.stencil.* = Pica::registers.output_merger.stencil_test.*
// Sync stencil test
// TODO: Untested, make sure stencil_reference_value refers to this mask
//if (Pica::registers.output_merger.stencil_test.stencil_test_enable.Value()) {
// state.stencil.test_enabled = true;
// state.stencil.test_func = PicaToGL::CompareFunc(Pica::registers.output_merger.stencil_test.stencil_test_func.Value());
// state.stencil.test_ref = Pica::registers.output_merger.stencil_test.stencil_reference_value.Value();
// state.stencil.test_mask = Pica::registers.output_merger.stencil_test.stencil_replacement_value.Value();
//} else {
// state.stencil.test_enabled = false;
//}
// Sync stencil writing
// TODO: Untested, make sure stencil_mask refers to this mask
//state.stencil.write_mask = Pica::registers.output_merger.stencil_test.stencil_mask.Value();
// TODO: Need to sync glStencilOp() once corresponding PICA registers are discovered
// Sync blend state // Sync blend state
if (Pica::registers.output_merger.alphablend_enable.Value()) { if (Pica::registers.output_merger.alphablend_enable) {
state.blend.enabled = true; state.blend.enabled = true;
state.blend.color.red = (GLclampf)Pica::registers.output_merger.blend_const.r.Value() / 255.0f; state.blend.color.red = (GLclampf)Pica::registers.output_merger.blend_const.r / 255.0f;
state.blend.color.green = (GLclampf)Pica::registers.output_merger.blend_const.g.Value() / 255.0f; state.blend.color.green = (GLclampf)Pica::registers.output_merger.blend_const.g / 255.0f;
state.blend.color.blue = (GLclampf)Pica::registers.output_merger.blend_const.b.Value() / 255.0f; state.blend.color.blue = (GLclampf)Pica::registers.output_merger.blend_const.b / 255.0f;
state.blend.color.alpha = (GLclampf)Pica::registers.output_merger.blend_const.a.Value() / 255.0f; state.blend.color.alpha = (GLclampf)Pica::registers.output_merger.blend_const.a / 255.0f;
state.blend.src_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_rgb.Value()); state.blend.src_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_rgb);
state.blend.dst_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_rgb.Value()); state.blend.dst_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_rgb);
state.blend.src_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_a.Value()); state.blend.src_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_a);
state.blend.dst_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_a.Value()); state.blend.dst_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_a);
} else { } else {
state.blend.enabled = false; state.blend.enabled = false;
} }
// Sync bound texture(s), upload if uncached // Sync bound texture(s), upload if uncached
auto pica_textures = Pica::registers.GetTextures(); const auto pica_textures = Pica::registers.GetTextures();
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
const auto& texture = pica_textures[i]; const auto& texture = pica_textures[i];
if (texture.enabled) { if (texture.enabled) {
state.texture_unit[i].enabled_2d = true; state.texture_units[i].enabled_2d = true;
res_cache.LoadAndBindTexture(state, i, texture); res_cache.LoadAndBindTexture(state, i, texture);
} else { } else {
state.texture_unit[i].enabled_2d = false; state.texture_units[i].enabled_2d = false;
} }
} }
state.Apply(); state.Apply();
// Sync shader output register mapping to hw shader // Sync shader output register mapping to hw shader - 7 vectors with 4 components
for (int i = 0; i < 7 * 4; ++i) { for (int i = 0; i < 7 * 4; ++i) {
glUniform1i(uniform_out_maps + i, 0); glUniform1i(uniform_out_maps + i, 0);
} }
for (int i = 0; i < 6; ++i) { for (int i = 0; i < 7; ++i) {
const auto& output_register_map = Pica::registers.vs_output_attributes[i]; const auto& output_register_map = Pica::registers.vs_output_attributes[i];
u32 semantics[4] = { u32 semantics[4] = {
output_register_map.map_x.Value(), output_register_map.map_y.Value(), output_register_map.map_x, output_register_map.map_y,
output_register_map.map_z.Value(), output_register_map.map_w.Value() output_register_map.map_z, output_register_map.map_w
}; };
// TODO: Might only need to do this once per shader? Not sure when/if out maps are modified. // TODO: Might only need to do this once per shader? Not sure when/if out maps are modified.
@ -514,19 +492,19 @@ void RasterizerOpenGL::SyncDrawState() {
} }
// Sync texture environment configurations to hw shader // Sync texture environment configurations to hw shader
auto tev_stages = Pica::registers.GetTevStages(); const auto tev_stages = Pica::registers.GetTevStages();
for (int i = 0; i < 6; i++) { for (unsigned tev_stage_idx = 0; tev_stage_idx < tev_stages.size(); ++tev_stage_idx) {
const auto& stage = tev_stages[i]; const auto& stage = tev_stages[tev_stage_idx];
const auto& uniform_tev_cfg = uniform_tev_cfgs[i]; const auto& uniform_tev_cfg = uniform_tev_cfgs[tev_stage_idx];
GLint color_srcs[3] = { (GLint)stage.color_source1.Value(), (GLint)stage.color_source2.Value(), (GLint)stage.color_source3.Value() }; GLint color_srcs[3] = { (GLint)stage.color_source1.Value(), (GLint)stage.color_source2.Value(), (GLint)stage.color_source3.Value() };
