Merge pull request #3281 from jroweboy/texcache-pt2

Texture Cache Rework
This commit is contained in:
Weiyi Wang 2018-03-05 11:57:25 +02:00 committed by GitHub
commit 4befbddc34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 2038 additions and 1107 deletions

View File

@ -89,7 +89,7 @@ void Config::ReadValues() {
Settings::values.use_hw_renderer = sdl2_config->GetBoolean("Renderer", "use_hw_renderer", true);
Settings::values.use_shader_jit = sdl2_config->GetBoolean("Renderer", "use_shader_jit", true);
Settings::values.resolution_factor =
(float)sdl2_config->GetReal("Renderer", "resolution_factor", 1.0);
static_cast<u16>(sdl2_config->GetInteger("Renderer", "resolution_factor", 1));
Settings::values.use_vsync = sdl2_config->GetBoolean("Renderer", "use_vsync", false);
Settings::values.use_frame_limit = sdl2_config->GetBoolean("Renderer", "use_frame_limit", true);
Settings::values.frame_limit =

View File

@ -75,7 +75,8 @@ void Config::ReadValues() {
qt_config->beginGroup("Renderer");
Settings::values.use_hw_renderer = qt_config->value("use_hw_renderer", true).toBool();
Settings::values.use_shader_jit = qt_config->value("use_shader_jit", true).toBool();
Settings::values.resolution_factor = qt_config->value("resolution_factor", 1.0).toFloat();
Settings::values.resolution_factor =
static_cast<u16>(qt_config->value("resolution_factor", 1).toInt());
Settings::values.use_vsync = qt_config->value("use_vsync", false).toBool();
Settings::values.use_frame_limit = qt_config->value("use_frame_limit", true).toBool();
Settings::values.frame_limit = qt_config->value("frame_limit", 100).toInt();
@ -240,7 +241,7 @@ void Config::SaveValues() {
qt_config->beginGroup("Renderer");
qt_config->setValue("use_hw_renderer", Settings::values.use_hw_renderer);
qt_config->setValue("use_shader_jit", Settings::values.use_shader_jit);
qt_config->setValue("resolution_factor", (double)Settings::values.resolution_factor);
qt_config->setValue("resolution_factor", Settings::values.resolution_factor);
qt_config->setValue("use_vsync", Settings::values.use_vsync);
qt_config->setValue("use_frame_limit", Settings::values.use_frame_limit);
qt_config->setValue("frame_limit", Settings::values.frame_limit);

View File

@ -23,81 +23,11 @@ ConfigureGraphics::ConfigureGraphics(QWidget* parent)
ConfigureGraphics::~ConfigureGraphics() {}
enum class Resolution : int {
Auto,
Scale1x,
Scale2x,
Scale3x,
Scale4x,
Scale5x,
Scale6x,
Scale7x,
Scale8x,
Scale9x,
Scale10x,
};
float ToResolutionFactor(Resolution option) {
switch (option) {
case Resolution::Auto:
return 0.f;
case Resolution::Scale1x:
return 1.f;
case Resolution::Scale2x:
return 2.f;
case Resolution::Scale3x:
return 3.f;
case Resolution::Scale4x:
return 4.f;
case Resolution::Scale5x:
return 5.f;
case Resolution::Scale6x:
return 6.f;
case Resolution::Scale7x:
return 7.f;
case Resolution::Scale8x:
return 8.f;
case Resolution::Scale9x:
return 9.f;
case Resolution::Scale10x:
return 10.f;
}
return 0.f;
}
Resolution FromResolutionFactor(float factor) {
if (factor == 0.f) {
return Resolution::Auto;
} else if (factor == 1.f) {
return Resolution::Scale1x;
} else if (factor == 2.f) {
return Resolution::Scale2x;
} else if (factor == 3.f) {
return Resolution::Scale3x;
} else if (factor == 4.f) {
return Resolution::Scale4x;
} else if (factor == 5.f) {
return Resolution::Scale5x;
} else if (factor == 6.f) {
return Resolution::Scale6x;
} else if (factor == 7.f) {
return Resolution::Scale7x;
} else if (factor == 8.f) {
return Resolution::Scale8x;
} else if (factor == 9.f) {
return Resolution::Scale9x;
} else if (factor == 10.f) {
return Resolution::Scale10x;
}
return Resolution::Auto;
}
void ConfigureGraphics::setConfiguration() {
ui->toggle_hw_renderer->setChecked(Settings::values.use_hw_renderer);
ui->resolution_factor_combobox->setEnabled(Settings::values.use_hw_renderer);
ui->toggle_shader_jit->setChecked(Settings::values.use_shader_jit);
ui->resolution_factor_combobox->setCurrentIndex(
static_cast<int>(FromResolutionFactor(Settings::values.resolution_factor)));
ui->resolution_factor_combobox->setCurrentIndex(Settings::values.resolution_factor);
ui->toggle_vsync->setChecked(Settings::values.use_vsync);
ui->toggle_frame_limit->setChecked(Settings::values.use_frame_limit);
ui->frame_limit->setValue(Settings::values.frame_limit);
@ -109,7 +39,7 @@ void ConfigureGraphics::applyConfiguration() {
Settings::values.use_hw_renderer = ui->toggle_hw_renderer->isChecked();
Settings::values.use_shader_jit = ui->toggle_shader_jit->isChecked();
Settings::values.resolution_factor =
ToResolutionFactor(static_cast<Resolution>(ui->resolution_factor_combobox->currentIndex()));
static_cast<u16>(ui->resolution_factor_combobox->currentIndex());
Settings::values.use_vsync = ui->toggle_vsync->isChecked();
Settings::values.use_frame_limit = ui->toggle_frame_limit->isChecked();
Settings::values.frame_limit = ui->frame_limit->value();

View File

@ -29,7 +29,7 @@ struct Rectangle {
T right;
T bottom;
Rectangle() {}
Rectangle() = default;
Rectangle(T left, T top, T right, T bottom)
: left(left), top(top), right(right), bottom(bottom) {}

View File

@ -16,8 +16,8 @@ static const float TOP_SCREEN_ASPECT_RATIO =
static const float BOT_SCREEN_ASPECT_RATIO =
static_cast<float>(Core::kScreenBottomHeight) / Core::kScreenBottomWidth;
float FramebufferLayout::GetScalingRatio() const {
return static_cast<float>(top_screen.GetWidth()) / Core::kScreenTopWidth;
u16 FramebufferLayout::GetScalingRatio() const {
return static_cast<u16>(((top_screen.GetWidth() - 1) / Core::kScreenTopWidth) + 1);
}
// Finds the largest size subrectangle contained in window area that is confined to the aspect ratio

View File

@ -21,7 +21,7 @@ struct FramebufferLayout {
* Returns the ration of pixel size of the top screen, compared to the native size of the 3DS
* screen.
*/
float GetScalingRatio() const;
u16 GetScalingRatio() const;
};
/**

View File

@ -58,7 +58,6 @@ void VMManager::Reset() {
page_table.pointers.fill(nullptr);
page_table.attributes.fill(Memory::PageType::Unmapped);
page_table.cached_res_count.fill(0);
UpdatePageTableForVMA(initial_vma);
}

View File

@ -465,7 +465,7 @@ static void ExecuteCommand(const Command& command, u32 thread_id) {
command.dma_request.size, Memory::FlushMode::Flush);
Memory::RasterizerFlushVirtualRegion(command.dma_request.dest_address,
command.dma_request.size,
Memory::FlushMode::FlushAndInvalidate);
Memory::FlushMode::Invalidate);
// TODO(Subv): These memory accesses should not go through the application's memory mapping.
// They should go through the GSP module's memory mapping.

