mirror of
https://github.com/citra-emu/citra.git
synced 2024-11-24 00:30:10 +00:00
Add JIT infrastructure from Dolphin
This commit is contained in:
parent
1cb31f4f06
commit
6b6229d4df
@ -23,12 +23,16 @@ set(SRCS
|
|||||||
thread.cpp
|
thread.cpp
|
||||||
timer.cpp
|
timer.cpp
|
||||||
utf8.cpp
|
utf8.cpp
|
||||||
|
x64_abi.cpp
|
||||||
|
x64_emitter.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
set(HEADERS
|
set(HEADERS
|
||||||
|
bit_set.h
|
||||||
bit_field.h
|
bit_field.h
|
||||||
break_points.h
|
break_points.h
|
||||||
chunk_file.h
|
chunk_file.h
|
||||||
|
code_block.h
|
||||||
common.h
|
common.h
|
||||||
common_funcs.h
|
common_funcs.h
|
||||||
common_paths.h
|
common_paths.h
|
||||||
@ -65,6 +69,8 @@ set(HEADERS
|
|||||||
thunk.h
|
thunk.h
|
||||||
timer.h
|
timer.h
|
||||||
utf8.h
|
utf8.h
|
||||||
|
x64_abi.h
|
||||||
|
x64_emitter.h
|
||||||
)
|
)
|
||||||
|
|
||||||
create_directory_groups(${SRCS} ${HEADERS})
|
create_directory_groups(${SRCS} ${HEADERS})
|
||||||
|
167
src/common/bit_set.h
Normal file
167
src/common/bit_set.h
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
// This file is under the public domain.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
#include <initializer_list>
|
||||||
|
#include <type_traits>
|
||||||
|
#include "common_types.h"
|
||||||
|
|
||||||
|
// Helper functions:
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
template <typename T>
|
||||||
|
static inline int CountSetBits(T v)
|
||||||
|
{
|
||||||
|
// from https://graphics.stanford.edu/~seander/bithacks.html
|
||||||
|
// GCC has this built in, but MSVC's intrinsic will only emit the actual
|
||||||
|
// POPCNT instruction, which we're not depending on
|
||||||
|
v = v - ((v >> 1) & (T)~(T)0/3);
|
||||||
|
v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);
|
||||||
|
v = (v + (v >> 4)) & (T)~(T)0/255*15;
|
||||||
|
return (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * 8;
|
||||||
|
}
|
||||||
|
static inline int LeastSignificantSetBit(u32 val)
|
||||||
|
{
|
||||||
|
unsigned long index;
|
||||||
|
_BitScanForward(&index, val);
|
||||||
|
return (int)index;
|
||||||
|
}
|
||||||
|
static inline int LeastSignificantSetBit(u64 val)
|
||||||
|
{
|
||||||
|
unsigned long index;
|
||||||
|
_BitScanForward64(&index, val);
|
||||||
|
return (int)index;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static inline int CountSetBits(u32 val) { return __builtin_popcount(val); }
|
||||||
|
static inline int CountSetBits(u64 val) { return __builtin_popcountll(val); }
|
||||||
|
static inline int LeastSignificantSetBit(u32 val) { return __builtin_ctz(val); }
|
||||||
|
static inline int LeastSignificantSetBit(u64 val) { return __builtin_ctzll(val); }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// namespace avoids conflict with OS X Carbon; don't use BitSet<T> directly
|
||||||
|
namespace BS
|
||||||
|
{
|
||||||
|
|
||||||
|
// Similar to std::bitset, this is a class which encapsulates a bitset, i.e.
|
||||||
|
// using the set bits of an integer to represent a set of integers. Like that
|
||||||
|
// class, it acts like an array of bools:
|
||||||
|
// BitSet32 bs;
|
||||||
|
// bs[1] = true;
|
||||||
|
// but also like the underlying integer ([0] = least significant bit):
|
||||||
|
// BitSet32 bs2 = ...;
|
||||||
|
// bs = (bs ^ bs2) & BitSet32(0xffff);
|
||||||
|
// The following additional functionality is provided:
|
||||||
|
// - Construction using an initializer list.
|
||||||
|
// BitSet bs { 1, 2, 4, 8 };
|
||||||
|
// - Efficiently iterating through the set bits:
|
||||||
|
// for (int i : bs)
|
||||||
|
// [i is the *index* of a set bit]
|
||||||
|
// (This uses the appropriate CPU instruction to find the next set bit in one
|
||||||
|
// operation.)
|
||||||
|
// - Counting set bits using .Count() - see comment on that method.
|
||||||
|
|
||||||
|
// TODO: use constexpr when MSVC gets out of the Dark Ages
|
||||||
|
|
||||||
|
template <typename IntTy>
|
||||||
|
class BitSet
|
||||||
|
{
|
||||||
|
static_assert(!std::is_signed<IntTy>::value, "BitSet should not be used with signed types");
|
||||||
|
public:
|
||||||
|
// A reference to a particular bit, returned from operator[].
|
||||||
|
class Ref
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
Ref(Ref&& other) : m_bs(other.m_bs), m_mask(other.m_mask) {}
|
||||||
|
Ref(BitSet* bs, IntTy mask) : m_bs(bs), m_mask(mask) {}
|
||||||
|
operator bool() const { return (m_bs->m_val & m_mask) != 0; }
|
||||||
|
bool operator=(bool set)
|
||||||
|
{
|
||||||
|
m_bs->m_val = (m_bs->m_val & ~m_mask) | (set ? m_mask : 0);
|
||||||
|
return set;
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
BitSet* m_bs;
|
||||||
|
IntTy m_mask;
|
||||||
|
};
|
||||||
|
|
||||||
|
// A STL-like iterator is required to be able to use range-based for loops.