GLint alpha_srcs[3] = { (GLint)stage.alpha_source1.Value(), (GLint)stage.alpha_source2.Value(), (GLint)stage.alpha_source3.Value() }; GLint alpha_srcs[3] = { (GLint)stage.alpha_source1.Value(), (GLint)stage.alpha_source2.Value(), (GLint)stage.alpha_source3.Value() };
GLint color_mods[3] = { (GLint)stage.color_modifier1.Value(), (GLint)stage.color_modifier2.Value(), (GLint)stage.color_modifier3.Value() }; GLint color_mods[3] = { (GLint)stage.color_modifier1.Value(), (GLint)stage.color_modifier2.Value(), (GLint)stage.color_modifier3.Value() };
GLint alpha_mods[3] = { (GLint)stage.alpha_modifier1.Value(), (GLint)stage.alpha_modifier2.Value(), (GLint)stage.alpha_modifier3.Value() }; GLint alpha_mods[3] = { (GLint)stage.alpha_modifier1.Value(), (GLint)stage.alpha_modifier2.Value(), (GLint)stage.alpha_modifier3.Value() };
GLfloat const_color[4] = { stage.const_r.Value() / 255.0f, GLfloat const_color[4] = { stage.const_r / 255.0f,
stage.const_g.Value() / 255.0f, stage.const_g / 255.0f,
stage.const_b.Value() / 255.0f, stage.const_b / 255.0f,
stage.const_a.Value() / 255.0f }; stage.const_a / 255.0f };
glUniform3iv(uniform_tev_cfg.color_sources, 1, color_srcs); glUniform3iv(uniform_tev_cfg.color_sources, 1, color_srcs);
glUniform3iv(uniform_tev_cfg.alpha_sources, 1, alpha_srcs); glUniform3iv(uniform_tev_cfg.alpha_sources, 1, alpha_srcs);
@ -536,52 +514,51 @@ void RasterizerOpenGL::SyncDrawState() {
glUniform2f(uniform_tev_cfg.color_alpha_multiplier, (GLfloat)stage.GetColorMultiplier(), (GLfloat)stage.GetAlphaMultiplier()); glUniform2f(uniform_tev_cfg.color_alpha_multiplier, (GLfloat)stage.GetColorMultiplier(), (GLfloat)stage.GetAlphaMultiplier());
glUniform4fv(uniform_tev_cfg.const_color, 1, const_color); glUniform4fv(uniform_tev_cfg.const_color, 1, const_color);
glUniform2i(uniform_tev_cfg.updates_combiner_buffer_color_alpha, glUniform2i(uniform_tev_cfg.updates_combiner_buffer_color_alpha,
Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(i), Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_idx),
Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(i)); Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_idx));
} }
// Sync alpha testing to hw shader // Sync alpha testing to hw shader
if (Pica::registers.output_merger.alpha_test.enable.Value()) { if (Pica::registers.output_merger.alpha_test.enable) {
glUniform1i(uniform_alphatest_func, Pica::registers.output_merger.alpha_test.func.Value()); glUniform1i(uniform_alphatest_func, Pica::registers.output_merger.alpha_test.func);
glUniform1f(uniform_alphatest_ref, Pica::registers.output_merger.alpha_test.ref.Value() / 255.0f); glUniform1f(uniform_alphatest_ref, Pica::registers.output_merger.alpha_test.ref / 255.0f);
} else { } else {
glUniform1i(uniform_alphatest_func, 1); glUniform1i(uniform_alphatest_func, Pica::registers.output_merger.Always);
} }
} }
/// Copies the 3ds color framebuffer into the OpenGL color framebuffer texture
void RasterizerOpenGL::ReloadColorBuffer() { void RasterizerOpenGL::ReloadColorBuffer() {
u8* color_buffer = Memory::GetPhysicalPointer(last_fb_color_addr); u8* color_buffer = Memory::GetPhysicalPointer(last_fb_color_addr);
if (color_buffer == nullptr) { if (color_buffer == nullptr)
return; return;
}
u32 bytes_per_pixel = ColorFormatBytesPerPixel(fb_color_texture.format); u32 bytes_per_pixel = ColorFormatBytesPerPixel(fb_color_texture.format);
std::unique_ptr<u8> ogl_img(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]); std::unique_ptr<u8[]> temp_fb_color_buffer(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]);
// Directly copy pixels. Internal OpenGL color formats are consistent so no conversion is necessary.
// TODO: Evaluate whether u16/memcpy/u32 is faster for 2/3/4 bpp versus memcpy for all // TODO: Evaluate whether u16/memcpy/u32 is faster for 2/3/4 bpp versus memcpy for all
for (int x = 0; x < fb_color_texture.width; ++x) { for (int y = 0; y < fb_color_texture.height; ++y) {
for (int y = 0; y < fb_color_texture.height; ++y) { for (int x = 0; x < fb_color_texture.width; ++x) {
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel;
u32 ogl_px_idx = x * bytes_per_pixel + y * fb_color_texture.width * bytes_per_pixel; u32 gl_px_idx = x * bytes_per_pixel + y * fb_color_texture.width * bytes_per_pixel;
u8* pixel = color_buffer + dst_offset; u8* pixel = color_buffer + dst_offset;
memcpy(&ogl_img.get()[ogl_px_idx], pixel, bytes_per_pixel); memcpy(&temp_fb_color_buffer[gl_px_idx], pixel, bytes_per_pixel);
} }
} }
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = fb_color_texture.texture.GetHandle(); state.texture_units[0].texture_2d = fb_color_texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_color_texture.width, fb_color_texture.height, fb_color_texture.gl_format, fb_color_texture.gl_type, ogl_img.get()); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_color_texture.width, fb_color_texture.height,
fb_color_texture.gl_format, fb_color_texture.gl_type, temp_fb_color_buffer.get());
} }
/// Copies the 3ds depth framebuffer into the OpenGL depth framebuffer texture
void RasterizerOpenGL::ReloadDepthBuffer() { void RasterizerOpenGL::ReloadDepthBuffer() {
