mirror of
https://github.com/citra-emu/citra.git
synced 2024-11-26 11:00:06 +00:00
added a bunch of threading code, recycled from PPSSPP, with lots of hacks in for 3DS... doesn't really do much yet. Just a jumping off point
This commit is contained in:
parent
b87536e82c
commit
3838d46b90
@ -11,10 +11,212 @@
|
||||
|
||||
#include "common/common.h"
|
||||
|
||||
#include "core/core.h"
|
||||
#include "core/mem_map.h"
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/thread.h"
|
||||
|
||||
// Real CTR struct, don't change the fields.
|
||||
struct ThreadQueueList {
|
||||
// Number of queues (number of priority levels starting at 0.)
|
||||
static const int NUM_QUEUES = 128;
|
||||
// Initial number of threads a single queue can handle.
|
||||
static const int INITIAL_CAPACITY = 32;
|
||||
|
||||
struct Queue {
|
||||
// Next ever-been-used queue (worse priority.)
|
||||
Queue *next;
|
||||
// First valid item in data.
|
||||
int first;
|
||||
// One after last valid item in data.
|
||||
int end;
|
||||
// A too-large array with room on the front and end.
|
||||
UID *data;
|
||||
// Size of data array.
|
||||
int capacity;
|
||||
};
|
||||
|
||||
ThreadQueueList() {
|
||||
memset(queues, 0, sizeof(queues));
|
||||
first = invalid();
|
||||
}
|
||||
|
||||
~ThreadQueueList() {
|
||||
for (int i = 0; i < NUM_QUEUES; ++i) {
|
||||
if (queues[i].data != NULL) {
|
||||
free(queues[i].data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Only for debugging, returns priority level.
|
||||
int contains(const UID uid) {
|
||||
for (int i = 0; i < NUM_QUEUES; ++i) {
|
||||
if (queues[i].data == NULL) {
|
||||
continue;
|
||||
}
|
||||
Queue *cur = &queues[i];
|
||||
for (int j = cur->first; j < cur->end; ++j) {
|
||||
if (cur->data[j] == uid) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
inline UID pop_first() {
|
||||
Queue *cur = first;
|
||||
while (cur != invalid()) {
|
||||
if (cur->end - cur->first > 0) {
|
||||
return cur->data[cur->first++];
|
||||
}
|
||||
cur = cur->next;
|
||||
}
|
||||
|
||||
_dbg_assert_msg_(KERNEL, false, "ThreadQueueList should not be empty.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline UID pop_first_better(u32 priority) {
|
||||
Queue *cur = first;
|
||||
Queue *stop = &queues[priority];
|
||||
while (cur < stop) {
|
||||
if (cur->end - cur->first > 0) {
|
||||
return cur->data[cur->first++];
|
||||
}
|
||||
cur = cur->next;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline void push_front(u32 priority, const UID thread_id) {
|
||||
Queue *cur = &queues[priority];
|
||||
cur->data[--cur->first] = thread_id;
|
||||
if (cur->first == 0) {
|
||||
rebalance(priority);
|
||||
}
|
||||
}
|
||||
|
||||
inline void push_back(u32 priority, const UID thread_id)
|
||||
{
|
||||
Queue *cur = &queues[priority];
|
||||
cur->data[cur->end++] = thread_id;
|
||||
if (cur->end == cur->capacity) {
|
||||
rebalance(priority);
|
||||
}
|
||||
}
|
||||
|
||||
inline void remove(u32 priority, const UID thread_id) {
|
||||
Queue *cur = &queues[priority];
|
||||
_dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
|
||||
|
||||
for (int i = cur->first; i < cur->end; ++i) {
|
||||
if (cur->data[i] == thread_id) {
|
||||
int remaining = --cur->end - i;
|
||||
if (remaining > 0) {
|
||||
memmove(&cur->data[i], &cur->data[i + 1], remaining * sizeof(UID));
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Wasn't there.