|
||||||
|
class Iterator
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
Iterator(const Iterator& other) : m_val(other.m_val), m_bit(other.m_bit) {}
|
||||||
|
Iterator(IntTy val, int bit) : m_val(val), m_bit(bit) {}
|
||||||
|
Iterator& operator=(Iterator other) { new (this) Iterator(other); return *this; }
|
||||||
|
int operator*() { return m_bit; }
|
||||||
|
Iterator& operator++()
|
||||||
|
{
|
||||||
|
if (m_val == 0)
|
||||||
|
{
|
||||||
|
m_bit = -1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
int bit = LeastSignificantSetBit(m_val);
|
||||||
|
m_val &= ~(1 << bit);
|
||||||
|
m_bit = bit;
|
||||||
|
}
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
Iterator operator++(int _)
|
||||||
|
{
|
||||||
|
Iterator other(*this);
|
||||||
|
++*this;
|
||||||
|
return other;
|
||||||
|
}
|
||||||
|
bool operator==(Iterator other) const { return m_bit == other.m_bit; }
|
||||||
|
bool operator!=(Iterator other) const { return m_bit != other.m_bit; }
|
||||||
|
private:
|
||||||
|
IntTy m_val;
|
||||||
|
int m_bit;
|
||||||
|
};
|
||||||
|
|
||||||
|
BitSet() : m_val(0) {}
|
||||||
|
explicit BitSet(IntTy val) : m_val(val) {}
|
||||||
|
BitSet(std::initializer_list<int> init)
|
||||||
|
{
|
||||||
|
m_val = 0;
|
||||||
|
for (int bit : init)
|
||||||
|
m_val |= (IntTy)1 << bit;
|
||||||
|
}
|
||||||
|
|
||||||
|
static BitSet AllTrue(size_t count)
|
||||||
|
{
|
||||||
|
return BitSet(count == sizeof(IntTy)*8 ? ~(IntTy)0 : (((IntTy)1 << count) - 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ref operator[](size_t bit) { return Ref(this, (IntTy)1 << bit); }
|
||||||
|
const Ref operator[](size_t bit) const { return (*const_cast<BitSet*>(this))[bit]; }
|
||||||
|
bool operator==(BitSet other) const { return m_val == other.m_val; }
|
||||||
|
bool operator!=(BitSet other) const { return m_val != other.m_val; }
|
||||||
|
BitSet operator|(BitSet other) const { return BitSet(m_val | other.m_val); }
|
||||||
|
BitSet operator&(BitSet other) const { return BitSet(m_val & other.m_val); }
|
||||||
|
BitSet operator^(BitSet other) const { return BitSet(m_val ^ other.m_val); }
|
||||||
|
BitSet operator~() const { return BitSet(~m_val); }
|
||||||
|
BitSet& operator|=(BitSet other) { return *this = *this | other; }
|
||||||
|
BitSet& operator&=(BitSet other) { return *this = *this & other; }
|
||||||
|
BitSet& operator^=(BitSet other) { return *this = *this ^ other; }
|
||||||
|
operator u32() = delete;
|
||||||
|
operator bool() { return m_val != 0; }
|
||||||
|
|
||||||
|
// Warning: Even though on modern CPUs this is a single fast instruction,
|
||||||
|
// Dolphin's official builds do not currently assume POPCNT support on x86,
|
||||||
|
// so slower explicit bit twiddling is generated. Still should generally
|
||||||
|
// be faster than a loop.
|
||||||
|
unsigned int Count() const { return CountSetBits(m_val); }
|
||||||
|
|
||||||
|
Iterator begin() const { Iterator it(m_val, 0); return ++it; }
|
||||||
|
Iterator end() const { return Iterator(m_val, -1); }
|
||||||
|
|
||||||
|
IntTy m_val;
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef BS::BitSet<u32> BitSet32;
|
||||||
|
typedef BS::BitSet<u64> BitSet64;
|
76
src/common/code_block.h
Normal file
76
src/common/code_block.h
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common/common.h"
|
||||||
|
#include "common/memory_util.h"
|
||||||
|
|
||||||
|
// Everything that needs to generate code should inherit from this.
|
||||||
|
// You get memory management for free, plus, you can use all emitter functions without
|
||||||
|
// having to prefix them with gen-> or something similar.
|
||||||
|
// Example implementation:
|
||||||
|
// class JIT : public CodeBlock<ARMXEmitter> {}
|
||||||
|
template<class T> class CodeBlock : public T, NonCopyable
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
// A privately used function to set the executable RAM space to something invalid.
|
||||||
|
// For debugging usefulness it should be used to set the RAM to a host specific breakpoint instruction
|
||||||
|
virtual void PoisonMemory() = 0;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
u8 *region;
|
||||||
|
size_t region_size;
|
||||||
|
|
||||||
|
public:
|
||||||
|
CodeBlock() : region(nullptr), region_size(0) {}
|
||||||
|
virtual ~CodeBlock() { if (region) FreeCodeSpace(); }
|
||||||
|
|
||||||
|
// Call this before you generate any code.
|
||||||
|
void AllocCodeSpace(int size)
|
||||||
|
{
|
||||||
|
region_size = size;
|
||||||
|
region = (u8*)AllocateExecutableMemory(region_size);
|
||||||
|
T::SetCodePtr(region);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Always clear code space with breakpoints, so that if someone accidentally executes
|
||||||
|
// uninitialized, it just breaks into the debugger.
|
||||||
|
void ClearCodeSpace()
|
||||||
|
{
|
||||||
|
PoisonMemory();
|
||||||
|
ResetCodePtr();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
|
||||||
|
void FreeCodeSpace()
|
||||||
|
{
|
||||||
|
FreeMemoryPages(region, region_size);
|
||||||
|
region = nullptr;
|
||||||
|
region_size = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool IsInSpace(u8 *ptr)
|
||||||
|
{
|
||||||
|
return (ptr >= region) && (ptr < (region + region_size));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cannot currently be undone. Will write protect the entire code region.
|
||||||
|
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
|
||||||
|
void WriteProtect()
|
||||||
|
{
|
||||||
|
WriteProtectMemory(region, region_size, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ResetCodePtr()
|
||||||
|
{
|
||||||
|
T::SetCodePtr(region);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t GetSpaceLeft() const
|
||||||
|
{
|
||||||
|
return region_size - (T::GetCodePtr() - region);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
224
src/common/x64_abi.cpp
Normal file
224
src/common/x64_abi.cpp
Normal file
@ -0,0 +1,224 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project
|
||||||
|
// Licensed under GPLv2
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
#include "common/x64_abi.h"
|
||||||
|
#include "common/x64_emitter.h"
|
||||||
|
|
||||||
|
using namespace Gen;
|
||||||
|
|
||||||
|
// Shared code between Win64 and Unix64
|
||||||
|
|
||||||
|
void XEmitter::ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp)
|
||||||
|
{
|
||||||
|
size_t shadow = 0;
|
||||||
|
#if defined(_WIN32)
|
||||||
|
shadow = 0x20;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int count = (mask & ABI_ALL_GPRS).Count();
|
||||||
|
rsp_alignment -= count * 8;
|
||||||
|
size_t subtraction = 0;
|
||||||
|
int fpr_count = (mask & ABI_ALL_FPRS).Count();
|
||||||
|
if (fpr_count)
|
||||||
|
{
|
||||||
|
// If we have any XMMs to save, we must align the stack here.
|
||||||
|
subtraction = rsp_alignment & 0xf;
|
||||||
|
}
|
||||||
|
subtraction += 16 * fpr_count;
|
||||||
|
size_t xmm_base_subtraction = subtraction;
|
||||||
|
subtraction += needed_frame_size;
|
||||||
|
subtraction += shadow;
|
||||||
|
// Final alignment.