// TODO: Appears to work, but double-check endianness of depth values and order of depth-stencil // TODO: Appears to work, but double-check endianness of depth values and order of depth-stencil
u8* depth_buffer = Memory::GetPhysicalPointer(last_fb_depth_addr); u8* depth_buffer = Memory::GetPhysicalPointer(last_fb_depth_addr);
@ -593,27 +570,27 @@ void RasterizerOpenGL::ReloadDepthBuffer() {
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format); u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format);
// OpenGL needs 4 bpp alignment for D24 // OpenGL needs 4 bpp alignment for D24
u32 ogl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel; u32 gl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel;
std::unique_ptr<u8> ogl_img(new u8[fb_depth_texture.width * fb_depth_texture.height * ogl_bpp]); std::unique_ptr<u8[]> temp_fb_depth_buffer(new u8[fb_depth_texture.width * fb_depth_texture.height * gl_bpp]);
for (int x = 0; x < fb_depth_texture.width; ++x) { for (int y = 0; y < fb_depth_texture.height; ++y) {
for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) {
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel;
u32 ogl_px_idx = x + y * fb_depth_texture.width; u32 gl_px_idx = x + y * fb_depth_texture.width;
switch (fb_depth_texture.format) { switch (fb_depth_texture.format) {
case Pica::Regs::DepthFormat::D16: case Pica::Regs::DepthFormat::D16:
((u16*)ogl_img.get())[ogl_px_idx] = Color::DecodeD16(depth_buffer + dst_offset); ((u16*)temp_fb_depth_buffer.get())[gl_px_idx] = Color::DecodeD16(depth_buffer + dst_offset);
break; break;
case Pica::Regs::DepthFormat::D24: case Pica::Regs::DepthFormat::D24:
((u32*)ogl_img.get())[ogl_px_idx] = Color::DecodeD24(depth_buffer + dst_offset); ((u32*)temp_fb_depth_buffer.get())[gl_px_idx] = Color::DecodeD24(depth_buffer + dst_offset);
break; break;
case Pica::Regs::DepthFormat::D24S8: case Pica::Regs::DepthFormat::D24S8:
{ {
Math::Vec2<u32> depth_stencil = Color::DecodeD24S8(depth_buffer + dst_offset); Math::Vec2<u32> depth_stencil = Color::DecodeD24S8(depth_buffer + dst_offset);
((u32*)ogl_img.get())[ogl_px_idx] = depth_stencil.x << 8 | depth_stencil.y; ((u32*)temp_fb_depth_buffer.get())[gl_px_idx] = (depth_stencil.x << 8) | depth_stencil.y;
break; break;
} }
default: default:
@ -624,49 +601,47 @@ void RasterizerOpenGL::ReloadDepthBuffer() {
} }
} }
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = fb_depth_texture.texture.GetHandle(); state.texture_units[0].texture_2d = fb_depth_texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_depth_texture.width, fb_depth_texture.height, fb_depth_texture.gl_format, fb_depth_texture.gl_type, ogl_img.get()); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_depth_texture.width, fb_depth_texture.height,
fb_depth_texture.gl_format, fb_depth_texture.gl_type, temp_fb_depth_buffer.get());
} }
/**
* Save the current OpenGL framebuffer to the current PICA framebuffer in 3ds memory
* Loads the OpenGL framebuffer textures into temporary buffers
* Then copies into the 3ds framebuffer using proper Morton order
*/
void RasterizerOpenGL::CommitFramebuffer() { void RasterizerOpenGL::CommitFramebuffer() {
if (last_fb_color_addr != -1) { if (last_fb_color_addr != 0) {
u8* color_buffer = Memory::GetPhysicalPointer(last_fb_color_addr); u8* color_buffer = Memory::GetPhysicalPointer(last_fb_color_addr);
if (color_buffer != nullptr) { if (color_buffer != nullptr) {
u32 bytes_per_pixel = ColorFormatBytesPerPixel(fb_color_texture.format); u32 bytes_per_pixel = ColorFormatBytesPerPixel(fb_color_texture.format);
std::unique_ptr<u8> ogl_img(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]); std::unique_ptr<u8[]> temp_gl_color_buffer(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]);
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = fb_color_texture.texture.GetHandle(); state.texture_units[0].texture_2d = fb_color_texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glGetTexImage(GL_TEXTURE_2D, 0, fb_color_texture.gl_format, fb_color_texture.gl_type, ogl_img.get()); glGetTexImage(GL_TEXTURE_2D, 0, fb_color_texture.gl_format, fb_color_texture.gl_type, temp_gl_color_buffer.get());
for (int x = 0; x < fb_color_texture.width; ++x) { // Directly copy pixels. Internal OpenGL color formats are consistent so no conversion is necessary.
for (int y = 0; y < fb_color_texture.height; ++y) { // TODO: Evaluate whether u16/memcpy/u32 is faster for 2/3/4 bpp versus memcpy for all
for (int y = 0; y < fb_color_texture.height; ++y) {
for (int x = 0; x < fb_color_texture.width; ++x) {
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel;
u32 ogl_px_idx = x * bytes_per_pixel + y * fb_color_texture.width * bytes_per_pixel; u32 gl_px_idx = x * bytes_per_pixel + y * fb_color_texture.width * bytes_per_pixel;
u8* pixel = color_buffer + dst_offset; u8* pixel = color_buffer + dst_offset;
memcpy(pixel, &ogl_img.get()[ogl_px_idx], bytes_per_pixel); memcpy(pixel, &temp_gl_color_buffer[gl_px_idx], bytes_per_pixel);
} }
} }
} }
} }
if (last_fb_depth_addr != -1) { if (last_fb_depth_addr != 0) {
// TODO: Output seems correct visually, but doesn't quite match sw renderer output. One of them is wrong. // TODO: Output seems correct visually, but doesn't quite match sw renderer output. One of them is wrong.