View File

@ -96,19 +96,10 @@ static void MemoryFill(const Regs::MemoryFillConfig& config) {
u8* start = Memory::GetPhysicalPointer(start_addr);
u8* end = Memory::GetPhysicalPointer(end_addr);
// TODO: Consider always accelerating and returning vector of
// regions that the accelerated fill did not cover to
// reduce/eliminate the fill that the cpu has to do.
// This would also mean that the flush below is not needed.
// Fill should first flush all surfaces that touch but are
// not completely within the fill range.
// Then fill all completely covered surfaces, and return the
// regions that were between surfaces or within the touching
// ones for cpu to manually fill here.
if (VideoCore::g_renderer->Rasterizer()->AccelerateFill(config))
return;
Memory::RasterizerFlushAndInvalidateRegion(config.GetStartAddress(),
Memory::RasterizerInvalidateRegion(config.GetStartAddress(),
config.GetEndAddress() - config.GetStartAddress());
if (config.fill_24bit) {
@ -199,7 +190,7 @@ static void DisplayTransfer(const Regs::DisplayTransferConfig& config) {
u32 output_size = output_width * output_height * GPU::Regs::BytesPerPixel(config.output_format);
Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), input_size);
Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), output_size);
Memory::RasterizerInvalidateRegion(config.GetPhysicalOutputAddress(), output_size);
for (u32 y = 0; y < output_height; ++y) {
for (u32 x = 0; x < output_width; ++x) {
@ -363,8 +354,10 @@ static void TextureCopy(const Regs::DisplayTransferConfig& config) {
size_t contiguous_output_size =
config.texture_copy.size / output_width * (output_width + output_gap);
Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(),
static_cast<u32>(contiguous_output_size));
// Only need to flush output if it has a gap
const auto FlushInvalidate_fn = (output_gap != 0) ? Memory::RasterizerFlushAndInvalidateRegion
: Memory::RasterizerInvalidateRegion;
FlushInvalidate_fn(config.GetPhysicalOutputAddress(), static_cast<u32>(contiguous_output_size));
u32 remaining_input = input_width;
u32 remaining_output = output_width;
@ -570,4 +563,4 @@ void Shutdown() {
LOG_DEBUG(HW_GPU, "shutdown OK");
}
} // namespace
} // namespace GPU

View File

@ -50,7 +50,6 @@ static void MapPages(PageTable& page_table, u32 base, u32 size, u8* memory, Page
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
page_table.cached_res_count[base] = 0;
base += 1;
if (memory != nullptr)
@ -200,7 +199,7 @@ void Write(const VAddr vaddr, const T data) {
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::FlushAndInvalidate);
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
}
@ -208,7 +207,7 @@ void Write(const VAddr vaddr, const T data) {
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
case PageType::RasterizerCachedSpecial: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::FlushAndInvalidate);
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
break;
}
@ -334,7 +333,7 @@ u8* GetPhysicalPointer(PAddr address) {
return target_pointer;
}
void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
if (start == 0) {
return;
}
@ -355,14 +354,10 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
}
VAddr vaddr = *maybe_vaddr;
u8& res_count = current_page_table->cached_res_count[vaddr >> PAGE_BITS];
ASSERT_MSG(count_delta <= UINT8_MAX - res_count,
"Rasterizer resource cache counter overflow!");
ASSERT_MSG(count_delta >= -res_count, "Rasterizer resource cache counter underflow!");
// Switch page type to cached if now cached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
@ -378,13 +373,8 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
default:
UNREACHABLE();
}
}
res_count += count_delta;
} else {
// Switch page type to uncached if now uncached
if (res_count == 0) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
@ -414,23 +404,38 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
}
void RasterizerFlushRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer != nullptr) {
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
}
void RasterizerInvalidateRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->InvalidateRegion(start, size);
}
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer != nullptr) {
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
}
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer != nullptr) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VAddr end = start + size;
auto CheckRegion = [&](VAddr region_start, VAddr region_end) {
@ -450,6 +455,9 @@ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
case FlushMode::Flush:
rasterizer->FlushRegion(physical_start, overlap_size);
break;
case FlushMode::Invalidate:
rasterizer->InvalidateRegion(physical_start, overlap_size);
break;
case FlushMode::FlushAndInvalidate:
rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size);
break;
@ -459,7 +467,6 @@ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END);
CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END);
CheckRegion(VRAM_VADDR, VRAM_VADDR_END);
}
}
u8 Read8(const VAddr addr) {
@ -588,7 +595,7 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
break;
}
@ -596,7 +603,7 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
FlushMode::Invalidate);
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
@ -648,7 +655,7 @@ void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
FlushMode::Invalidate);
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
break;
}
@ -656,7 +663,7 @@ void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::FlushAndInvalidate);
FlushMode::Invalidate);
handler->WriteBlock(current_vaddr, zeros.data(), copy_amount);
break;
}

View File

@ -72,12 +72,6 @@ struct PageTable {
* the corresponding entry in `pointers` MUST be set to null.
*/
std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes;
/**
* Indicates the number of externally cached resources touching a page that should be
* flushed before the memory is accessed
*/
std::array<u8, PAGE_TABLE_NUM_ENTRIES> cached_res_count;
};
/// Physical memory regions as seen from the ARM11
@ -245,16 +239,20 @@ boost::optional<VAddr> PhysicalToVirtualAddress(PAddr addr);
u8* GetPhysicalPointer(PAddr address);
/**
* Adds the supplied value to the rasterizer resource cache counter of each
* page touching the region.
* Mark each page touching the region as cached.
*/
void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta);
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached);
/**
* Flushes any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushRegion(PAddr start, u32 size);
/**
* Invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerInvalidateRegion(PAddr start, u32 size);
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given region.
*/
@ -263,6 +261,8 @@ void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size);
enum class FlushMode {
/// Write back modified surfaces to RAM
Flush,
/// Remove region from the cache
Invalidate,
/// Write back modified surfaces to RAM, and also remove them from the cache
FlushAndInvalidate,
};

View File

@ -95,7 +95,7 @@ struct Values {
// Renderer
bool use_hw_renderer;
bool use_shader_jit;
float resolution_factor;
u16 resolution_factor;
bool use_vsync;
bool use_frame_limit;
u16 frame_limit;

View File

@ -20,7 +20,6 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
page_table->pointers.fill(nullptr);
page_table->attributes.fill(Memory::PageType::Unmapped);
page_table->cached_res_count.fill(0);
Memory::MapIoRegion(*page_table, 0x00000000, 0x80000000, test_memory);
Memory::MapIoRegion(*page_table, 0x80000000, 0x80000000, test_memory);

View File

@ -38,6 +38,9 @@ public:
/// Notify rasterizer that any caches of the specified region should be flushed to 3DS memory
virtual void FlushRegion(PAddr addr, u32 size) = 0;
/// Notify rasterizer that any caches of the specified region should be invalidated
virtual void InvalidateRegion(PAddr addr, u32 size) = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to 3DS memory
/// and invalidated
virtual void FlushAndInvalidateRegion(PAddr addr, u32 size) = 0;