|
||||||
|
rsp_alignment -= subtraction;
|
||||||
|
subtraction += rsp_alignment & 0xf;
|
||||||
|
|
||||||
|
*shadowp = shadow;
|
||||||
|
*subtractionp = subtraction;
|
||||||
|
*xmm_offsetp = subtraction - xmm_base_subtraction;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t XEmitter::ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size)
|
||||||
|
{
|
||||||
|
size_t shadow, subtraction, xmm_offset;
|
||||||
|
ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, &xmm_offset);
|
||||||
|
|
||||||
|
for (int r : mask & ABI_ALL_GPRS)
|
||||||
|
PUSH((X64Reg) r);
|
||||||
|
|
||||||
|
if (subtraction)
|
||||||
|
SUB(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
|
||||||
|
|
||||||
|
for (int x : mask & ABI_ALL_FPRS)
|
||||||
|
{
|
||||||
|
MOVAPD(MDisp(RSP, (int)xmm_offset), (X64Reg) (x - 16));
|
||||||
|
xmm_offset += 16;
|
||||||
|
}
|
||||||
|
|
||||||
|
return shadow;
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size)
|
||||||
|
{
|
||||||
|
size_t shadow, subtraction, xmm_offset;
|
||||||
|
ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, &xmm_offset);
|
||||||
|
|
||||||
|
for (int x : mask & ABI_ALL_FPRS)
|
||||||
|
{
|
||||||
|
MOVAPD((X64Reg) (x - 16), MDisp(RSP, (int)xmm_offset));
|
||||||
|
xmm_offset += 16;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (subtraction)
|
||||||
|
ADD(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
|
||||||
|
|
||||||
|
for (int r = 15; r >= 0; r--)
|
||||||
|
{
|
||||||
|
if (mask[r])
|
||||||
|
POP((X64Reg) r);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Common functions
|
||||||
|
void XEmitter::ABI_CallFunction(const void *func)
|
||||||
|
{
|
||||||
|
u64 distance = u64(func) - (u64(code) + 5);
|
||||||
|
if (distance >= 0x0000000080000000ULL &&
|
||||||
|
distance < 0xFFFFFFFF80000000ULL)
|
||||||
|
{
|
||||||
|
// Far call
|
||||||
|
MOV(64, R(RAX), Imm64((u64)func));
|
||||||
|
CALLptr(R(RAX));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
CALL(func);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCP(const void *func, u32 param1, void *param2)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(64, R(ABI_PARAM2), Imm64((u64)param2));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(64, R(ABI_PARAM3), Imm64((u64)param3));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4)
|
||||||
|
{
|
||||||
|
MOV(32, R(ABI_PARAM1), Imm32(param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
MOV(64, R(ABI_PARAM4), Imm64((u64)param4));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPC(const void *func, void *param1, u32 param2)
|
||||||
|
{
|
||||||
|
MOV(64, R(ABI_PARAM1), Imm64((u64)param1));
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3)
|
||||||
|
{
|
||||||
|
MOV(64, R(ABI_PARAM1), Imm64((u64)param1));
|
||||||
|
MOV(64, R(ABI_PARAM2), Imm64((u64)param2));
|
||||||
|
MOV(32, R(ABI_PARAM3), Imm32(param3));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass a register as a parameter.
|
||||||
|
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1)
|
||||||
|
{
|
||||||
|
if (reg1 != ABI_PARAM1)
|
||||||
|
MOV(32, R(ABI_PARAM1), R(reg1));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pass two registers as parameters.
|
||||||
|
void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2)
|
||||||
|
{
|
||||||
|
MOVTwo(64, ABI_PARAM1, reg1, ABI_PARAM2, reg2);
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::MOVTwo(int bits, Gen::X64Reg dst1, Gen::X64Reg src1, Gen::X64Reg dst2, Gen::X64Reg src2)
|
||||||
|
{
|
||||||
|
if (dst1 == src2 && dst2 == src1)
|
||||||
|
{
|
||||||
|
XCHG(bits, R(src1), R(src2));
|
||||||
|
}
|
||||||
|
else if (src2 != dst1)
|
||||||
|
{
|
||||||
|
if (dst1 != src1)
|
||||||
|
MOV(bits, R(dst1), R(src1));
|
||||||
|
if (dst2 != src2)
|
||||||
|
MOV(bits, R(dst2), R(src2));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (dst2 != src2)
|
||||||
|
MOV(bits, R(dst2), R(src2));
|
||||||
|
if (dst1 != src1)
|
||||||
|
MOV(bits, R(dst1), R(src1));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionAC(int bits, const void *func, const Gen::OpArg &arg1, u32 param2)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(bits, R(ABI_PARAM1), arg1);
|
||||||
|
MOV(32, R(ABI_PARAM2), Imm32(param2));
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
||||||
|
void XEmitter::ABI_CallFunctionA(int bits, const void *func, const Gen::OpArg &arg1)
|
||||||
|
{
|
||||||
|
if (!arg1.IsSimpleReg(ABI_PARAM1))
|
||||||
|
MOV(bits, R(ABI_PARAM1), arg1);
|
||||||
|
ABI_CallFunction(func);
|
||||||
|
}
|
||||||
|
|
60
src/common/x64_abi.h
Normal file
60
src/common/x64_abi.h
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project
|
||||||
|
// Licensed under GPLv2
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "common/bit_set.h"
|
||||||
|
#include "common/x64_emitter.h"
|
||||||
|
|
||||||
|
// x64 ABI:s, and helpers to help follow them when JIT-ing code.
|
||||||
|
// All convensions return values in EAX (+ possibly EDX).
|
||||||
|
|
||||||
|
// Windows 64-bit
|
||||||
|
// * 4-reg "fastcall" variant, very new-skool stack handling
|
||||||
|
// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
|
||||||
|
// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
|
||||||
|
// Scratch: RAX RCX RDX R8 R9 R10 R11
|
||||||
|
// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15
|
||||||
|
// Parameters: RCX RDX R8 R9, further MOV-ed
|
||||||
|
|
||||||
|
// Linux 64-bit
|
||||||
|
// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
|
||||||
|
// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11
|
||||||
|
// Callee-save: RBX RBP R12 R13 R14 R15
|
||||||
|
// Parameters: RDI RSI RDX RCX R8 R9
|
||||||
|
|
||||||
|
#define ABI_ALL_FPRS BitSet32(0xffff0000)
|
||||||
|
#define ABI_ALL_GPRS BitSet32(0x0000ffff)
|
||||||
|
|
||||||
|
#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
|
||||||
|
|
||||||
|
#define ABI_PARAM1 RCX
|
||||||
|
#define ABI_PARAM2 RDX
|
||||||
|
#define ABI_PARAM3 R8
|
||||||
|
#define ABI_PARAM4 R9
|
||||||
|
|
||||||
|
// xmm0-xmm15 use the upper 16 bits in the functions that push/pop registers.
|
||||||
|
#define ABI_ALL_CALLER_SAVED \
|
||||||
|
(BitSet32 { RAX, RCX, RDX, R8, R9, R10, R11, \
|
||||||
|
XMM0+16, XMM1+16, XMM2+16, XMM3+16, XMM4+16, XMM5+16 })
|
||||||
|
#else //64-bit Unix / OS X
|
||||||
|
|
||||||
|
#define ABI_PARAM1 RDI
|
||||||
|
#define ABI_PARAM2 RSI
|
||||||
|
#define ABI_PARAM3 RDX
|
||||||
|
#define ABI_PARAM4 RCX
|
||||||
|
#define ABI_PARAM5 R8
|
||||||
|
#define ABI_PARAM6 R9
|
||||||
|
|
||||||
|
// FIXME: avoid pushing all 16 XMM registers when possible? most functions we call probably
|
||||||
|
// don't actually clobber them.