|
||||
}
|
||||
|
||||
inline void rotate(u32 priority) {
|
||||
Queue *cur = &queues[priority];
|
||||
_dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
|
||||
|
||||
if (cur->end - cur->first > 1) {
|
||||
cur->data[cur->end++] = cur->data[cur->first++];
|
||||
if (cur->end == cur->capacity) {
|
||||
rebalance(priority);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void clear() {
|
||||
for (int i = 0; i < NUM_QUEUES; ++i) {
|
||||
if (queues[i].data != NULL) {
|
||||
free(queues[i].data);
|
||||
}
|
||||
}
|
||||
memset(queues, 0, sizeof(queues));
|
||||
first = invalid();
|
||||
}
|
||||
|
||||
inline bool empty(u32 priority) const {
|
||||
const Queue *cur = &queues[priority];
|
||||
return cur->first == cur->end;
|
||||
}
|
||||
|
||||
inline void prepare(u32 priority) {
|
||||
Queue *cur = &queues[priority];
|
||||
if (cur->next == NULL) {
|
||||
link(priority, INITIAL_CAPACITY);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Queue *invalid() const {
|
||||
return (Queue *)-1;
|
||||
}
|
||||
|
||||
void link(u32 priority, int size) {
|
||||
_dbg_assert_msg_(KERNEL, queues[priority].data == NULL, "ThreadQueueList::Queue should only be initialized once.");
|
||||
|
||||
if (size <= INITIAL_CAPACITY) {
|
||||
size = INITIAL_CAPACITY;
|
||||
} else {
|
||||
int goal = size;
|
||||
size = INITIAL_CAPACITY;
|
||||
while (size < goal)
|
||||
size *= 2;
|
||||
}
|
||||
Queue *cur = &queues[priority];
|
||||
cur->data = (UID*)malloc(sizeof(UID)* size);
|
||||
cur->capacity = size;
|
||||
cur->first = size / 2;
|
||||
cur->end = size / 2;
|
||||
|
||||
for (int i = (int)priority - 1; i >= 0; --i) {
|
||||
if (queues[i].next != NULL) {
|
||||
cur->next = queues[i].next;
|
||||
queues[i].next = cur;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
cur->next = first;
|
||||
first = cur;
|
||||
}
|
||||
|
||||
void rebalance(u32 priority) {
|
||||
Queue *cur = &queues[priority];
|
||||
int size = cur->end - cur->first;
|
||||
if (size >= cur->capacity - 2) {
|
||||
UID* new_data = (UID*)realloc(cur->data, cur->capacity * 2 * sizeof(UID));
|
||||
if (new_data != NULL) {
|
||||
cur->capacity *= 2;
|
||||
cur->data = new_data;
|
||||
}
|
||||
}
|
||||
|
||||
int newFirst = (cur->capacity - size) / 2;
|
||||
if (newFirst != cur->first) {
|
||||
memmove(&cur->data[newFirst], &cur->data[cur->first], size * sizeof(UID));
|
||||
cur->first = newFirst;
|
||||
cur->end = newFirst + size;
|
||||
}
|
||||
}
|
||||
|
||||
// The first queue that's ever been used.
|
||||
Queue* first;
|
||||
// The priority level queues of thread ids.
|
||||
Queue queues[NUM_QUEUES];
|
||||
};
|
||||
|
||||
// Supposed to represent a real CTR struct... but not sure of the correct fields yet.
|
||||
struct NativeThread {
|
||||
//u32 Pointer to vtable
|
||||
//u32 Reference count
|
||||
@ -25,6 +227,22 @@ struct NativeThread {
|
||||
// if the beginning of this mapped page is 0xFF401000, this ptr would be 0xFF402000.