u8* depth_buffer = Memory::GetPhysicalPointer(last_fb_depth_addr); u8* depth_buffer = Memory::GetPhysicalPointer(last_fb_depth_addr);
@ -674,34 +649,34 @@ void RasterizerOpenGL::CommitFramebuffer() {
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format); u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format);
// OpenGL needs 4 bpp alignment for D24 // OpenGL needs 4 bpp alignment for D24
u32 ogl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel; u32 gl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel;
std::unique_ptr<u8> ogl_img(new u8[fb_depth_texture.width * fb_depth_texture.height * ogl_bpp]); std::unique_ptr<u8[]> temp_gl_depth_buffer(new u8[fb_depth_texture.width * fb_depth_texture.height * gl_bpp]);
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = fb_depth_texture.texture.GetHandle(); state.texture_units[0].texture_2d = fb_depth_texture.texture.GetHandle();
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glGetTexImage(GL_TEXTURE_2D, 0, fb_depth_texture.gl_format, fb_depth_texture.gl_type, ogl_img.get()); glGetTexImage(GL_TEXTURE_2D, 0, fb_depth_texture.gl_format, fb_depth_texture.gl_type, temp_gl_depth_buffer.get());
for (int x = 0; x < fb_depth_texture.width; ++x) { for (int y = 0; y < fb_depth_texture.height; ++y) {
for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) {
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel;
u32 ogl_px_idx = x + y * fb_depth_texture.width; u32 gl_px_idx = x + y * fb_depth_texture.width;
switch (fb_depth_texture.format) { switch (fb_depth_texture.format) {
case Pica::Regs::DepthFormat::D16: case Pica::Regs::DepthFormat::D16:
Color::EncodeD16(((u16*)ogl_img.get())[ogl_px_idx], depth_buffer + dst_offset); Color::EncodeD16(((u16*)temp_gl_depth_buffer.get())[gl_px_idx], depth_buffer + dst_offset);
break; break;
case Pica::Regs::DepthFormat::D24: case Pica::Regs::DepthFormat::D24:
Color::EncodeD24(((u32*)ogl_img.get())[ogl_px_idx], depth_buffer + dst_offset); Color::EncodeD24(((u32*)temp_gl_depth_buffer.get())[gl_px_idx], depth_buffer + dst_offset);
break; break;
case Pica::Regs::DepthFormat::D24S8: case Pica::Regs::DepthFormat::D24S8:
{ {
u32 depth_stencil = ((u32*)ogl_img.get())[ogl_px_idx]; u32 depth_stencil = ((u32*)temp_gl_depth_buffer.get())[gl_px_idx];
Color::EncodeD24S8(depth_stencil >> 8, depth_stencil & 0xFF, depth_buffer + dst_offset); Color::EncodeD24S8((depth_stencil >> 8), depth_stencil & 0xFF, depth_buffer + dst_offset);
break; break;
} }
default: default:

View File

@ -29,11 +29,11 @@ public:
/// Draw the current batch of triangles /// Draw the current batch of triangles
void DrawTriangles() override; void DrawTriangles() override;
/// Notify rasterizer that a copy within 3ds memory will occur after this notification /// Notify rasterizer that a copy within 3DS memory will occur after this notification
void NotifyPreCopy(u32 src_paddr, u32 size) override; void NotifyPreCopy(PAddr src_addr, u32 size) override;
/// Notify rasterizer that a 3ds memory region has been changed /// Notify rasterizer that a 3DS memory region has been changed
void NotifyFlush(u32 paddr, u32 size) override; void NotifyFlush(PAddr addr, u32 size) override;
private: private:
/// Structure used for managing texture environment states /// Structure used for managing texture environment states
@ -68,7 +68,7 @@ private:
GLenum gl_type; GLenum gl_type;
}; };
///Structure that the hardware rendered vertices are composed of /// Structure that the hardware rendered vertices are composed of
struct HardwareVertex { struct HardwareVertex {
HardwareVertex(const Pica::VertexShader::OutputVertex& v) { HardwareVertex(const Pica::VertexShader::OutputVertex& v) {
position[0] = v.pos.x.ToFloat32(); position[0] = v.pos.x.ToFloat32();
@ -113,10 +113,10 @@ private:
void ReloadDepthBuffer(); void ReloadDepthBuffer();
/** /**
* Save the current OpenGL framebuffer to the current PICA framebuffer in 3ds memory * Save the current OpenGL framebuffer to the current PICA framebuffer in 3ds memory
* Loads the OpenGL framebuffer textures into temporary buffers * Loads the OpenGL framebuffer textures into temporary buffers
* Then copies into the 3ds framebuffer using proper Morton order * Then copies into the 3ds framebuffer using proper Morton order
*/ */
void CommitFramebuffer(); void CommitFramebuffer();
EmuWindow* render_window; EmuWindow* render_window;

View File

@ -12,20 +12,19 @@ RasterizerCacheOpenGL::~RasterizerCacheOpenGL() {
FullFlush(); FullFlush();
} }
/// Loads a texture from 3ds memory to OpenGL and caches it (if not already cached)
void RasterizerCacheOpenGL::LoadAndBindTexture(OpenGLState &state, int texture_unit, const Pica::Regs::FullTextureConfig& config) { void RasterizerCacheOpenGL::LoadAndBindTexture(OpenGLState &state, int texture_unit, const Pica::Regs::FullTextureConfig& config) {
PAddr tex_paddr = config.config.GetPhysicalAddress(); PAddr texture_addr = config.config.GetPhysicalAddress();
auto cached_texture = texture_cache.find(tex_paddr); const auto cached_texture = texture_cache.find(texture_addr);
if (cached_texture != texture_cache.end()) { if (cached_texture != texture_cache.end()) {
state.texture_unit[texture_unit].texture_2d = cached_texture->second->texture.GetHandle(); state.texture_units[texture_unit].texture_2d = cached_texture->second->texture.GetHandle();