View File

@ -7,8 +7,8 @@
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/color.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
@ -23,6 +23,9 @@
#include "video_core/renderer_opengl/pica_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
using PixelFormat = SurfaceParams::PixelFormat;
using SurfaceType = SurfaceParams::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
@ -227,21 +230,68 @@ void RasterizerOpenGL::DrawTriangles() {
MICROPROFILE_SCOPE(OpenGL_Drawing);
const auto& regs = Pica::g_state.regs;
// Sync and bind the framebuffer surfaces
CachedSurface* color_surface;
CachedSurface* depth_surface;
MathUtil::Rectangle<int> rect;
std::tie(color_surface, depth_surface, rect) =
res_cache.GetFramebufferSurfaces(regs.framebuffer.framebuffer);
const bool has_stencil =
regs.framebuffer.framebuffer.depth_format == Pica::FramebufferRegs::DepthFormat::D24S8;
const bool write_color_fb =
state.color_mask.red_enabled == GL_TRUE || state.color_mask.green_enabled == GL_TRUE ||
state.color_mask.blue_enabled == GL_TRUE || state.color_mask.alpha_enabled == GL_TRUE;
const bool write_depth_fb =
(state.depth.test_enabled && state.depth.write_mask == GL_TRUE) ||
(has_stencil && state.stencil.test_enabled && state.stencil.write_mask != 0);
const bool using_color_fb =
regs.framebuffer.framebuffer.GetColorBufferPhysicalAddress() != 0 && write_color_fb;
const bool using_depth_fb =
regs.framebuffer.framebuffer.GetDepthBufferPhysicalAddress() != 0 &&
(write_depth_fb || regs.framebuffer.output_merger.depth_test_enable != 0 ||
(has_stencil && state.stencil.test_enabled));
MathUtil::Rectangle<s32> viewport_rect_unscaled{
// These registers hold half-width and half-height, so must be multiplied by 2
regs.rasterizer.viewport_corner.x, // left
regs.rasterizer.viewport_corner.y + // top
static_cast<s32>(Pica::float24::FromRaw(regs.rasterizer.viewport_size_y).ToFloat32() *
2),
regs.rasterizer.viewport_corner.x + // right
static_cast<s32>(Pica::float24::FromRaw(regs.rasterizer.viewport_size_x).ToFloat32() *
2),
regs.rasterizer.viewport_corner.y // bottom
};
Surface color_surface;
Surface depth_surface;
MathUtil::Rectangle<u32> surfaces_rect;
std::tie(color_surface, depth_surface, surfaces_rect) =
res_cache.GetFramebufferSurfaces(using_color_fb, using_depth_fb, viewport_rect_unscaled);
const u16 res_scale = color_surface != nullptr
? color_surface->res_scale
: (depth_surface == nullptr ? 1u : depth_surface->res_scale);
MathUtil::Rectangle<u32> draw_rect{
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.left) +
viewport_rect_unscaled.left * res_scale,
surfaces_rect.left, surfaces_rect.right)), // Left
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.bottom) +
viewport_rect_unscaled.top * res_scale,
surfaces_rect.bottom, surfaces_rect.top)), // Top
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.left) +
viewport_rect_unscaled.right * res_scale,
surfaces_rect.left, surfaces_rect.right)), // Right
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.bottom) +
viewport_rect_unscaled.bottom * res_scale,
surfaces_rect.bottom, surfaces_rect.top))}; // Bottom
// Bind the framebuffer surfaces
state.draw.draw_framebuffer = framebuffer.handle;
state.Apply();
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color_surface != nullptr ? color_surface->texture.handle : 0, 0);
if (depth_surface != nullptr) {
if (regs.framebuffer.framebuffer.depth_format ==
Pica::FramebufferRegs::DepthFormat::D24S8) {
if (has_stencil) {
// attach both depth and stencil
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0);
@ -259,38 +309,30 @@ void RasterizerOpenGL::DrawTriangles() {
}
// Sync the viewport
// These registers hold half-width and half-height, so must be multiplied by 2
GLsizei viewport_width =
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_x).ToFloat32() * 2;
GLsizei viewport_height =
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_y).ToFloat32() * 2;
state.viewport.x =
static_cast<GLint>(surfaces_rect.left) + viewport_rect_unscaled.left * res_scale;
state.viewport.y =
static_cast<GLint>(surfaces_rect.bottom) + viewport_rect_unscaled.bottom * res_scale;
state.viewport.width = static_cast<GLsizei>(viewport_rect_unscaled.GetWidth() * res_scale);
state.viewport.height = static_cast<GLsizei>(viewport_rect_unscaled.GetHeight() * res_scale);
glViewport(
(GLint)(rect.left + regs.rasterizer.viewport_corner.x * color_surface->res_scale_width),
(GLint)(rect.bottom + regs.rasterizer.viewport_corner.y * color_surface->res_scale_height),
(GLsizei)(viewport_width * color_surface->res_scale_width),
(GLsizei)(viewport_height * color_surface->res_scale_height));
if (uniform_block_data.data.framebuffer_scale[0] != color_surface->res_scale_width ||
uniform_block_data.data.framebuffer_scale[1] != color_surface->res_scale_height) {
uniform_block_data.data.framebuffer_scale[0] = color_surface->res_scale_width;
uniform_block_data.data.framebuffer_scale[1] = color_surface->res_scale_height;
if (uniform_block_data.data.framebuffer_scale != res_scale) {
uniform_block_data.data.framebuffer_scale = res_scale;
uniform_block_data.dirty = true;
}
// Scissor checks are window-, not viewport-relative, which means that if the cached texture
// sub-rect changes, the scissor bounds also need to be updated.
GLint scissor_x1 = static_cast<GLint>(
rect.left + regs.rasterizer.scissor_test.x1 * color_surface->res_scale_width);
GLint scissor_y1 = static_cast<GLint>(
rect.bottom + regs.rasterizer.scissor_test.y1 * color_surface->res_scale_height);
GLint scissor_x1 =
static_cast<GLint>(surfaces_rect.left + regs.rasterizer.scissor_test.x1 * res_scale);
GLint scissor_y1 =
static_cast<GLint>(surfaces_rect.bottom + regs.rasterizer.scissor_test.y1 * res_scale);
// x2, y2 have +1 added to cover the entire pixel area, otherwise you might get cracks when
// scaling or doing multisampling.
GLint scissor_x2 = static_cast<GLint>(
rect.left + (regs.rasterizer.scissor_test.x2 + 1) * color_surface->res_scale_width);
GLint scissor_y2 = static_cast<GLint>(
rect.bottom + (regs.rasterizer.scissor_test.y2 + 1) * color_surface->res_scale_height);
GLint scissor_x2 =
static_cast<GLint>(surfaces_rect.left + (regs.rasterizer.scissor_test.x2 + 1) * res_scale);
GLint scissor_y2 = static_cast<GLint>(surfaces_rect.bottom +
(regs.rasterizer.scissor_test.y2 + 1) * res_scale);
if (uniform_block_data.data.scissor_x1 != scissor_x1 ||
uniform_block_data.data.scissor_x2 != scissor_x2 ||
@ -311,7 +353,7 @@ void RasterizerOpenGL::DrawTriangles() {
if (texture.enabled) {
texture_samplers[texture_index].SyncWithConfig(texture.config);
CachedSurface* surface = res_cache.GetTextureSurface(texture);
Surface surface = res_cache.GetTextureSurface(texture);
if (surface != nullptr) {
state.texture_units[texture_index].texture_2d = surface->texture.handle;
} else {
@ -380,6 +422,15 @@ void RasterizerOpenGL::DrawTriangles() {
uniform_block_data.dirty = false;
}
// Viewport can have negative offsets or larger
// dimensions than our framebuffer sub-rect.
// Enable scissor test to prevent drawing
// outside of the framebuffer region
state.scissor.enabled = true;
state.scissor.x = draw_rect.left;
state.scissor.y = draw_rect.bottom;