|
||||
//KThread* Previous ? (virtual address)
|
||||
//KThread* Next ? (virtual address)
|
||||
|
||||
u32_le native_size;
|
||||
char name[KERNELOBJECT_MAX_NAME_LENGTH + 1];
|
||||
|
||||
// Threading stuff
|
||||
u32_le status;
|
||||
u32_le entry_point;
|
||||
u32_le initial_stack;
|
||||
u32_le stack_top;
|
||||
u32_le stack_size;
|
||||
|
||||
u32_le arg;
|
||||
u32_le processor_id;
|
||||
|
||||
s32_le initial_priority;
|
||||
s32_le current_priority;
|
||||
};
|
||||
|
||||
struct ThreadWaitInfo {
|
||||
@ -52,42 +270,23 @@ public:
|
||||
//}
|
||||
|
||||
//static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_THID; }
|
||||
//static int GetStaticIDType() { return SCE_KERNEL_TMID_Thread; }
|
||||
//int GetIDType() const { return SCE_KERNEL_TMID_Thread; }
|
||||
static KernelIDType GetStaticIDType() { return KERNEL_ID_TYPE_THREAD; }
|
||||
KernelIDType GetIDType() const { return KERNEL_ID_TYPE_THREAD; }
|
||||
|
||||
//bool AllocateStack(u32 &stack_size) {
|
||||
// FreeStack();
|
||||
|
||||
// bool fromTop = (nt.attr & PSP_THREAD_ATTR_LOW_STACK) == 0;
|
||||
// if (nt.attr & PSP_THREAD_ATTR_KERNEL)
|
||||
// {
|
||||
// // Allocate stacks for kernel threads (idle) in kernel RAM
|
||||
// currentStack.start = kernelMemory.Alloc(stack_size, fromTop, (std::string("stack/") + nt.name).c_str());
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// currentStack.start = userMemory.Alloc(stack_size, fromTop, (std::string("stack/") + nt.name).c_str());
|
||||
// }
|
||||
// if (currentStack.start == (u32)-1)
|
||||
// {
|
||||
// currentStack.start = 0;
|
||||
// nt.initialStack = 0;
|
||||
// ERROR_LOG(KERNEL, "Failed to allocate stack for thread");
|
||||
// return false;
|
||||
// }
|
||||
|
||||
// nt.initialStack = currentStack.start;
|
||||
// nt.stack_size = stack_size;
|
||||
// return true;
|
||||
//}
|
||||
bool SetupStack(u32 stack_top, int stack_size) {
|
||||
current_stack.start = stack_top;
|
||||
nt.initial_stack = current_stack.start;
|
||||
nt.stack_size = stack_size;
|
||||
return true;
|
||||
}
|
||||
|
||||
//bool FillStack() {
|
||||
// // Fill the stack.
|
||||
// if ((nt.attr & PSP_THREAD_ATTR_NO_FILLSTACK) == 0) {
|
||||
// Memory::Memset(currentStack.start, 0xFF, nt.stack_size);
|
||||
// Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
|
||||
// }
|
||||
// context.r[MIPS_REG_SP] = currentStack.start + nt.stack_size;
|
||||
// currentStack.end = context.r[MIPS_REG_SP];
|
||||
// context.r[MIPS_REG_SP] = current_stack.start + nt.stack_size;
|
||||
// current_stack.end = context.r[MIPS_REG_SP];
|
||||
// // The k0 section is 256 bytes at the top of the stack.
|
||||
// context.r[MIPS_REG_SP] -= 256;
|
||||
// context.r[MIPS_REG_K0] = context.r[MIPS_REG_SP];
|
||||
@ -104,7 +303,7 @@ public:
|
||||
//}
|
||||
|
||||
//void FreeStack() {
|
||||
// if (currentStack.start != 0) {
|
||||
// if (current_stack.start != 0) {
|
||||
// DEBUG_LOG(KERNEL, "Freeing thread stack %s", nt.name);
|
||||
|
||||
// if ((nt.attr & PSP_THREAD_ATTR_CLEAR_STACK) != 0 && nt.initialStack != 0) {
|
||||
@ -112,12 +311,12 @@ public:
|
||||
// }
|
||||
|
||||
// if (nt.attr & PSP_THREAD_ATTR_KERNEL) {
|
||||
// kernelMemory.Free(currentStack.start);
|
||||
// kernelMemory.Free(current_stack.start);
|
||||
// }
|
||||
// else {
|
||||
// userMemory.Free(currentStack.start);
|
||||
// userMemory.Free(current_stack.start);
|
||||
// }
|
||||
// currentStack.start = 0;
|
||||
// current_stack.start = 0;
|
||||
// }
|
||||
//}
|
||||
|
||||
@ -126,14 +325,14 @@ public:
|
||||
// if (stack == (u32)-1)
|
||||
// return false;
|
||||
|
||||
// pushed_stacks.push_back(currentStack);
|
||||
// currentStack.start = stack;
|
||||
// currentStack.end = stack + size;
|
||||
// nt.initialStack = currentStack.start;
|
||||
// nt.stack_size = currentStack.end - currentStack.start;
|
||||
// pushed_stacks.push_back(current_stack);
|
||||
// current_stack.start = stack;
|
||||
// current_stack.end = stack + size;
|
||||
// nt.initialStack = current_stack.start;
|
||||
// nt.stack_size = current_stack.end - current_stack.start;
|
||||
|
||||
// // We still drop the threadID at the bottom and fill it, but there's no k0.