state.Apply(); state.Apply();
} else { } else {
std::unique_ptr<CachedTexture> new_texture(new CachedTexture()); std::unique_ptr<CachedTexture> new_texture(new CachedTexture());
new_texture->texture.Create(); new_texture->texture.Create();
state.texture_unit[texture_unit].texture_2d = new_texture->texture.GetHandle(); state.texture_units[texture_unit].texture_2d = new_texture->texture.GetHandle();
state.Apply(); state.Apply();
// TODO: Need to choose filters that correspond to PICA once register is declared // TODO: Need to choose filters that correspond to PICA once register is declared
@ -35,36 +34,33 @@ void RasterizerCacheOpenGL::LoadAndBindTexture(OpenGLState &state, int texture_u
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, PicaToGL::WrapMode(config.config.wrap_s.Value())); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, PicaToGL::WrapMode(config.config.wrap_s.Value()));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, PicaToGL::WrapMode(config.config.wrap_t.Value())); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, PicaToGL::WrapMode(config.config.wrap_t.Value()));
auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config.config, config.format); const auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config.config, config.format);
new_texture->width = info.width; new_texture->width = info.width;
new_texture->height = info.height; new_texture->height = info.height;
new_texture->size = info.width * info.height * Pica::Regs::NibblesPerPixel(info.format); new_texture->size = info.width * info.height * Pica::Regs::NibblesPerPixel(info.format);
Math::Vec4<u8>* rgba_tex = new Math::Vec4<u8>[info.width * info.height]; std::unique_ptr<Math::Vec4<u8>[]> temp_texture_buffer_rgba(new Math::Vec4<u8>[info.width * info.height]);
for (int i = 0; i < info.width; i++) { for (int y = 0; y < info.height; ++y) {
for (int j = 0; j < info.height; j++) { for (int x = 0; x < info.width; ++x) {
rgba_tex[i + info.width * j] = Pica::DebugUtils::LookupTexture(Memory::GetPhysicalPointer(tex_paddr), i, info.height - 1 - j, info); temp_texture_buffer_rgba[x + info.width * y] = Pica::DebugUtils::LookupTexture(Memory::GetPhysicalPointer(texture_addr), x, info.height - 1 - y, info);
} }
} }
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, info.width, info.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, rgba_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, info.width, info.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, temp_texture_buffer_rgba.get());
delete[] rgba_tex; texture_cache.emplace(texture_addr, std::move(new_texture));
texture_cache.emplace(tex_paddr, std::move(new_texture));
} }
} }
/// Flush any cached resource that touches the flushed region void RasterizerCacheOpenGL::NotifyFlush(PAddr addr, u32 size) {
void RasterizerCacheOpenGL::NotifyFlush(u32 paddr, u32 size) {
// Flush any texture that falls in the flushed region // Flush any texture that falls in the flushed region
for (auto it = texture_cache.begin(); it != texture_cache.end();) { for (auto it = texture_cache.begin(); it != texture_cache.end();) {
u32 max_lower = std::max(paddr, it->first); PAddr max_low_addr_bound = std::max(addr, it->first);
u32 min_upper = std::min(paddr + size, it->first + it->second->size); PAddr min_hi_addr_bound = std::min(addr + size, it->first + it->second->size);
if (max_lower <= min_upper) { if (max_low_addr_bound <= min_hi_addr_bound) {
it = texture_cache.erase(it); it = texture_cache.erase(it);
} else { } else {
++it; ++it;
@ -72,9 +68,6 @@ void RasterizerCacheOpenGL::NotifyFlush(u32 paddr, u32 size) {
} }
} }
/// Flush all cached resources
void RasterizerCacheOpenGL::FullFlush() { void RasterizerCacheOpenGL::FullFlush() {
for (auto it = texture_cache.begin(); it != texture_cache.end();) { texture_cache.clear();
it = texture_cache.erase(it);
}
} }

View File

@ -15,11 +15,11 @@ class RasterizerCacheOpenGL : NonCopyable {
public: public:
~RasterizerCacheOpenGL(); ~RasterizerCacheOpenGL();
/// Loads a texture from 3ds memory to OpenGL and caches it (if not already cached) /// Loads a texture from 3DS memory to OpenGL and caches it (if not already cached)
void LoadAndBindTexture(OpenGLState &state, int texture_unit, const Pica::Regs::FullTextureConfig& config); void LoadAndBindTexture(OpenGLState &state, int texture_unit, const Pica::Regs::FullTextureConfig& config);
/// Flush any cached resource that touches the flushed region /// Flush any cached resource that touches the flushed region
void NotifyFlush(u32 paddr, u32 size); void NotifyFlush(PAddr addr, u32 size);
/// Flush all cached OpenGL resources tracked by this cache manager /// Flush all cached OpenGL resources tracked by this cache manager
void FullFlush(); void FullFlush();
@ -32,5 +32,5 @@ private:
u32 size; u32 size;
}; };
std::map<u32, std::unique_ptr<CachedTexture>> texture_cache; std::map<PAddr, std::unique_ptr<CachedTexture>> texture_cache;
}; };

View File

@ -45,13 +45,15 @@ void main() {
const char g_vertex_shader_hw[] = R"( const char g_vertex_shader_hw[] = R"(
#version 150 core #version 150 core
#define NUM_VTX_ATTR 7
in vec4 vert_position; in vec4 vert_position;
in vec4 vert_color; in vec4 vert_color;
in vec2 vert_texcoords[3]; in vec2 vert_texcoords[3];
out vec4 o[7]; out vec4 o[NUM_VTX_ATTR];