state.scissor.width = draw_rect.GetWidth();
state.scissor.height = draw_rect.GetHeight();
state.Apply();
// Draw the vertex batch
@ -387,16 +438,8 @@ void RasterizerOpenGL::DrawTriangles() {
GL_STREAM_DRAW);
glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size());
// Mark framebuffer surfaces as dirty
// TODO: Restrict invalidation area to the viewport
if (color_surface != nullptr) {
color_surface->dirty = true;
res_cache.FlushRegion(color_surface->addr, color_surface->size, color_surface, true);
}
if (depth_surface != nullptr) {
depth_surface->dirty = true;
res_cache.FlushRegion(depth_surface->addr, depth_surface->size, depth_surface, true);
}
// Disable scissor test
state.scissor.enabled = false;
vertex_batch.clear();
@ -405,6 +448,22 @@ void RasterizerOpenGL::DrawTriangles() {
state.texture_units[texture_index].texture_2d = 0;
}
state.Apply();
// Mark framebuffer surfaces as dirty
MathUtil::Rectangle<u32> draw_rect_unscaled{
draw_rect.left / res_scale, draw_rect.top / res_scale, draw_rect.right / res_scale,
draw_rect.bottom / res_scale};
if (color_surface != nullptr && write_color_fb) {
auto interval = color_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
color_surface);
}
if (depth_surface != nullptr && write_depth_fb) {
auto interval = depth_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
depth_surface);
}
}
void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
@ -893,227 +952,164 @@ void RasterizerOpenGL::FlushAll() {
void RasterizerOpenGL::FlushRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size, nullptr, false);
res_cache.FlushRegion(addr, size);
}
void RasterizerOpenGL::InvalidateRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.InvalidateRegion(addr, size, nullptr);
}
void RasterizerOpenGL::FlushAndInvalidateRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size, nullptr, true);
res_cache.FlushRegion(addr, size);
res_cache.InvalidateRegion(addr, size, nullptr);
}
bool RasterizerOpenGL::AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
CachedSurface src_params;
SurfaceParams src_params;
src_params.addr = config.GetPhysicalInputAddress();
// It's important to use the correct source input width to properly skip over parts of the input
// image which will be cropped from the output but still affect the stride of the input image.
src_params.width = config.input_width;
// Using the output's height is fine because we don't read or skip over the remaining part of
// the image, and it allows for smaller texture cache lookup rectangles.
src_params.width = config.output_width;
src_params.stride = config.input_width;
src_params.height = config.output_height;
src_params.is_tiled = !config.input_linear;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.input_format);
src_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.input_format);
src_params.UpdateParams();
CachedSurface dst_params;
SurfaceParams dst_params;
dst_params.addr = config.GetPhysicalOutputAddress();
dst_params.width =
config.scaling != config.NoScale ? config.output_width / 2 : config.output_width.Value();
dst_params.height =
config.scaling == config.ScaleXY ? config.output_height / 2 : config.output_height.Value();
dst_params.width = config.scaling != config.NoScale ? config.output_width.Value() / 2
: config.output_width.Value();
dst_params.height = config.scaling == config.ScaleXY ? config.output_height.Value() / 2
: config.output_height.Value();
dst_params.is_tiled = config.input_linear != config.dont_swizzle;
dst_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.output_format);
dst_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.output_format);
dst_params.UpdateParams();
MathUtil::Rectangle<int> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect);
if (src_surface == nullptr) {
MathUtil::Rectangle<u32> src_rect;
Surface src_surface;
std::tie(src_surface, src_rect) =
res_cache.GetSurfaceSubRect(src_params, ScaleMatch::Ignore, true);
if (src_surface == nullptr)
return false;
}
// Adjust the source rectangle to take into account parts of the input lines being cropped
if (config.input_width > config.output_width) {
src_rect.right -= static_cast<int>((config.input_width - config.output_width) *
src_surface->res_scale_width);
}
dst_params.res_scale = src_surface->res_scale;
// Require destination surface to have same resolution scale as source to preserve scaling
dst_params.res_scale_width = src_surface->res_scale_width;
dst_params.res_scale_height = src_surface->res_scale_height;
MathUtil::Rectangle<int> dst_rect;
CachedSurface* dst_surface = res_cache.GetSurfaceRect(dst_params, true, false, dst_rect);
if (dst_surface == nullptr) {
MathUtil::Rectangle<u32> dst_rect;
Surface dst_surface;
std::tie(dst_surface, dst_rect) =
res_cache.GetSurfaceSubRect(dst_params, ScaleMatch::Upscale, false);
if (dst_surface == nullptr)
return false;
}
// Don't accelerate if the src and dst surfaces are the same
if (src_surface == dst_surface) {
if (src_surface->is_tiled != dst_surface->is_tiled)
std::swap(src_rect.top, src_rect.bottom);
if (config.flip_vertically)
std::swap(src_rect.top, src_rect.bottom);
if (!res_cache.BlitSurfaces(src_surface, src_rect, dst_surface, dst_rect))
return false;
}
if (config.flip_vertically) {
std::swap(dst_rect.top, dst_rect.bottom);
}
if (!res_cache.TryBlitSurfaces(src_surface, src_rect, dst_surface, dst_rect)) {
return false;
}
u32 dst_size = dst_params.width * dst_params.height *
CachedSurface::GetFormatBpp(dst_params.pixel_format) / 8;
dst_surface->dirty = true;
res_cache.FlushRegion(config.GetPhysicalOutputAddress(), dst_size, dst_surface, true);
res_cache.InvalidateRegion(dst_params.addr, dst_params.size, dst_surface);
return true;
}
bool RasterizerOpenGL::AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) {
// TODO(tfarley): Try to hardware accelerate this
u32 copy_size = Common::AlignDown(config.texture_copy.size, 16);
if (copy_size == 0) {
return false;
}
u32 input_gap = config.texture_copy.input_gap * 16;
u32 input_width = config.texture_copy.input_width * 16;
if (input_width == 0 && input_gap != 0) {
return false;
}
if (input_gap == 0 || input_width >= copy_size) {
input_width = copy_size;
input_gap = 0;
}
if (copy_size % input_width != 0) {
return false;
}
u32 output_gap = config.texture_copy.output_gap * 16;
u32 output_width = config.texture_copy.output_width * 16;
if (output_width == 0 && output_gap != 0) {
return false;
}
if (output_gap == 0 || output_width >= copy_size) {
output_width = copy_size;
output_gap = 0;
}
if (copy_size % output_width != 0) {
return false;
}
SurfaceParams src_params;
src_params.addr = config.GetPhysicalInputAddress();
src_params.stride = input_width + input_gap; // stride in bytes
src_params.width = input_width; // width in bytes
src_params.height = copy_size / input_width;
src_params.size = ((src_params.height - 1) * src_params.stride) + src_params.width;
src_params.end = src_params.addr + src_params.size;
MathUtil::Rectangle<u32> src_rect;
Surface src_surface;
std::tie(src_surface, src_rect) = res_cache.GetTexCopySurface(src_params);
if (src_surface == nullptr) {
return false;
}
if (output_gap != 0 &&
(output_width !=
src_surface->BytesInPixels(src_rect.GetWidth() / src_surface->res_scale) *