|
||||||
|
#define ABI_ALL_CALLER_SAVED \
|
||||||
|
(BitSet32 { RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11 } | \
|
||||||
|
ABI_ALL_FPRS)
|
||||||
|
#endif // WIN32
|
||||||
|
|
||||||
|
#define ABI_ALL_CALLEE_SAVED (~ABI_ALL_CALLER_SAVED)
|
||||||
|
|
||||||
|
#define ABI_RETURN RAX
|
||||||
|
|
2039
src/common/x64_emitter.cpp
Normal file
2039
src/common/x64_emitter.cpp
Normal file
File diff suppressed because it is too large
Load Diff
956
src/common/x64_emitter.h
Normal file
956
src/common/x64_emitter.h
Normal file
@ -0,0 +1,956 @@
|
|||||||
|
// Copyright 2013 Dolphin Emulator Project
|
||||||
|
// Licensed under GPLv2
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
#include <cstring>
|
||||||
|
#include <functional>
|
||||||
|
|
||||||
|
#include "Common/bit_set.h"
|
||||||
|
#include "Common/code_block.h"
|
||||||
|
#include "Common/common_types.h"
|
||||||
|
|
||||||
|
namespace Gen
|
||||||
|
{
|
||||||
|
|
||||||
|
enum X64Reg
|
||||||
|
{
|
||||||
|
EAX = 0, EBX = 3, ECX = 1, EDX = 2,
|
||||||
|
ESI = 6, EDI = 7, EBP = 5, ESP = 4,
|
||||||
|
|
||||||
|
RAX = 0, RBX = 3, RCX = 1, RDX = 2,
|
||||||
|
RSI = 6, RDI = 7, RBP = 5, RSP = 4,
|
||||||
|
R8 = 8, R9 = 9, R10 = 10,R11 = 11,
|
||||||
|
R12 = 12,R13 = 13,R14 = 14,R15 = 15,
|
||||||
|
|
||||||
|
AL = 0, BL = 3, CL = 1, DL = 2,
|
||||||
|
SIL = 6, DIL = 7, BPL = 5, SPL = 4,
|
||||||
|
AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
|
||||||
|
|
||||||
|
AX = 0, BX = 3, CX = 1, DX = 2,
|
||||||
|
SI = 6, DI = 7, BP = 5, SP = 4,
|
||||||
|
|
||||||
|
XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
||||||
|
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
|
||||||
|
|
||||||
|
YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
|
||||||
|
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
|
||||||
|
|
||||||
|
INVALID_REG = 0xFFFFFFFF
|
||||||
|
};
|
||||||
|
|
||||||
|
enum CCFlags
|
||||||
|
{
|
||||||
|
CC_O = 0,
|
||||||
|
CC_NO = 1,
|
||||||
|
CC_B = 2, CC_C = 2, CC_NAE = 2,
|
||||||
|
CC_NB = 3, CC_NC = 3, CC_AE = 3,
|
||||||
|
CC_Z = 4, CC_E = 4,
|
||||||
|
CC_NZ = 5, CC_NE = 5,
|
||||||
|
CC_BE = 6, CC_NA = 6,
|
||||||
|
CC_NBE = 7, CC_A = 7,
|
||||||
|
CC_S = 8,
|
||||||
|
CC_NS = 9,
|
||||||
|
CC_P = 0xA, CC_PE = 0xA,
|
||||||
|
CC_NP = 0xB, CC_PO = 0xB,
|
||||||
|
CC_L = 0xC, CC_NGE = 0xC,
|
||||||
|
CC_NL = 0xD, CC_GE = 0xD,
|
||||||
|
CC_LE = 0xE, CC_NG = 0xE,
|
||||||
|
CC_NLE = 0xF, CC_G = 0xF
|
||||||
|
};
|
||||||
|
|
||||||
|
enum
|
||||||
|
{
|
||||||
|
NUMGPRs = 16,
|
||||||
|
NUMXMMs = 16,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum
|
||||||
|
{
|
||||||
|
SCALE_NONE = 0,
|
||||||
|
SCALE_1 = 1,
|
||||||
|
SCALE_2 = 2,
|
||||||
|
SCALE_4 = 4,
|
||||||
|
SCALE_8 = 8,
|
||||||
|
SCALE_ATREG = 16,
|
||||||
|
//SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
|
||||||
|
SCALE_NOBASE_2 = 34,
|
||||||
|
SCALE_NOBASE_4 = 36,
|
||||||
|
SCALE_NOBASE_8 = 40,
|
||||||
|
SCALE_RIP = 0xFF,
|
||||||
|
SCALE_IMM8 = 0xF0,
|
||||||
|
SCALE_IMM16 = 0xF1,
|
||||||
|
SCALE_IMM32 = 0xF2,
|
||||||
|
SCALE_IMM64 = 0xF3,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum NormalOp {
|
||||||
|
nrmADD,
|
||||||
|
nrmADC,
|
||||||
|
nrmSUB,
|
||||||
|
nrmSBB,
|
||||||
|
nrmAND,
|
||||||
|
nrmOR ,
|
||||||
|
nrmXOR,
|
||||||
|
nrmMOV,
|
||||||
|
nrmTEST,
|
||||||
|
nrmCMP,
|
||||||
|
nrmXCHG,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum {
|
||||||
|
CMP_EQ = 0,
|
||||||
|
CMP_LT = 1,
|
||||||
|
CMP_LE = 2,
|
||||||
|
CMP_UNORD = 3,
|
||||||
|
CMP_NEQ = 4,
|
||||||
|
CMP_NLT = 5,
|
||||||
|
CMP_NLE = 6,
|
||||||
|
CMP_ORD = 7,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum FloatOp {
|
||||||
|
floatLD = 0,
|
||||||
|
floatST = 2,
|
||||||
|
floatSTP = 3,
|
||||||
|
floatLD80 = 5,
|
||||||
|
floatSTP80 = 7,
|
||||||
|
|
||||||
|
floatINVALID = -1,
|
||||||
|
};
|
||||||
|
|
||||||
|
class XEmitter;
|
||||||
|
|
||||||
|
// RIP addressing does not benefit from micro op fusion on Core arch
|
||||||
|
struct OpArg
|
||||||
|
{
|
||||||
|
OpArg() {} // dummy op arg, used for storage
|
||||||
|
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
|
||||||
|
{
|
||||||
|
operandReg = 0;
|
||||||
|
scale = (u8)_scale;
|
||||||
|
offsetOrBaseReg = (u16)rmReg;
|
||||||
|
indexReg = (u16)scaledReg;
|
||||||
|
//if scale == 0 never mind offsetting
|
||||||
|
offset = _offset;
|
||||||
|
}
|
||||||
|
bool operator==(OpArg b)
|
||||||
|
{
|
||||||
|
return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
|
||||||
|
indexReg == b.indexReg && offset == b.offset;
|
||||||
|
}
|
||||||
|
void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
|
||||||
|
void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
|
||||||
|
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
|
||||||
|
void WriteFloatModRM(XEmitter *emit, FloatOp op);
|
||||||
|
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
|
||||||
|
// This one is public - must be written to
|
||||||
|
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
|
||||||
|
u16 operandReg;
|
||||||
|
|
||||||
|
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
|
||||||
|
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
|
||||||
|
bool IsSimpleReg() const {return scale == SCALE_NONE;}
|
||||||
|
bool IsSimpleReg(X64Reg reg) const
|
||||||
|
{
|
||||||
|
if (!IsSimpleReg())
|
||||||
|
return false;
|
||||||
|
return GetSimpleReg() == reg;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CanDoOpWith(const OpArg &other) const
|
||||||
|
{
|
||||||
|
if (IsSimpleReg()) return true;
|
||||||
|
if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int GetImmBits() const
|
||||||
|
{
|
||||||
|
switch (scale)
|
||||||
|
{
|
||||||
|
case SCALE_IMM8: return 8;
|
||||||
|
case SCALE_IMM16: return 16;
|
||||||
|
case SCALE_IMM32: return 32;
|
||||||
|
case SCALE_IMM64: return 64;
|
||||||
|
default: return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
X64Reg GetSimpleReg() const
|
||||||
|
{
|
||||||
|
if (scale == SCALE_NONE)
|
||||||
|
return (X64Reg)offsetOrBaseReg;
|
||||||
|
else
|
||||||
|
return INVALID_REG;
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
u8 scale;
|
||||||
|
u16 offsetOrBaseReg;
|
||||||
|
u16 indexReg;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
|
||||||
|
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
|
||||||
|