uniform int out_maps[7*4]; uniform int out_maps[NUM_VTX_ATTR * 4];
void SetVal(int map_idx, float val) { void SetVal(int map_idx, float val) {
o[out_maps[map_idx] / 4][out_maps[map_idx] % 4] = val; o[out_maps[map_idx] / 4][out_maps[map_idx] % 4] = val;
@ -79,7 +81,58 @@ void main() {
const char g_fragment_shader_hw[] = R"( const char g_fragment_shader_hw[] = R"(
#version 150 core #version 150 core
in vec4 o[7]; #define NUM_TEV_STAGES 6
#define NUM_VTX_ATTR 7
#define SOURCE_PRIMARYCOLOR 0x0
#define SOURCE_PRIMARYFRAGMENTCOLOR 0x1
#define SOURCE_TEXTURE0 0x3
#define SOURCE_TEXTURE1 0x4
#define SOURCE_TEXTURE2 0x5
#define SOURCE_TEXTURE3 0x6
#define SOURCE_PREVIOUSBUFFER 0xd
#define SOURCE_CONSTANT 0xe
#define SOURCE_PREVIOUS 0xf
#define COLORMODIFIER_SOURCECOLOR 0x0
#define COLORMODIFIER_ONEMINUSSOURCECOLOR 0x1
#define COLORMODIFIER_SOURCEALPHA 0x2
#define COLORMODIFIER_ONEMINUSSOURCEALPHA 0x3
#define COLORMODIFIER_SOURCERED 0x4
#define COLORMODIFIER_ONEMINUSSOURCERED 0x5
#define COLORMODIFIER_SOURCEGREEN 0x8
#define COLORMODIFIER_ONEMINUSSOURCEGREEN 0x9
#define COLORMODIFIER_SOURCEBLUE 0xc
#define COLORMODIFIER_ONEMINUSSOURCEBLUE 0xd
#define ALPHAMODIFIER_SOURCEALPHA 0x0
#define ALPHAMODIFIER_ONEMINUSSOURCEALPHA 0x1
#define ALPHAMODIFIER_SOURCERED 0x2
#define ALPHAMODIFIER_ONEMINUSSOURCERED 0x3
#define ALPHAMODIFIER_SOURCEGREEN 0x4
#define ALPHAMODIFIER_ONEMINUSSOURCEGREEN 0x5
#define ALPHAMODIFIER_SOURCEBLUE 0x6
#define ALPHAMODIFIER_ONEMINUSSOURCEBLUE 0x7
#define OPERATION_REPLACE 0
#define OPERATION_MODULATE 1
#define OPERATION_ADD 2
#define OPERATION_ADDSIGNED 3
#define OPERATION_LERP 4
#define OPERATION_SUBTRACT 5
#define OPERATION_MULTIPLYTHENADD 8
#define OPERATION_ADDTHENMULTIPLY 9
#define COMPAREFUNC_NEVER 0
#define COMPAREFUNC_ALWAYS 1
#define COMPAREFUNC_EQUAL 2
#define COMPAREFUNC_NOTEQUAL 3
#define COMPAREFUNC_LESSTHAN 4
#define COMPAREFUNC_LESSTHANOREQUAL 5
#define COMPAREFUNC_GREATERTHAN 6
#define COMPAREFUNC_GREATERTHANOREQUAL 7
in vec4 o[NUM_VTX_ATTR];
out vec4 color; out vec4 color;
uniform int alphatest_func; uniform int alphatest_func;
@ -99,9 +152,9 @@ struct TEVConfig
bvec2 updates_combiner_buffer_color_alpha; bvec2 updates_combiner_buffer_color_alpha;
}; };
uniform TEVConfig tev_cfgs[6]; uniform TEVConfig tev_cfgs[NUM_TEV_STAGES];
uniform int out_maps[7*4]; uniform int out_maps[NUM_VTX_ATTR * 4];
vec4 g_combiner_buffer; vec4 g_combiner_buffer;
vec4 g_last_tex_env_out; vec4 g_last_tex_env_out;
@ -112,33 +165,27 @@ float GetVal(int map_idx) {
} }
vec4 GetSource(int source) { vec4 GetSource(int source) {
if (source == 0) { if (source == SOURCE_PRIMARYCOLOR) {
// HACK: Should use values 8/9/10/11 but hurts framerate // HACK: Should use values 8/9/10/11 but hurts framerate
// Hack assumes 9/10/11 follow directly after 8's map
return o[out_maps[8] >> 2]; return o[out_maps[8] >> 2];
} } else if (source == SOURCE_PRIMARYFRAGMENTCOLOR) {
else if (source == 1) { // HACK: Uses color value, but should really use fragment lighting output
return o[out_maps[8] >> 2]; return o[out_maps[8] >> 2];
} } else if (source == SOURCE_TEXTURE0) {
else if (source == 3) {
return texture(tex[0], vec2(GetVal(12), GetVal(13))); return texture(tex[0], vec2(GetVal(12), GetVal(13)));
} } else if (source == SOURCE_TEXTURE1) {
else if (source == 4) {
return texture(tex[1], vec2(GetVal(14), GetVal(15))); return texture(tex[1], vec2(GetVal(14), GetVal(15)));
} } else if (source == SOURCE_TEXTURE2) {
else if (source == 5) {
// TODO: Unverified // TODO: Unverified
return texture(tex[2], vec2(GetVal(16), GetVal(17))); return texture(tex[2], vec2(GetVal(16), GetVal(17)));
} } else if (source == SOURCE_TEXTURE3) {
else if (source == 6) {
// TODO: no 4th texture? // TODO: no 4th texture?
} } else if (source == SOURCE_PREVIOUSBUFFER) {
else if (source == 13) {
return g_combiner_buffer; return g_combiner_buffer;
} } else if (source == SOURCE_CONSTANT) {
else if (source == 14) {
return g_const_color; return g_const_color;
} } else if (source == SOURCE_PREVIOUS) {
else if (source == 15) {
return g_last_tex_env_out; return g_last_tex_env_out;
} }
@ -146,34 +193,25 @@ vec4 GetSource(int source) {
} }
vec3 GetColorModifier(int factor, vec4 color) { vec3 GetColorModifier(int factor, vec4 color) {
if (factor == 0) { if (factor == COLORMODIFIER_SOURCECOLOR) {
return color.rgb; return color.rgb;
} } else if (factor == COLORMODIFIER_ONEMINUSSOURCECOLOR) {
else if (factor == 1) {
return vec3(1.0, 1.0, 1.0) - color.rgb; return vec3(1.0, 1.0, 1.0) - color.rgb;
} } else if (factor == COLORMODIFIER_SOURCEALPHA) {
else if (factor == 2) {
return color.aaa; return color.aaa;
} } else if (factor == COLORMODIFIER_ONEMINUSSOURCEALPHA) {
else if (factor == 3) {
return vec3(1.0, 1.0, 1.0) - color.aaa; return vec3(1.0, 1.0, 1.0) - color.aaa;
} } else if (factor == COLORMODIFIER_SOURCERED) {
else if (factor == 4) {
return color.rrr; return color.rrr;
} } else if (factor == COLORMODIFIER_ONEMINUSSOURCERED) {
else if (factor == 5) {
return vec3(1.0, 1.0, 1.0) - color.rrr; return vec3(1.0, 1.0, 1.0) - color.rrr;
} } else if (factor == COLORMODIFIER_SOURCEGREEN) {
else if (factor == 8) {
return color.ggg; return color.ggg;
} } else if (factor == COLORMODIFIER_ONEMINUSSOURCEGREEN) {
else if (factor == 9) {
return vec3(1.0, 1.0, 1.0) - color.ggg; return vec3(1.0, 1.0, 1.0) - color.ggg;
} } else if (factor == COLORMODIFIER_SOURCEBLUE) {