(src_surface->is_tiled ? 8 : 1) ||
output_gap % src_surface->BytesInPixels(src_surface->is_tiled ? 64 : 1) != 0)) {
return false;
}
SurfaceParams dst_params = *src_surface;
dst_params.addr = config.GetPhysicalOutputAddress();
dst_params.width = src_rect.GetWidth() / src_surface->res_scale;
dst_params.stride =
dst_params.width +
src_surface->PixelsInBytes(src_surface->is_tiled ? output_gap / 8 : output_gap);
dst_params.height = src_rect.GetHeight() / src_surface->res_scale;
dst_params.res_scale = src_surface->res_scale;
dst_params.UpdateParams();
// Since we are going to invalidate the gap if there is one, we will have to load it first
const bool load_gap = output_gap != 0;
MathUtil::Rectangle<u32> dst_rect;
Surface dst_surface;
std::tie(dst_surface, dst_rect) =
res_cache.GetSurfaceSubRect(dst_params, ScaleMatch::Upscale, load_gap);
if (src_surface == nullptr) {
return false;
}
if (dst_surface->type == SurfaceType::Texture) {
return false;
}
if (!res_cache.BlitSurfaces(src_surface, src_rect, dst_surface, dst_rect)) {
return false;
}
res_cache.InvalidateRegion(dst_params.addr, dst_params.size, dst_surface);
return true;
}
bool RasterizerOpenGL::AccelerateFill(const GPU::Regs::MemoryFillConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
using PixelFormat = CachedSurface::PixelFormat;
using SurfaceType = CachedSurface::SurfaceType;
CachedSurface* dst_surface = res_cache.TryGetFillSurface(config);
if (dst_surface == nullptr) {
Surface dst_surface = res_cache.GetFillSurface(config);
if (dst_surface == nullptr)
return false;
}
OpenGLState cur_state = OpenGLState::GetCurState();
SurfaceType dst_type = CachedSurface::GetFormatType(dst_surface->pixel_format);
GLuint old_fb = cur_state.draw.draw_framebuffer;
cur_state.draw.draw_framebuffer = framebuffer.handle;
// TODO: When scissor test is implemented, need to disable scissor test in cur_state here so
// Clear call isn't affected
cur_state.Apply();
if (dst_type == SurfaceType::Color || dst_type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
GLfloat color_values[4] = {0.0f, 0.0f, 0.0f, 0.0f};
// TODO: Handle additional pixel format and fill value size combinations to accelerate more
// cases
// For instance, checking if fill value's bytes/bits repeat to allow filling
// I8/A8/I4/A4/...
// Currently only handles formats that are multiples of the fill value size
if (config.fill_24bit) {
switch (dst_surface->pixel_format) {
case PixelFormat::RGB8:
color_values[0] = config.value_24bit_r / 255.0f;
color_values[1] = config.value_24bit_g / 255.0f;
color_values[2] = config.value_24bit_b / 255.0f;
break;
default:
return false;
}
} else if (config.fill_32bit) {
u32 value = config.value_32bit;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value >> 24) / 255.0f;
color_values[1] = ((value >> 16) & 0xFF) / 255.0f;
color_values[2] = ((value >> 8) & 0xFF) / 255.0f;
color_values[3] = (value & 0xFF) / 255.0f;
break;
default:
return false;
}
} else {
u16 value_16bit = config.value_16bit.Value();
Math::Vec4<u8> color;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
color_values[2] = color_values[0];
color_values[3] = color_values[1];
break;
case PixelFormat::RGB5A1:
color = Color::DecodeRGB5A1((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 31.0f;
color_values[2] = color[2] / 31.0f;
color_values[3] = color[3];
break;
case PixelFormat::RGB565:
color = Color::DecodeRGB565((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 63.0f;
color_values[2] = color[2] / 31.0f;
break;
case PixelFormat::RGBA4:
color = Color::DecodeRGBA4((const u8*)&value_16bit);
color_values[0] = color[0] / 15.0f;
color_values[1] = color[1] / 15.0f;
color_values[2] = color[2] / 15.0f;
color_values[3] = color[3] / 15.0f;
break;
case PixelFormat::IA8:
case PixelFormat::RG8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
break;
default:
return false;
}
}
cur_state.color_mask.red_enabled = GL_TRUE;
cur_state.color_mask.green_enabled = GL_TRUE;
cur_state.color_mask.blue_enabled = GL_TRUE;
cur_state.color_mask.alpha_enabled = GL_TRUE;
cur_state.Apply();
glClearBufferfv(GL_COLOR, 0, color_values);
} else if (dst_type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
GLfloat value_float;
if (dst_surface->pixel_format == CachedSurface::PixelFormat::D16) {
value_float = config.value_32bit / 65535.0f; // 2^16 - 1
} else if (dst_surface->pixel_format == CachedSurface::PixelFormat::D24) {
value_float = config.value_32bit / 16777215.0f; // 2^24 - 1
}
cur_state.depth.write_mask = GL_TRUE;
cur_state.Apply();
glClearBufferfv(GL_DEPTH, 0, &value_float);
} else if (dst_type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
GLfloat value_float = (config.value_32bit & 0xFFFFFF) / 16777215.0f; // 2^24 - 1
GLint value_int = (config.value_32bit >> 24);
cur_state.depth.write_mask = GL_TRUE;
cur_state.stencil.write_mask = 0xFF;
cur_state.Apply();
glClearBufferfi(GL_DEPTH_STENCIL, 0, value_float, value_int);
}
cur_state.draw.draw_framebuffer = old_fb;
// TODO: Return scissor test to previous value when scissor test is implemented
cur_state.Apply();
dst_surface->dirty = true;
res_cache.FlushRegion(dst_surface->addr, dst_surface->size, dst_surface, true);
res_cache.InvalidateRegion(dst_surface->addr, dst_surface->size, dst_surface);
return true;
}
@ -1125,16 +1121,19 @@ bool RasterizerOpenGL::AccelerateDisplay(const GPU::Regs::FramebufferConfig& con
}
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
CachedSurface src_params;
SurfaceParams src_params;
src_params.addr = framebuffer_addr;
src_params.width = config.width;
src_params.width = std::min(config.width.Value(), pixel_stride);
src_params.height = config.height;
src_params.pixel_stride = pixel_stride;
src_params.stride = pixel_stride;
src_params.is_tiled = false;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.color_format);
src_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.color_format);
src_params.UpdateParams();
MathUtil::Rectangle<int> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect);
MathUtil::Rectangle<u32> src_rect;
Surface src_surface;
std::tie(src_surface, src_rect) =
res_cache.GetSurfaceSubRect(src_params, ScaleMatch::Ignore, true);
if (src_surface == nullptr) {
return false;
@ -1144,8 +1143,8 @@ bool RasterizerOpenGL::AccelerateDisplay(const GPU::Regs::FramebufferConfig& con
u32 scaled_height = src_surface->GetScaledHeight();
screen_info.display_texcoords = MathUtil::Rectangle<float>(
(float)src_rect.top / (float)scaled_height, (float)src_rect.left / (float)scaled_width,
(float)src_rect.bottom / (float)scaled_height, (float)src_rect.right / (float)scaled_width);
(float)src_rect.bottom / (float)scaled_height, (float)src_rect.left / (float)scaled_width,
(float)src_rect.top / (float)scaled_height, (float)src_rect.right / (float)scaled_width);
screen_info.display_texture = src_surface->texture.handle;
@ -1158,8 +1157,8 @@ void RasterizerOpenGL::SamplerInfo::Create() {
wrap_s = wrap_t = TextureConfig::Repeat;
border_color = 0;
glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER,
GL_LINEAR); // default is GL_LINEAR_MIPMAP_LINEAR
// default is GL_LINEAR_MIPMAP_LINEAR
glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
// Other attributes have correct defaults
}