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
|
||||||
|
|
||||||
|
inline OpArg MDisp(X64Reg value, int offset)
|
||||||
|
{
|
||||||
|
return OpArg((u32)offset, SCALE_ATREG, value);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
|
||||||
|
{
|
||||||
|
return OpArg(offset, scale, base, scaled);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline OpArg MScaled(X64Reg scaled, int scale, int offset)
|
||||||
|
{
|
||||||
|
if (scale == SCALE_1)
|
||||||
|
return OpArg(offset, SCALE_ATREG, scaled);
|
||||||
|
else
|
||||||
|
return OpArg(offset, scale | 0x20, RAX, scaled);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline OpArg MRegSum(X64Reg base, X64Reg offset)
|
||||||
|
{
|
||||||
|
return MComplex(base, offset, 1, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
|
||||||
|
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
|
||||||
|
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
|
||||||
|
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
|
||||||
|
#ifdef _ARCH_64
|
||||||
|
inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
|
||||||
|
#else
|
||||||
|
inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
inline u32 PtrOffset(const void* ptr, const void* base)
|
||||||
|
{
|
||||||
|
#ifdef _ARCH_64
|
||||||
|
s64 distance = (s64)ptr-(s64)base;
|
||||||
|
if (distance >= 0x80000000LL ||
|
||||||
|
distance < -0x80000000LL)
|
||||||
|
{
|
||||||
|
_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return (u32)distance;
|
||||||
|
#else
|
||||||
|
return (u32)ptr-(u32)base;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
//usage: int a[]; ARRAY_OFFSET(a,10)
|
||||||
|
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
|
||||||
|
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
|
||||||
|
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
|
||||||
|
|
||||||
|
struct FixupBranch
|
||||||
|
{
|
||||||
|
u8 *ptr;
|
||||||
|
int type; //0 = 8bit 1 = 32bit
|
||||||
|
};
|
||||||
|
|
||||||
|
enum SSECompare
|
||||||
|
{
|
||||||
|
EQ = 0,
|
||||||
|
LT,
|
||||||
|
LE,
|
||||||
|
UNORD,
|
||||||
|
NEQ,
|
||||||
|
NLT,
|
||||||
|
NLE,
|
||||||
|
ORD,
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef const u8* JumpTarget;
|
||||||
|
|
||||||
|
class XEmitter
|
||||||
|
{
|
||||||
|
friend struct OpArg; // for Write8 etc
|
||||||
|
private:
|
||||||
|
u8 *code;
|
||||||
|
bool flags_locked;
|
||||||
|
|
||||||
|
void CheckFlags();
|
||||||
|
|
||||||
|
void Rex(int w, int r, int x, int b);
|
||||||
|
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
|
||||||
|
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
|
||||||
|
void WriteMulDivType(int bits, OpArg src, int ext);
|
||||||
|
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
|
||||||
|
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
|
||||||
|
void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
|
||||||
|
void WriteMXCSR(OpArg arg, int ext);
|
||||||
|
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int W = 0, int extrabytes = 0);
|
||||||
|
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int W = 0, int extrabytes = 0);
|
||||||
|
void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
||||||
|
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
|
||||||
|
void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
|
||||||
|
|
||||||
|
void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
inline void Write8(u8 value) {*code++ = value;}
|
||||||
|
inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
|
||||||
|
inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
|
||||||
|
inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
|
||||||
|
|
||||||
|
public:
|
||||||
|
XEmitter() { code = nullptr; flags_locked = false; }
|
||||||
|
XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
|
||||||
|
virtual ~XEmitter() {}
|
||||||
|
|
||||||
|
void WriteModRM(int mod, int rm, int reg);
|
||||||
|
void WriteSIB(int scale, int index, int base);
|
||||||
|
|
||||||
|
void SetCodePtr(u8 *ptr);
|
||||||
|
void ReserveCodeSpace(int bytes);
|
||||||
|
const u8 *AlignCode4();
|
||||||
|
const u8 *AlignCode16();
|
||||||
|
const u8 *AlignCodePage();
|
||||||
|
const u8 *GetCodePtr() const;
|
||||||
|
u8 *GetWritableCodePtr();
|
||||||
|
|
||||||
|
void LockFlags() { flags_locked = true; }
|
||||||
|
void UnlockFlags() { flags_locked = false; }
|
||||||
|
|
||||||
|
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
|
||||||
|
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
|
||||||
|
// INC and DEC are slow on Intel Core, but not on AMD. They create a
|
||||||
|
// false flag dependency because they only update a subset of the flags.
|
||||||
|
// XCHG is SLOW and should be avoided.
|
||||||
|
|
||||||
|
// Debug breakpoint
|
||||||
|
void INT3();
|
||||||
|
|
||||||
|
// Do nothing
|
||||||
|
void NOP(size_t count = 1);
|
||||||
|
|
||||||
|
// Save energy in wait-loops on P4 only. Probably not too useful.
|
||||||
|
void PAUSE();
|
||||||
|
|
||||||
|
// Flag control
|
||||||
|
void STC();
|
||||||
|
void CLC();
|
||||||
|
void CMC();
|
||||||
|
|
||||||
|
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
|
||||||
|
void LAHF(); // 3 cycle vector path
|
||||||
|
void SAHF(); // direct path fast
|
||||||
|
|
||||||
|
|
||||||
|
// Stack control
|
||||||
|
void PUSH(X64Reg reg);
|
||||||
|
void POP(X64Reg reg);
|
||||||
|
void PUSH(int bits, const OpArg ®);
|
||||||
|
void POP(int bits, const OpArg ®);
|
||||||
|
void PUSHF();
|
||||||
|
void POPF();
|
||||||
|
|
||||||
|
// Flow control
|
||||||
|
void RET();
|
||||||
|
void RET_FAST();
|
||||||
|
void UD2();
|
||||||
|
FixupBranch J(bool force5bytes = false);
|
||||||
|
|
||||||
|
void JMP(const u8 * addr, bool force5Bytes = false);
|
||||||
|
void JMPptr(const OpArg &arg);
|
||||||
|
void JMPself(); //infinite loop!
|
||||||
|
#ifdef CALL
|
||||||
|
#undef CALL
|
||||||
|
#endif
|
||||||
|
void CALL(const void *fnptr);
|
||||||
|
void CALLptr(OpArg arg);
|
||||||
|
|
||||||
|
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
|
||||||
|
//void J_CC(CCFlags conditionCode, JumpTarget target);
|
||||||
|
void J_CC(CCFlags conditionCode, const u8* addr);
|
||||||
|
|
||||||
|
void SetJumpTarget(const FixupBranch &branch);
|
||||||
|
|
||||||
|
void SETcc(CCFlags flag, OpArg dest);
|
||||||
|
// Note: CMOV brings small if any benefit on current CPUs.