else if (factor == 12) {
return color.bbb; return color.bbb;
} } else if (factor == COLORMODIFIER_ONEMINUSSOURCEBLUE) {
else if (factor == 13) {
return vec3(1.0, 1.0, 1.0) - color.bbb; return vec3(1.0, 1.0, 1.0) - color.bbb;
} }
@ -181,28 +219,21 @@ vec3 GetColorModifier(int factor, vec4 color) {
} }
float GetAlphaModifier(int factor, vec4 color) { float GetAlphaModifier(int factor, vec4 color) {
if (factor == 0) { if (factor == ALPHAMODIFIER_SOURCEALPHA) {
return color.a; return color.a;
} } else if (factor == ALPHAMODIFIER_ONEMINUSSOURCEALPHA) {
else if (factor == 1) {
return 1.0 - color.a; return 1.0 - color.a;
} } else if (factor == ALPHAMODIFIER_SOURCERED) {
else if (factor == 2) {
return color.r; return color.r;
} } else if (factor == ALPHAMODIFIER_ONEMINUSSOURCERED) {
else if (factor == 3) {
return 1.0 - color.r; return 1.0 - color.r;
} } else if (factor == ALPHAMODIFIER_SOURCEGREEN) {
else if (factor == 4) {
return color.g; return color.g;
} } else if (factor == ALPHAMODIFIER_ONEMINUSSOURCEGREEN) {
else if (factor == 5) {
return 1.0 - color.g; return 1.0 - color.g;
} } else if (factor == ALPHAMODIFIER_SOURCEBLUE) {
else if (factor == 6) {
return color.b; return color.b;
} } else if (factor == ALPHAMODIFIER_ONEMINUSSOURCEBLUE) {
else if (factor == 7) {
return 1.0 - color.b; return 1.0 - color.b;
} }
@ -210,28 +241,21 @@ float GetAlphaModifier(int factor, vec4 color) {
} }
vec3 ColorCombine(int op, vec3 color[3]) { vec3 ColorCombine(int op, vec3 color[3]) {
if (op == 0) { if (op == OPERATION_REPLACE) {
return color[0]; return color[0];
} } else if (op == OPERATION_MODULATE) {
else if (op == 1) {
return color[0] * color[1]; return color[0] * color[1];
} } else if (op == OPERATION_ADD) {
else if (op == 2) {
return min(color[0] + color[1], 1.0); return min(color[0] + color[1], 1.0);
} } else if (op == OPERATION_ADDSIGNED) {
else if (op == 3) {
return color[0] + color[1] - vec3(0.5, 0.5, 0.5); return color[0] + color[1] - vec3(0.5, 0.5, 0.5);
} } else if (op == OPERATION_LERP) {
else if (op == 4) {
return color[0] * color[2] + color[1] * (vec3(1.0, 1.0, 1.0) - color[2]); return color[0] * color[2] + color[1] * (vec3(1.0, 1.0, 1.0) - color[2]);
} } else if (op == OPERATION_SUBTRACT) {
else if (op == 5) {
return max(color[0] - color[1], 0.0); return max(color[0] - color[1], 0.0);
} } else if (op == OPERATION_MULTIPLYTHENADD) {
else if (op == 8) {
return min(color[0] * color[1] + color[2], 1.0); return min(color[0] * color[1] + color[2], 1.0);
} } else if (op == OPERATION_ADDTHENMULTIPLY) {
else if (op == 9) {
return min(color[0] + color[1], 1.0) * color[2]; return min(color[0] + color[1], 1.0) * color[2];
} }
@ -239,28 +263,21 @@ vec3 ColorCombine(int op, vec3 color[3]) {
} }
float AlphaCombine(int op, float alpha[3]) { float AlphaCombine(int op, float alpha[3]) {
if (op == 0) { if (op == OPERATION_REPLACE) {
return alpha[0]; return alpha[0];
} } else if (op == OPERATION_MODULATE) {
else if (op == 1) {
return alpha[0] * alpha[1]; return alpha[0] * alpha[1];
} } else if (op == OPERATION_ADD) {
else if (op == 2) {
return min(alpha[0] + alpha[1], 1.0); return min(alpha[0] + alpha[1], 1.0);
} } else if (op == OPERATION_ADDSIGNED) {
else if (op == 3) {
return alpha[0] + alpha[1] - 0.5; return alpha[0] + alpha[1] - 0.5;
} } else if (op == OPERATION_LERP) {
else if (op == 4) {
return alpha[0] * alpha[2] + alpha[1] * (1.0 - alpha[2]); return alpha[0] * alpha[2] + alpha[1] * (1.0 - alpha[2]);
} } else if (op == OPERATION_SUBTRACT) {
else if (op == 5) {
return max(alpha[0] - alpha[1], 0.0); return max(alpha[0] - alpha[1], 0.0);
} } else if (op == OPERATION_MULTIPLYTHENADD) {
else if (op == 8) {
return min(alpha[0] * alpha[1] + alpha[2], 1.0); return min(alpha[0] * alpha[1] + alpha[2], 1.0);
} } else if (op == OPERATION_ADDTHENMULTIPLY) {
else if (op == 9) {
return min(alpha[0] + alpha[1], 1.0) * alpha[2]; return min(alpha[0] + alpha[1], 1.0) * alpha[2];
} }
@ -292,39 +309,35 @@ void ProcessTexEnv(int tex_env_idx) {
} }
void main(void) { void main(void) {
for (int i = 0; i < 6; ++i) { for (int i = 0; i < NUM_TEV_STAGES; ++i) {
ProcessTexEnv(i); ProcessTexEnv(i);
} }
if (alphatest_func == 0) { if (alphatest_func == COMPAREFUNC_NEVER) {
discard; discard;
} } else if (alphatest_func == COMPAREFUNC_ALWAYS) {
else if (alphatest_func == 2) {
} else if (alphatest_func == COMPAREFUNC_EQUAL) {
if (g_last_tex_env_out.a != alphatest_ref) { if (g_last_tex_env_out.a != alphatest_ref) {
discard; discard;
} }
} } else if (alphatest_func == COMPAREFUNC_NOTEQUAL) {
else if (alphatest_func == 3) {
if (g_last_tex_env_out.a == alphatest_ref) { if (g_last_tex_env_out.a == alphatest_ref) {
discard; discard;
} }
} } else if (alphatest_func == COMPAREFUNC_LESSTHAN) {
else if (alphatest_func == 4) {
if (g_last_tex_env_out.a > alphatest_ref) { if (g_last_tex_env_out.a > alphatest_ref) {
discard; discard;
} }
} } else if (alphatest_func == COMPAREFUNC_LESSTHANOREQUAL) {
else if (alphatest_func == 5) {
if (g_last_tex_env_out.a >= alphatest_ref) { if (g_last_tex_env_out.a >= alphatest_ref) {
discard; discard;
} }
} } else if (alphatest_func == COMPAREFUNC_GREATERTHAN) {
else if (alphatest_func == 6) {
if (g_last_tex_env_out.a < alphatest_ref) { if (g_last_tex_env_out.a < alphatest_ref) {
discard; discard;
} }
} } else if (alphatest_func == COMPAREFUNC_GREATERTHANOREQUAL) {