View File

@ -43,6 +43,7 @@ public:
void NotifyPicaRegisterChanged(u32 id) override;
void FlushAll() override;
void FlushRegion(PAddr addr, u32 size) override;
void InvalidateRegion(PAddr addr, u32 size) override;
void FlushAndInvalidateRegion(PAddr addr, u32 size) override;
bool AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) override;
bool AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) override;
@ -135,7 +136,7 @@ private:
// the end of a uniform block is included in UNIFORM_BLOCK_DATA_SIZE or not.
// Not following that rule will cause problems on some AMD drivers.
struct UniformData {
alignas(8) GLvec2 framebuffer_scale;
GLint framebuffer_scale;
GLint alphatest_ref;
GLfloat depth_scale;
GLfloat depth_offset;
@ -155,7 +156,7 @@ private:
};
static_assert(
sizeof(UniformData) == 0x470,
sizeof(UniformData) == 0x460,
"The size of the UniformData structure has changed, update the structure in the shader");
static_assert(sizeof(UniformData) < 16384,
"UniformData structure must be less than 16kb as per the OpenGL spec");

File diff suppressed because it is too large Load Diff

View File

@ -13,6 +13,7 @@
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
#include <boost/icl/interval_map.hpp>
#include <boost/icl/interval_set.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
@ -20,21 +21,37 @@
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "core/hw/gpu.h"
#include "video_core/regs_framebuffer.h"
#include "video_core/regs_texturing.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
namespace MathUtil {
template <class T>
struct Rectangle;
}
struct CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSet = std::set<Surface>;
using SurfaceCache = boost::icl::interval_map<PAddr, std::set<std::shared_ptr<CachedSurface>>>;
using SurfaceRegions = boost::icl::interval_set<PAddr>;
using SurfaceMap = boost::icl::interval_map<PAddr, Surface>;
using SurfaceCache = boost::icl::interval_map<PAddr, SurfaceSet>;
struct CachedSurface {
using SurfaceInterval = SurfaceCache::interval_type;
static_assert(std::is_same<SurfaceRegions::interval_type, SurfaceCache::interval_type>() &&
std::is_same<SurfaceMap::interval_type, SurfaceCache::interval_type>(),
"incorrect interval types");
using SurfaceRect_Tuple = std::tuple<Surface, MathUtil::Rectangle<u32>>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>;
using PageMap = boost::icl::interval_map<u32, int>;
enum class ScaleMatch {
Exact, // only accept same res scale
Upscale, // only allow higher scale than params
Ignore // accept every scaled res
};
struct SurfaceParams {
enum class PixelFormat {
// First 5 formats are shared between textures and color buffers
RGBA8 = 0,
@ -68,11 +85,12 @@ struct CachedSurface {
Texture = 1,
Depth = 2,
DepthStencil = 3,
Invalid = 4,
Fill = 4,
Invalid = 5
};
static unsigned int GetFormatBpp(CachedSurface::PixelFormat format) {
static const std::array<unsigned int, 18> bpp_table = {
static constexpr unsigned int GetFormatBpp(PixelFormat format) {
constexpr std::array<unsigned int, 18> bpp_table = {
32, // RGBA8
24, // RGB8
16, // RGB5A1
@ -93,8 +111,11 @@ struct CachedSurface {
32, // D24S8
};
ASSERT((unsigned int)format < ARRAY_SIZE(bpp_table));
return bpp_table[(unsigned int)format];
assert(static_cast<size_t>(format) < bpp_table.size());
return bpp_table[static_cast<size_t>(format)];
}
unsigned int GetFormatBpp() const {
return GetFormatBpp(pixel_format);
}
static PixelFormat PixelFormatFromTextureFormat(Pica::TexturingRegs::TextureFormat format) {
@ -142,7 +163,7 @@ struct CachedSurface {
return false;
}
static SurfaceType GetFormatType(PixelFormat pixel_format) {
static constexpr SurfaceType GetFormatType(PixelFormat pixel_format) {
if ((unsigned int)pixel_format < 5) {
return SurfaceType::Color;
}
@ -162,31 +183,117 @@ struct CachedSurface {
return SurfaceType::Invalid;
}
/// Update the params "size", "end" and "type" from the already set "addr", "width", "height"
/// and "pixel_format"
void UpdateParams() {
if (stride == 0) {
stride = width;
}
type = GetFormatType(pixel_format);
size = !is_tiled ? BytesInPixels(stride * (height - 1) + width)
: BytesInPixels(stride * 8 * (height / 8 - 1) + width * 8);
end = addr + size;
}
SurfaceInterval GetInterval() const {
return SurfaceInterval::right_open(addr, end);
}
// Returns the outer rectangle containing "interval"
SurfaceParams FromInterval(SurfaceInterval interval) const;
SurfaceInterval GetSubRectInterval(MathUtil::Rectangle<u32> unscaled_rect) const;
// Returns the region of the biggest valid rectange within interval
SurfaceInterval GetCopyableInterval(const Surface& src_surface) const;
u32 GetScaledWidth() const {
return (u32)(width * res_scale_width);
return width * res_scale;
}
u32 GetScaledHeight() const {
return (u32)(height * res_scale_height);
return height * res_scale;
}
PAddr addr;
u32 size;
MathUtil::Rectangle<u32> GetRect() const {
return {0, height, width, 0};
}
PAddr min_valid;
PAddr max_valid;
MathUtil::Rectangle<u32> GetScaledRect() const {
return {0, GetScaledHeight(), GetScaledWidth(), 0};
}
u32 PixelsInBytes(u32 size) const {
return size * CHAR_BIT / GetFormatBpp(pixel_format);
}
u32 BytesInPixels(u32 pixels) const {
return pixels * GetFormatBpp(pixel_format) / CHAR_BIT;
}
bool ExactMatch(const SurfaceParams& other_surface) const;
bool CanSubRect(const SurfaceParams& sub_surface) const;
bool CanExpand(const SurfaceParams& expanded_surface) const;
bool CanTexCopy(const SurfaceParams& texcopy_params) const;
MathUtil::Rectangle<u32> GetSubRect(const SurfaceParams& sub_surface) const;
MathUtil::Rectangle<u32> GetScaledSubRect(const SurfaceParams& sub_surface) const;
PAddr addr = 0;
PAddr end = 0;
u32 size = 0;
u32 width = 0;
u32 height = 0;
u32 stride = 0;
u16 res_scale = 1;
bool is_tiled = false;
PixelFormat pixel_format = PixelFormat::Invalid;
SurfaceType type = SurfaceType::Invalid;
};
struct CachedSurface : SurfaceParams {
bool CanFill(const SurfaceParams& dest_surface, SurfaceInterval fill_interval) const;
bool CanCopy(const SurfaceParams& dest_surface, SurfaceInterval copy_interval) const;
bool IsRegionValid(SurfaceInterval interval) const {
return (invalid_regions.find(interval) == invalid_regions.end());
}
bool IsSurfaceFullyInvalid() const {
return (invalid_regions & GetInterval()) == SurfaceRegions(GetInterval());
}
bool registered = false;
SurfaceRegions invalid_regions;
u32 fill_size = 0; /// Number of bytes to read from fill_data
std::array<u8, 4> fill_data;
OGLTexture texture;
u32 width;
u32 height;
/// Stride between lines, in pixels. Only valid for images in linear format.
u32 pixel_stride = 0;
float res_scale_width = 1.f;
float res_scale_height = 1.f;
bool is_tiled;
PixelFormat pixel_format;
bool dirty;
static constexpr unsigned int GetGLBytesPerPixel(PixelFormat format) {
// OpenGL needs 4 bpp alignment for D24 since using GL_UNSIGNED_INT as type
return format == PixelFormat::Invalid
? 0
: (format == PixelFormat::D24 || GetFormatType(format) == SurfaceType::Texture)
? 4
: SurfaceParams::GetFormatBpp(format) / 8;
}
std::unique_ptr<u8[]> gl_buffer;
size_t gl_buffer_size = 0;
// Read/Write data in 3DS memory to/from gl_buffer
void LoadGLBuffer(PAddr load_start, PAddr load_end);
void FlushGLBuffer(PAddr flush_start, PAddr flush_end);
// Upload/Download data in gl_buffer in/to this surface's texture
void UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
GLuint draw_fb_handle);
void DownloadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
GLuint draw_fb_handle);
};
class RasterizerCacheOpenGL : NonCopyable {
@ -194,46 +301,78 @@ public:
RasterizerCacheOpenGL();
~RasterizerCacheOpenGL();
/// Blits one texture to another
void BlitTextures(GLuint src_tex, GLuint dst_tex, CachedSurface::SurfaceType type,
const MathUtil::Rectangle<int>& src_rect,
const MathUtil::Rectangle<int>& dst_rect);
/// Blit one surface's texture to another
bool BlitSurfaces(const Surface& src_surface, const MathUtil::Rectangle<u32>& src_rect,
const Surface& dst_surface, const MathUtil::Rectangle<u32>& dst_rect);
/// Attempt to blit one surface's texture to another
bool TryBlitSurfaces(CachedSurface* src_surface, const MathUtil::Rectangle<int>& src_rect,
CachedSurface* dst_surface, const MathUtil::Rectangle<int>& dst_rect);
void ConvertD24S8toABGR(GLuint src_tex, const MathUtil::Rectangle<u32>& src_rect,
GLuint dst_tex, const MathUtil::Rectangle<u32>& dst_rect);
/// Loads a texture from 3DS memory to OpenGL and caches it (if not already cached)
CachedSurface* GetSurface(const CachedSurface& params, bool match_res_scale,
/// Copy one surface's region to another
void CopySurface(const Surface& src_surface, const Surface& dst_surface,
SurfaceInterval copy_interval);
/// Load a texture from 3DS memory to OpenGL and cache it (if not already cached)
Surface GetSurface(const SurfaceParams& params, ScaleMatch match_res_scale,
bool load_if_create);
/// Attempt to find a subrect (resolution scaled) of a surface, otherwise loads a texture from
/// 3DS memory to OpenGL and caches it (if not already cached)
CachedSurface* GetSurfaceRect(const CachedSurface& params, bool match_res_scale,
bool load_if_create, MathUtil::Rectangle<int>& out_rect);
SurfaceRect_Tuple GetSurfaceSubRect(const SurfaceParams& params, ScaleMatch match_res_scale,
bool load_if_create);
/// Gets a surface based on the texture configuration
CachedSurface* GetTextureSurface(const Pica::TexturingRegs::FullTextureConfig& config);
/// Get a surface based on the texture configuration
Surface GetTextureSurface(const Pica::TexturingRegs::FullTextureConfig& config);
/// Gets the color and depth surfaces and rect (resolution scaled) based on the framebuffer
/// configuration
std::tuple<CachedSurface*, CachedSurface*, MathUtil::Rectangle<int>> GetFramebufferSurfaces(
const Pica::FramebufferRegs::FramebufferConfig& config);
/// Get the color and depth surfaces based on the framebuffer configuration
SurfaceSurfaceRect_Tuple GetFramebufferSurfaces(bool using_color_fb, bool using_depth_fb,
const MathUtil::Rectangle<s32>& viewport_rect);
/// Attempt to get a surface that exactly matches the fill region and format
CachedSurface* TryGetFillSurface(const GPU::Regs::MemoryFillConfig& config);
/// Get a surface that matches the fill config
Surface GetFillSurface(const GPU::Regs::MemoryFillConfig& config);
/// Write the surface back to memory
void FlushSurface(CachedSurface* surface);
/// Get a surface that matches a "texture copy" display transfer config
SurfaceRect_Tuple GetTexCopySurface(const SurfaceParams& params);
/// Write any cached resources overlapping the region back to memory (if dirty) and optionally
/// invalidate them in the cache
void FlushRegion(PAddr addr, u32 size, const CachedSurface* skip_surface, bool invalidate);
/// Write any cached resources overlapping the region back to memory (if dirty)
void FlushRegion(PAddr addr, u32 size, Surface flush_surface = nullptr);
/// Mark region as being invalidated by region_owner (nullptr if 3DS memory)
void InvalidateRegion(PAddr addr, u32 size, const Surface& region_owner);
/// Flush all cached resources tracked by this cache manager
void FlushAll();
private:
void DuplicateSurface(const Surface& src_surface, const Surface& dest_surface);
/// Update surface's texture for given region when necessary
void ValidateSurface(const Surface& surface, PAddr addr, u32 size);
/// Create a new surface
Surface CreateSurface(const SurfaceParams& params);
/// Register surface into the cache
void RegisterSurface(const Surface& surface);
/// Remove surface from the cache
void UnregisterSurface(const Surface& surface);
/// Increase/decrease the number of surface in pages touching the specified region
void UpdatePagesCachedCount(PAddr addr, u32 size, int delta);
SurfaceCache surface_cache;
OGLFramebuffer transfer_framebuffers[2];
PageMap cached_pages;
SurfaceMap dirty_regions;
SurfaceSet remove_surfaces;
OGLFramebuffer read_framebuffer;
OGLFramebuffer draw_framebuffer;
OGLVertexArray attributeless_vao;
OGLBuffer d24s8_abgr_buffer;
GLsizeiptr d24s8_abgr_buffer_size;
OGLShader d24s8_abgr_shader;
GLint d24s8_abgr_tbo_size_u_id;
GLint d24s8_abgr_viewport_u_id;
};