|
||||||
|
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
|
||||||
|
|
||||||
|
// Fences
|
||||||
|
void LFENCE();
|
||||||
|
void MFENCE();
|
||||||
|
void SFENCE();
|
||||||
|
|
||||||
|
// Bit scan
|
||||||
|
void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
|
||||||
|
void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
|
||||||
|
|
||||||
|
// Cache control
|
||||||
|
enum PrefetchLevel
|
||||||
|
{
|
||||||
|
PF_NTA, //Non-temporal (data used once and only once)
|
||||||
|
PF_T0, //All cache levels
|
||||||
|
PF_T1, //Levels 2+ (aliased to T0 on AMD)
|
||||||
|
PF_T2, //Levels 3+ (aliased to T0 on AMD)
|
||||||
|
};
|
||||||
|
void PREFETCH(PrefetchLevel level, OpArg arg);
|
||||||
|
void MOVNTI(int bits, OpArg dest, X64Reg src);
|
||||||
|
void MOVNTDQ(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVNTPS(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVNTPD(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
// Multiplication / division
|
||||||
|
void MUL(int bits, OpArg src); //UNSIGNED
|
||||||
|
void IMUL(int bits, OpArg src); //SIGNED
|
||||||
|
void IMUL(int bits, X64Reg regOp, OpArg src);
|
||||||
|
void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
|
||||||
|
void DIV(int bits, OpArg src);
|
||||||
|
void IDIV(int bits, OpArg src);
|
||||||
|
|
||||||
|
// Shift
|
||||||
|
void ROL(int bits, OpArg dest, OpArg shift);
|
||||||
|
void ROR(int bits, OpArg dest, OpArg shift);
|
||||||
|
void RCL(int bits, OpArg dest, OpArg shift);
|
||||||
|
void RCR(int bits, OpArg dest, OpArg shift);
|
||||||
|
void SHL(int bits, OpArg dest, OpArg shift);
|
||||||
|
void SHR(int bits, OpArg dest, OpArg shift);
|
||||||
|
void SAR(int bits, OpArg dest, OpArg shift);
|
||||||
|
|
||||||
|
// Bit Test
|
||||||
|
void BT(int bits, OpArg dest, OpArg index);
|
||||||
|
void BTS(int bits, OpArg dest, OpArg index);
|
||||||
|
void BTR(int bits, OpArg dest, OpArg index);
|
||||||
|
void BTC(int bits, OpArg dest, OpArg index);
|
||||||
|
|
||||||
|
// Double-Precision Shift
|
||||||
|
void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
|
||||||
|
void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
|
||||||
|
|
||||||
|
// Extend EAX into EDX in various ways
|
||||||
|
void CWD(int bits = 16);
|
||||||
|
inline void CDQ() {CWD(32);}
|
||||||
|
inline void CQO() {CWD(64);}
|
||||||
|
void CBW(int bits = 8);
|
||||||
|
inline void CWDE() {CBW(16);}
|
||||||
|
inline void CDQE() {CBW(32);}
|
||||||
|
|
||||||
|
// Load effective address
|
||||||
|
void LEA(int bits, X64Reg dest, OpArg src);
|
||||||
|
|
||||||
|
// Integer arithmetic
|
||||||
|
void NEG (int bits, OpArg src);
|
||||||
|
void ADD (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void ADC (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void SUB (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void SBB (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void AND (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void CMP (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
|
||||||
|
// Bit operations
|
||||||
|
void NOT (int bits, OpArg src);
|
||||||
|
void OR (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void XOR (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void MOV (int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void TEST(int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
|
||||||
|
// Are these useful at all? Consider removing.
|
||||||
|
void XCHG(int bits, const OpArg &a1, const OpArg &a2);
|
||||||
|
void XCHG_AHAL();
|
||||||
|
|
||||||
|
// Byte swapping (32 and 64-bit only).
|
||||||
|
void BSWAP(int bits, X64Reg reg);
|
||||||
|
|
||||||
|
// Sign/zero extension
|
||||||
|
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
|
||||||
|
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
|
||||||
|
|
||||||
|
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
|
||||||
|
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
|
||||||
|
|
||||||
|
// Available only on AMD >= Phenom or Intel >= Haswell
|
||||||
|
void LZCNT(int bits, X64Reg dest, OpArg src);
|
||||||
|
// Note: this one is actually part of BMI1
|
||||||
|
void TZCNT(int bits, X64Reg dest, OpArg src);
|
||||||
|
|
||||||
|
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
|
||||||
|
void STMXCSR(OpArg memloc);
|
||||||
|
void LDMXCSR(OpArg memloc);
|
||||||
|
|
||||||
|
// Prefixes
|
||||||
|
void LOCK();
|
||||||
|
void REP();
|
||||||
|
void REPNE();
|
||||||
|
void FSOverride();
|
||||||
|
void GSOverride();
|
||||||
|
|
||||||
|
// x87
|
||||||
|
enum x87StatusWordBits {
|
||||||
|
x87_InvalidOperation = 0x1,
|
||||||
|
x87_DenormalizedOperand = 0x2,
|
||||||
|
x87_DivisionByZero = 0x4,
|
||||||
|
x87_Overflow = 0x8,
|
||||||
|
x87_Underflow = 0x10,
|
||||||
|
x87_Precision = 0x20,
|
||||||
|
x87_StackFault = 0x40,
|
||||||
|
x87_ErrorSummary = 0x80,
|
||||||
|
x87_C0 = 0x100,
|
||||||
|
x87_C1 = 0x200,
|
||||||
|
x87_C2 = 0x400,
|
||||||
|
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
|
||||||
|
x87_C3 = 0x4000,
|
||||||
|
x87_FPUBusy = 0x8000,
|
||||||
|
};
|
||||||
|
|
||||||
|
void FLD(int bits, OpArg src);
|
||||||
|
void FST(int bits, OpArg dest);
|
||||||
|
void FSTP(int bits, OpArg dest);
|
||||||
|
void FNSTSW_AX();
|
||||||
|
void FWAIT();
|
||||||
|
|
||||||
|
// SSE/SSE2: Floating point arithmetic
|
||||||
|
void ADDSS(X64Reg regOp, OpArg arg);
|
||||||
|
void ADDSD(X64Reg regOp, OpArg arg);
|
||||||
|
void SUBSS(X64Reg regOp, OpArg arg);
|
||||||
|
void SUBSD(X64Reg regOp, OpArg arg);
|
||||||
|
void MULSS(X64Reg regOp, OpArg arg);
|
||||||
|
void MULSD(X64Reg regOp, OpArg arg);
|
||||||
|
void DIVSS(X64Reg regOp, OpArg arg);
|
||||||
|
void DIVSD(X64Reg regOp, OpArg arg);
|
||||||
|
void MINSS(X64Reg regOp, OpArg arg);
|
||||||
|
void MINSD(X64Reg regOp, OpArg arg);
|
||||||
|
void MAXSS(X64Reg regOp, OpArg arg);
|
||||||
|
void MAXSD(X64Reg regOp, OpArg arg);
|
||||||
|
void SQRTSS(X64Reg regOp, OpArg arg);
|
||||||
|
void SQRTSD(X64Reg regOp, OpArg arg);
|
||||||
|
void RSQRTSS(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
// SSE/SSE2: Floating point bitwise (yes)
|
||||||
|
void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
|
||||||
|
void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
|
||||||
|
|
||||||
|
inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
|
||||||
|
inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
|
||||||
|
inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
|
||||||
|
inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
|
||||||
|
inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
|
||||||
|
inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
|
||||||
|
inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
|
||||||
|
|
||||||
|
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
|
||||||
|
void ADDPS(X64Reg regOp, OpArg arg);
|
||||||
|
void ADDPD(X64Reg regOp, OpArg arg);
|
||||||
|
void SUBPS(X64Reg regOp, OpArg arg);
|
||||||
|
void SUBPD(X64Reg regOp, OpArg arg);
|
||||||
|
void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
|
||||||
|
void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
|
||||||
|
void MULPS(X64Reg regOp, OpArg arg);
|
||||||
|
void MULPD(X64Reg regOp, OpArg arg);
|
||||||
|
void DIVPS(X64Reg regOp, OpArg arg);
|
||||||
|
void DIVPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MINPS(X64Reg regOp, OpArg arg);
|
||||||
|
void MINPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MAXPS(X64Reg regOp, OpArg arg);
|
||||||
|
void MAXPD(X64Reg regOp, OpArg arg);
|
||||||
|
void SQRTPS(X64Reg regOp, OpArg arg);
|
||||||
|
void SQRTPD(X64Reg regOp, OpArg arg);
|
||||||
|
void RSQRTPS(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
|
||||||
|
void ANDPS(X64Reg regOp, OpArg arg);
|
||||||
|
void ANDPD(X64Reg regOp, OpArg arg);
|
||||||
|
void ANDNPS(X64Reg regOp, OpArg arg);
|
||||||
|
void ANDNPD(X64Reg regOp, OpArg arg);
|
||||||
|
void ORPS(X64Reg regOp, OpArg arg);
|
||||||
|
void ORPD(X64Reg regOp, OpArg arg);
|
||||||
|
void XORPS(X64Reg regOp, OpArg arg);
|
||||||
|
void XORPD(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
|
||||||
|
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
|
||||||
|
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
|
||||||
|
|
||||||
|
// SSE/SSE2: Useful alternative to shuffle in some cases.