else if (alphatest_func == 7) {
if (g_last_tex_env_out.a <= alphatest_ref) { if (g_last_tex_env_out.a <= alphatest_ref) {
discard; discard;
} }

View File

@ -31,9 +31,9 @@ OpenGLState::OpenGLState() {
blend.color.blue = 0.0f; blend.color.blue = 0.0f;
blend.color.alpha = 0.0f; blend.color.alpha = 0.0f;
for (int i = 0; i < 3; i++) { for (auto& texture_unit : texture_units) {
texture_unit[i].enabled_2d = false; texture_unit.enabled_2d = false;
texture_unit[i].texture_2d = 0; texture_unit.texture_2d = 0;
} }
draw.framebuffer = 0; draw.framebuffer = 0;
@ -42,7 +42,6 @@ OpenGLState::OpenGLState() {
draw.shader_program = 0; draw.shader_program = 0;
} }
/// Apply this state as the current OpenGL state
void OpenGLState::Apply() { void OpenGLState::Apply() {
// Culling // Culling
if (cull.enabled) { if (cull.enabled) {
@ -119,18 +118,18 @@ void OpenGLState::Apply() {
} }
// Textures // Textures
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; ++i) {
if (texture_unit[i].enabled_2d) { if (texture_units[i].enabled_2d) {
if (texture_unit[i].enabled_2d != texture_unit[i].enabled_2d) { if (texture_units[i].enabled_2d != texture_units[i].enabled_2d) {
glActiveTexture(GL_TEXTURE0 + i); glActiveTexture(GL_TEXTURE0 + i);
glEnable(GL_TEXTURE_2D); glEnable(GL_TEXTURE_2D);
} }
if (texture_unit[i].texture_2d != cur_state.texture_unit[i].texture_2d) { if (texture_units[i].texture_2d != cur_state.texture_units[i].texture_2d) {
glActiveTexture(GL_TEXTURE0 + i); glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(GL_TEXTURE_2D, texture_unit[i].texture_2d); glBindTexture(GL_TEXTURE_2D, texture_units[i].texture_2d);
} }
} else if (texture_unit[i].enabled_2d != cur_state.texture_unit[i].enabled_2d) { } else if (texture_units[i].enabled_2d != cur_state.texture_units[i].enabled_2d) {
glActiveTexture(GL_TEXTURE0 + i); glActiveTexture(GL_TEXTURE0 + i);
glDisable(GL_TEXTURE_2D); glDisable(GL_TEXTURE_2D);
} }

View File

@ -45,7 +45,7 @@ public:
struct { struct {
bool enabled_2d; // GL_TEXTURE_2D bool enabled_2d; // GL_TEXTURE_2D
GLuint texture_2d; // GL_TEXTURE_BINDING_2D GLuint texture_2d; // GL_TEXTURE_BINDING_2D
} texture_unit[3]; } texture_units[3];
struct { struct {
GLuint framebuffer; // GL_DRAW_FRAMEBUFFER_BINDING GLuint framebuffer; // GL_DRAW_FRAMEBUFFER_BINDING

View File

@ -143,8 +143,8 @@ void RendererOpenGL::LoadFBToActiveGLTexture(OpenGLState &state, const GPU::Regs
// only allows rows to have a memory alignement of 4. // only allows rows to have a memory alignement of 4.
ASSERT(pixel_stride % 4 == 0); ASSERT(pixel_stride % 4 == 0);
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.handle; state.texture_units[0].texture_2d = texture.handle;
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -168,8 +168,8 @@ void RendererOpenGL::LoadFBToActiveGLTexture(OpenGLState &state, const GPU::Regs
*/ */
void RendererOpenGL::LoadColorToActiveGLTexture(OpenGLState &state, u8 color_r, u8 color_g, u8 color_b, void RendererOpenGL::LoadColorToActiveGLTexture(OpenGLState &state, u8 color_r, u8 color_g, u8 color_b,
const TextureInfo& texture) { const TextureInfo& texture) {
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.handle; state.texture_units[0].texture_2d = texture.handle;
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -185,7 +185,7 @@ void RendererOpenGL::LoadColorToActiveGLTexture(OpenGLState &state, u8 color_r,
void RendererOpenGL::InitOpenGLObjects() { void RendererOpenGL::InitOpenGLObjects() {
glClearColor(Settings::values.bg_red, Settings::values.bg_green, Settings::values.bg_blue, 0.0f); glClearColor(Settings::values.bg_red, Settings::values.bg_green, Settings::values.bg_blue, 0.0f);
state.depth.test_enabled = false; state.depth.test_enabled = false;
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
// Link shaders and get variable locations // Link shaders and get variable locations
program_id = ShaderUtil::LoadShaders(GLShaders::g_vertex_shader, GLShaders::g_fragment_shader); program_id = ShaderUtil::LoadShaders(GLShaders::g_vertex_shader, GLShaders::g_fragment_shader);
@ -218,8 +218,8 @@ void RendererOpenGL::InitOpenGLObjects() {
// Allocation of storage is deferred until the first frame, when we // Allocation of storage is deferred until the first frame, when we
// know the framebuffer size. // know the framebuffer size.
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.handle; state.texture_units[0].texture_2d = texture.handle;
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -281,8 +281,8 @@ void RendererOpenGL::ConfigureFramebufferTexture(OpenGLState &state, TextureInfo
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.handle; state.texture_units[0].texture_2d = texture.handle;
state.Apply(); state.Apply();
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
@ -301,8 +301,8 @@ void RendererOpenGL::DrawSingleScreenRotated(const TextureInfo& texture, float x
ScreenRectVertex(x+w, y+h, 0.f, 1.f), ScreenRectVertex(x+w, y+h, 0.f, 1.f),
}; };
state.texture_unit[0].enabled_2d = true; state.texture_units[0].enabled_2d = true;
state.texture_unit[0].texture_2d = texture.handle; state.texture_units[0].texture_2d = texture.handle;
state.Apply(); state.Apply();
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices.data()); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices.data());