View File

@ -36,7 +36,7 @@ public:
if (handle == 0)
return;
glDeleteTextures(1, &handle);
OpenGLState::ResetTexture(handle);
OpenGLState::GetCurState().ResetTexture(handle).Apply();
handle = 0;
}
@ -69,7 +69,7 @@ public:
if (handle == 0)
return;
glDeleteSamplers(1, &handle);
OpenGLState::ResetSampler(handle);
OpenGLState::GetCurState().ResetSampler(handle).Apply();
handle = 0;
}
@ -102,7 +102,7 @@ public:
if (handle == 0)
return;
glDeleteProgram(handle);
OpenGLState::ResetProgram(handle);
OpenGLState::GetCurState().ResetProgram(handle).Apply();
handle = 0;
}
@ -135,7 +135,7 @@ public:
if (handle == 0)
return;
glDeleteBuffers(1, &handle);
OpenGLState::ResetBuffer(handle);
OpenGLState::GetCurState().ResetBuffer(handle).Apply();
handle = 0;
}
@ -168,7 +168,7 @@ public:
if (handle == 0)
return;
glDeleteVertexArrays(1, &handle);
OpenGLState::ResetVertexArray(handle);
OpenGLState::GetCurState().ResetVertexArray(handle).Apply();
handle = 0;
}
@ -201,7 +201,7 @@ public:
if (handle == 0)
return;
glDeleteFramebuffers(1, &handle);
OpenGLState::ResetFramebuffer(handle);
OpenGLState::GetCurState().ResetFramebuffer(handle).Apply();
handle = 0;
}

View File

@ -41,7 +41,7 @@ struct LightSrc {
};
layout (std140) uniform shader_data {
vec2 framebuffer_scale;
int framebuffer_scale;
int alphatest_ref;
float depth_scale;
float depth_offset;