|
||||||
|
void MOVDDUP(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
void UNPCKLPS(X64Reg dest, OpArg src);
|
||||||
|
void UNPCKHPS(X64Reg dest, OpArg src);
|
||||||
|
void UNPCKLPD(X64Reg dest, OpArg src);
|
||||||
|
void UNPCKHPD(X64Reg dest, OpArg src);
|
||||||
|
|
||||||
|
// SSE/SSE2: Compares.
|
||||||
|
void COMISS(X64Reg regOp, OpArg arg);
|
||||||
|
void COMISD(X64Reg regOp, OpArg arg);
|
||||||
|
void UCOMISS(X64Reg regOp, OpArg arg);
|
||||||
|
void UCOMISD(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
|
||||||
|
void MOVAPS(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVAPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVAPS(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVAPD(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
void MOVUPS(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVUPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVUPS(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVUPD(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
void MOVDQA(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVDQA(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVDQU(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVDQU(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
void MOVSS(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVSD(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVSS(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVSD(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
void MOVLPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVHPD(X64Reg regOp, OpArg arg);
|
||||||
|
void MOVLPD(OpArg arg, X64Reg regOp);
|
||||||
|
void MOVHPD(OpArg arg, X64Reg regOp);
|
||||||
|
|
||||||
|
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
|
||||||
|
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
|
||||||
|
|
||||||
|
void MOVD_xmm(X64Reg dest, const OpArg &arg);
|
||||||
|
void MOVQ_xmm(X64Reg dest, OpArg arg);
|
||||||
|
void MOVD_xmm(const OpArg &arg, X64Reg src);
|
||||||
|
void MOVQ_xmm(OpArg arg, X64Reg src);
|
||||||
|
|
||||||
|
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
|
||||||
|
void MOVMSKPS(X64Reg dest, OpArg arg);
|
||||||
|
void MOVMSKPD(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
|
||||||
|
void MASKMOVDQU(X64Reg dest, X64Reg src);
|
||||||
|
void LDDQU(X64Reg dest, OpArg src);
|
||||||
|
|
||||||
|
// SSE/SSE2: Data type conversions.
|
||||||
|
void CVTPS2PD(X64Reg dest, OpArg src);
|
||||||
|
void CVTPD2PS(X64Reg dest, OpArg src);
|
||||||
|
void CVTSS2SD(X64Reg dest, OpArg src);
|
||||||
|
void CVTSI2SS(X64Reg dest, OpArg src);
|
||||||
|
void CVTSD2SS(X64Reg dest, OpArg src);
|
||||||
|
void CVTSI2SD(X64Reg dest, OpArg src);
|
||||||
|
void CVTDQ2PD(X64Reg regOp, OpArg arg);
|
||||||
|
void CVTPD2DQ(X64Reg regOp, OpArg arg);
|
||||||
|
void CVTDQ2PS(X64Reg regOp, OpArg arg);
|
||||||
|
void CVTPS2DQ(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
void CVTTPS2DQ(X64Reg regOp, OpArg arg);
|
||||||
|
void CVTTPD2DQ(X64Reg regOp, OpArg arg);
|
||||||
|
|
||||||
|
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
|
||||||
|
void CVTSS2SI(X64Reg xregdest, OpArg src);
|
||||||
|
void CVTSD2SI(X64Reg xregdest, OpArg src);
|
||||||
|
void CVTTSS2SI(X64Reg xregdest, OpArg arg);
|
||||||
|
void CVTTSD2SI(X64Reg xregdest, OpArg arg);
|
||||||
|
|
||||||
|
// SSE2: Packed integer instructions
|
||||||
|
void PACKSSDW(X64Reg dest, OpArg arg);
|
||||||
|
void PACKSSWB(X64Reg dest, OpArg arg);
|
||||||
|
void PACKUSDW(X64Reg dest, OpArg arg);
|
||||||
|
void PACKUSWB(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
|
||||||
|
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
|
||||||
|
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
|
||||||
|
|
||||||
|
void PTEST(X64Reg dest, OpArg arg);
|
||||||
|
void PAND(X64Reg dest, OpArg arg);
|
||||||
|
void PANDN(X64Reg dest, OpArg arg);
|
||||||
|
void PXOR(X64Reg dest, OpArg arg);
|
||||||
|
void POR(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PADDB(X64Reg dest, OpArg arg);
|
||||||
|
void PADDW(X64Reg dest, OpArg arg);
|
||||||
|
void PADDD(X64Reg dest, OpArg arg);
|
||||||
|
void PADDQ(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PADDSB(X64Reg dest, OpArg arg);
|
||||||
|
void PADDSW(X64Reg dest, OpArg arg);
|
||||||
|
void PADDUSB(X64Reg dest, OpArg arg);
|
||||||
|
void PADDUSW(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PSUBB(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBW(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBD(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBQ(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PSUBSB(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBSW(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBUSB(X64Reg dest, OpArg arg);
|
||||||
|
void PSUBUSW(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PAVGB(X64Reg dest, OpArg arg);
|
||||||
|
void PAVGW(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PCMPEQB(X64Reg dest, OpArg arg);
|
||||||
|
void PCMPEQW(X64Reg dest, OpArg arg);
|
||||||
|
void PCMPEQD(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PCMPGTB(X64Reg dest, OpArg arg);
|
||||||
|
void PCMPGTW(X64Reg dest, OpArg arg);
|
||||||
|
void PCMPGTD(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
|
||||||
|
void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
|
||||||
|
|
||||||
|
void PMADDWD(X64Reg dest, OpArg arg);
|
||||||
|
void PSADBW(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PMAXSW(X64Reg dest, OpArg arg);
|
||||||
|
void PMAXUB(X64Reg dest, OpArg arg);
|
||||||
|
void PMINSW(X64Reg dest, OpArg arg);
|
||||||
|
void PMINUB(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PMOVMSKB(X64Reg dest, OpArg arg);
|
||||||
|
void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
|
||||||
|
void PSHUFB(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
|
||||||
|
void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
|
||||||
|
|
||||||
|
void PSRLW(X64Reg reg, int shift);
|
||||||
|
void PSRLD(X64Reg reg, int shift);
|
||||||
|
void PSRLQ(X64Reg reg, int shift);
|
||||||
|
void PSRLQ(X64Reg reg, OpArg arg);
|
||||||
|
void PSRLDQ(X64Reg reg, int shift);
|
||||||
|
|
||||||
|
void PSLLW(X64Reg reg, int shift);
|
||||||
|
void PSLLD(X64Reg reg, int shift);
|
||||||
|
void PSLLQ(X64Reg reg, int shift);
|
||||||
|
void PSLLDQ(X64Reg reg, int shift);
|
||||||
|
|
||||||
|
void PSRAW(X64Reg reg, int shift);
|
||||||
|
void PSRAD(X64Reg reg, int shift);
|
||||||
|
|
||||||
|
// SSE4: data type conversions
|
||||||
|
void PMOVSXBW(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVSXBD(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVSXBQ(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVSXWD(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVSXWQ(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVSXDQ(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXBW(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXBD(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXBQ(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXWD(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXWQ(X64Reg dest, OpArg arg);
|
||||||
|
void PMOVZXDQ(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
// SSE4: variable blend instructions (xmm0 implicit argument)
|
||||||
|
void PBLENDVB(X64Reg dest, OpArg arg);
|
||||||
|
void BLENDVPS(X64Reg dest, OpArg arg);
|
||||||
|
void BLENDVPD(X64Reg dest, OpArg arg);
|
||||||
|
|
||||||
|
// AVX
|
||||||
|
void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
|
||||||
|
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
|
||||||
|
void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
|
||||||
|
void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
|
||||||
|
// FMA3
|
||||||
|
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
|
||||||
|
// VEX GPR instructions
|
||||||
|
void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
||||||
|
void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
||||||
|
void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
||||||
|
void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
|
||||||
|
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
||||||
|
void BLSR(int bits, X64Reg regOp, OpArg arg);
|
||||||
|
void BLSMSK(int bits, X64Reg regOp, OpArg arg);
|
||||||
|
void BLSI(int bits, X64Reg regOp, OpArg arg);
|
||||||
|
void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
||||||
|
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
||||||
|
|
||||||
|
void RDTSC();
|
||||||
|
|
||||||
|
// Utility functions
|
||||||
|
// The difference between this and CALL is that this aligns the stack
|
||||||
|
// where appropriate.
|
||||||
|
void ABI_CallFunction(const void *func);
|
||||||
|
|
||||||
|
void ABI_CallFunctionC16(const void *func, u16 param1);
|
||||||
|
void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
|
||||||
|
|
||||||
|
// These only support u32 parameters, but that's enough for a lot of uses.
|
||||||
|
// These will destroy the 1 or 2 first "parameter regs".
|
||||||
|
void ABI_CallFunctionC(const void *func, u32 param1);
|
||||||
|
void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
|
||||||
|
void ABI_CallFunctionCP(const void *func, u32 param1, void *param2);
|
||||||
|
void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
|
||||||
|
void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
|
||||||
|
void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4);
|
||||||
|
void ABI_CallFunctionPC(const void *func, void *param1, u32 param2);
|
||||||
|
void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
|
||||||
|
void ABI_CallFunctionAC(int bits, const void *func, const OpArg &arg1, u32 param2);
|
||||||
|
void ABI_CallFunctionA(int bits, const void *func, const OpArg &arg1);
|
||||||
|
|
||||||
|
// Pass a register as a parameter.
|
||||||
|
void ABI_CallFunctionR(const void *func, X64Reg reg1);
|
||||||
|
void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
|
||||||
|
|
||||||
|
// Helper method for the above, or can be used separately.
|
||||||
|
void MOVTwo(int bits, Gen::X64Reg dst1, Gen::X64Reg src1, Gen::X64Reg dst2, Gen::X64Reg src2);
|
||||||
|
|
||||||
|
// Saves/restores the registers and adjusts the stack to be aligned as
|
||||||
|
// required by the ABI, where the previous alignment was as specified.
|
||||||
|
// Push returns the size of the shadow space, i.e. the offset of the frame.
|
||||||
|
size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size = 0);
|
||||||
|
void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size = 0);
|
||||||
|
|
||||||
|
inline int ABI_GetNumXMMRegs() { return 16; }
|
||||||
|
|
||||||
|
// Strange call wrappers.
|
||||||
|
void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2);
|
||||||
|
void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
|
||||||
|
void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
|
||||||
|
void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
|
||||||
|
|
||||||
|
// Comments from VertexLoader.cpp about these horrors:
|
||||||
|
|
||||||
|
// This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit
|
||||||
|
// address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we
|
||||||
|
// want to grab the function pointers from the import table instead.
|
||||||
|
|
||||||
|
void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2);
|
||||||
|
void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3);
|
||||||
|
void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
|
||||||
|
void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
|
||||||
|
|
||||||
|
#define CallCdeclFunction3_I(a,b,c,d) ___CallCdeclImport3(&__imp_##a,b,c,d)
|
||||||
|
#define CallCdeclFunction4_I(a,b,c,d,e) ___CallCdeclImport4(&__imp_##a,b,c,d,e)
|
||||||
|
#define CallCdeclFunction5_I(a,b,c,d,e,f) ___CallCdeclImport5(&__imp_##a,b,c,d,e,f)
|
||||||
|
#define CallCdeclFunction6_I(a,b,c,d,e,f,g) ___CallCdeclImport6(&__imp_##a,b,c,d,e,f,g)
|
||||||
|
|
||||||
|
#define DECLARE_IMPORT(x) extern "C" void *__imp_##x
|
||||||
|
|
||||||
|
// Utility to generate a call to a std::function object.
|
||||||
|
//
|
||||||
|
// Unfortunately, calling operator() directly is undefined behavior in C++
|
||||||
|
// (this method might be a thunk in the case of multi-inheritance) so we
|
||||||
|
// have to go through a trampoline function.
|
||||||
|
template <typename T, typename... Args>
|
||||||
|
static void CallLambdaTrampoline(const std::function<T(Args...)>* f,
|
||||||
|
Args... args)
|
||||||
|
{
|
||||||
|
(*f)(args...);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename... Args>
|
||||||
|
void ABI_CallLambdaC(const std::function<T(Args...)>* f, u32 p1)
|
||||||
|
{
|
||||||
|
// Double casting is required by VC++ for some reason.
|
||||||
|
auto trampoline = (void(*)())&XEmitter::CallLambdaTrampoline<T, Args...>;
|
||||||
|
ABI_CallFunctionPC((void*)trampoline, const_cast<void*>((const void*)f), p1);
|
||||||
|
}
|
||||||
|
}; // class XEmitter
|
||||||
|
|
||||||
|
class X64CodeBlock : public CodeBlock<XEmitter>
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
void PoisonMemory() override
|
||||||
|
{
|
||||||
|
// x86/64: 0xCC = breakpoint
|
||||||
|
memset(region, 0xCC, region_size);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace
|
Loading…
Reference in New Issue
Block a user