View File

@ -69,6 +69,17 @@ OpenGLState::OpenGLState() {
draw.uniform_buffer = 0;
draw.shader_program = 0;
scissor.enabled = false;
scissor.x = 0;
scissor.y = 0;
scissor.width = 0;
scissor.height = 0;
viewport.x = 0;
viewport.y = 0;
viewport.width = 0;
viewport.height = 0;
clip_distance = {};
}
@ -193,7 +204,7 @@ void OpenGLState::Apply() const {
// Lighting LUTs
if (lighting_lut.texture_buffer != cur_state.lighting_lut.texture_buffer) {
glActiveTexture(TextureUnits::LightingLUT.Enum());
glBindTexture(GL_TEXTURE_BUFFER, cur_state.lighting_lut.texture_buffer);
glBindTexture(GL_TEXTURE_BUFFER, lighting_lut.texture_buffer);
}
// Fog LUT
@ -260,6 +271,26 @@ void OpenGLState::Apply() const {
glUseProgram(draw.shader_program);
}
// Scissor test
if (scissor.enabled != cur_state.scissor.enabled) {
if (scissor.enabled) {
glEnable(GL_SCISSOR_TEST);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
if (scissor.x != cur_state.scissor.x || scissor.y != cur_state.scissor.y ||
scissor.width != cur_state.scissor.width || scissor.height != cur_state.scissor.height) {
glScissor(scissor.x, scissor.y, scissor.width, scissor.height);
}
if (viewport.x != cur_state.viewport.x || viewport.y != cur_state.viewport.y ||
viewport.width != cur_state.viewport.width ||
viewport.height != cur_state.viewport.height) {
glViewport(viewport.x, viewport.y, viewport.width, viewport.height);
}
// Clip distance
for (size_t i = 0; i < clip_distance.size(); ++i) {
if (clip_distance[i] != cur_state.clip_distance[i]) {
@ -274,62 +305,68 @@ void OpenGLState::Apply() const {
cur_state = *this;
}
void OpenGLState::ResetTexture(GLuint handle) {
for (auto& unit : cur_state.texture_units) {
OpenGLState& OpenGLState::ResetTexture(GLuint handle) {
for (auto& unit : texture_units) {
if (unit.texture_2d == handle) {
unit.texture_2d = 0;
}
}
if (cur_state.lighting_lut.texture_buffer == handle)
cur_state.lighting_lut.texture_buffer = 0;
if (cur_state.fog_lut.texture_buffer == handle)
cur_state.fog_lut.texture_buffer = 0;
if (cur_state.proctex_noise_lut.texture_buffer == handle)
cur_state.proctex_noise_lut.texture_buffer = 0;
if (cur_state.proctex_color_map.texture_buffer == handle)
cur_state.proctex_color_map.texture_buffer = 0;
if (cur_state.proctex_alpha_map.texture_buffer == handle)
cur_state.proctex_alpha_map.texture_buffer = 0;
if (cur_state.proctex_lut.texture_buffer == handle)
cur_state.proctex_lut.texture_buffer = 0;
if (cur_state.proctex_diff_lut.texture_buffer == handle)
cur_state.proctex_diff_lut.texture_buffer = 0;
if (lighting_lut.texture_buffer == handle)
lighting_lut.texture_buffer = 0;
if (fog_lut.texture_buffer == handle)
fog_lut.texture_buffer = 0;
if (proctex_noise_lut.texture_buffer == handle)
proctex_noise_lut.texture_buffer = 0;
if (proctex_color_map.texture_buffer == handle)
proctex_color_map.texture_buffer = 0;
if (proctex_alpha_map.texture_buffer == handle)
proctex_alpha_map.texture_buffer = 0;
if (proctex_lut.texture_buffer == handle)
proctex_lut.texture_buffer = 0;
if (proctex_diff_lut.texture_buffer == handle)
proctex_diff_lut.texture_buffer = 0;
return *this;
}
void OpenGLState::ResetSampler(GLuint handle) {
for (auto& unit : cur_state.texture_units) {
OpenGLState& OpenGLState::ResetSampler(GLuint handle) {
for (auto& unit : texture_units) {
if (unit.sampler == handle) {
unit.sampler = 0;
}
}
return *this;
}
void OpenGLState::ResetProgram(GLuint handle) {
if (cur_state.draw.shader_program == handle) {
cur_state.draw.shader_program = 0;
OpenGLState& OpenGLState::ResetProgram(GLuint handle) {
if (draw.shader_program == handle) {
draw.shader_program = 0;
}
return *this;
}
void OpenGLState::ResetBuffer(GLuint handle) {
if (cur_state.draw.vertex_buffer == handle) {
cur_state.draw.vertex_buffer = 0;
OpenGLState& OpenGLState::ResetBuffer(GLuint handle) {
if (draw.vertex_buffer == handle) {
draw.vertex_buffer = 0;
}
if (cur_state.draw.uniform_buffer == handle) {
cur_state.draw.uniform_buffer = 0;
if (draw.uniform_buffer == handle) {
draw.uniform_buffer = 0;
}
return *this;
}
void OpenGLState::ResetVertexArray(GLuint handle) {
if (cur_state.draw.vertex_array == handle) {
cur_state.draw.vertex_array = 0;
OpenGLState& OpenGLState::ResetVertexArray(GLuint handle) {
if (draw.vertex_array == handle) {
draw.vertex_array = 0;
}
return *this;
}
void OpenGLState::ResetFramebuffer(GLuint handle) {
if (cur_state.draw.read_framebuffer == handle) {
cur_state.draw.read_framebuffer = 0;
OpenGLState& OpenGLState::ResetFramebuffer(GLuint handle) {
if (draw.read_framebuffer == handle) {
draw.read_framebuffer = 0;
}
if (cur_state.draw.draw_framebuffer == handle) {
cur_state.draw.draw_framebuffer = 0;
if (draw.draw_framebuffer == handle) {
draw.draw_framebuffer = 0;
}
return *this;
}

View File

@ -124,25 +124,40 @@ public:
GLuint shader_program; // GL_CURRENT_PROGRAM
} draw;
struct {
bool enabled; // GL_SCISSOR_TEST
GLint x;
GLint y;
GLsizei width;
GLsizei height;
} scissor;
struct {
GLint x;
GLint y;
GLsizei width;
GLsizei height;
} viewport;
std::array<bool, 2> clip_distance; // GL_CLIP_DISTANCE
OpenGLState();
/// Get the currently active OpenGL state
static const OpenGLState& GetCurState() {
static OpenGLState GetCurState() {
return cur_state;
}
/// Apply this state as the current OpenGL state
void Apply() const;
/// Resets and unbinds any references to the given resource in the current OpenGL state
static void ResetTexture(GLuint handle);
static void ResetSampler(GLuint handle);
static void ResetProgram(GLuint handle);
static void ResetBuffer(GLuint handle);
static void ResetVertexArray(GLuint handle);
static void ResetFramebuffer(GLuint handle);
/// Resets any references to the given resource
OpenGLState& ResetTexture(GLuint handle);
OpenGLState& ResetSampler(GLuint handle);
OpenGLState& ResetProgram(GLuint handle);
OpenGLState& ResetBuffer(GLuint handle);
OpenGLState& ResetVertexArray(GLuint handle);
OpenGLState& ResetFramebuffer(GLuint handle);
private:
static OpenGLState cur_state;

View File

@ -11,7 +11,7 @@ namespace Pica {
namespace Shader {
struct OutputVertex;
}
}
} // namespace Pica
namespace VideoCore {
@ -22,6 +22,7 @@ class SWRasterizer : public RasterizerInterface {
void NotifyPicaRegisterChanged(u32 id) override {}
void FlushAll() override {}
void FlushRegion(PAddr addr, u32 size) override {}
void InvalidateRegion(PAddr addr, u32 size) override {}
void FlushAndInvalidateRegion(PAddr addr, u32 size) override {}
};

View File

@ -9,9 +9,9 @@
namespace VideoCore {
// 8x8 Z-Order coordinate from 2D coordinates
static inline u32 MortonInterleave(u32 x, u32 y) {
static const u32 xlut[] = {0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15};
static const u32 ylut[] = {0x00, 0x02, 0x08, 0x0a, 0x20, 0x22, 0x28, 0x2a};
static constexpr u32 MortonInterleave(u32 x, u32 y) {
constexpr u32 xlut[] = {0x00, 0x01, 0x04, 0x05, 0x10, 0x11, 0x14, 0x15};
constexpr u32 ylut[] = {0x00, 0x02, 0x08, 0x0a, 0x20, 0x22, 0x28, 0x2a};
return xlut[x % 8] + ylut[y % 8];
}