|
||||
// Memory::Memset(currentStack.start, 0xFF, nt.stack_size);
|
||||
// // We still drop the thread_id at the bottom and fill it, but there's no k0.
|
||||
// Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
|
||||
// Memory::Write_U32(GetUID(), nt.initialStack);
|
||||
// return true;
|
||||
//}
|
||||
@ -142,16 +341,16 @@ public:
|
||||
// if (pushed_stacks.size() == 0) {
|
||||
// return false;
|
||||
// }
|
||||
// userMemory.Free(currentStack.start);
|
||||
// currentStack = pushed_stacks.back();
|
||||
// userMemory.Free(current_stack.start);
|
||||
// current_stack = pushed_stacks.back();
|
||||
// pushed_stacks.pop_back();
|
||||
// nt.initialStack = currentStack.start;
|
||||
// nt.stack_size = currentStack.end - currentStack.start;
|
||||
// nt.initialStack = current_stack.start;
|
||||
// nt.stack_size = current_stack.end - current_stack.start;
|
||||
// return true;
|
||||
//}
|
||||
|
||||
Thread() {
|
||||
currentStack.start = 0;
|
||||
current_stack.start = 0;
|
||||
}
|
||||
|
||||
// Can't use a destructor since savestates will call that too.
|
||||
@ -177,20 +376,20 @@ public:
|
||||
ThreadWaitInfo getWaitInfo();
|
||||
|
||||
// Utils
|
||||
//inline bool isRunning() const { return (nt.status & THREADSTATUS_RUNNING) != 0; }
|
||||
//inline bool isStopped() const { return (nt.status & THREADSTATUS_DORMANT) != 0; }
|
||||
//inline bool isReady() const { return (nt.status & THREADSTATUS_READY) != 0; }
|
||||
//inline bool isWaiting() const { return (nt.status & THREADSTATUS_WAIT) != 0; }
|
||||
//inline bool isSuspended() const { return (nt.status & THREADSTATUS_SUSPEND) != 0; }
|
||||
inline bool IsRunning() const { return (nt.status & THREADSTATUS_RUNNING) != 0; }
|
||||
inline bool IsStopped() const { return (nt.status & THREADSTATUS_DORMANT) != 0; }
|
||||
inline bool IsReady() const { return (nt.status & THREADSTATUS_READY) != 0; }
|
||||
inline bool IsWaiting() const { return (nt.status & THREADSTATUS_WAIT) != 0; }
|
||||
inline bool IsSuspended() const { return (nt.status & THREADSTATUS_SUSPEND) != 0; }
|
||||
|
||||
NativeThread nt;
|
||||
|
||||
ThreadWaitInfo waitInfo;
|
||||
UID moduleId;
|
||||
|
||||
bool isProcessingCallbacks;
|
||||
u32 currentMipscallId;
|
||||
UID currentCallbackId;
|
||||
//bool isProcessingCallbacks;
|
||||
//u32 currentMipscallId;
|
||||
//UID currentCallbackId;
|
||||
|
||||
ThreadContext context;
|
||||
|
||||
@ -206,7 +405,7 @@ public:
|
||||
// These are stacks that aren't "active" right now, but will pop off once the func returns.
|
||||
std::vector<StackInfo> pushed_stacks;
|
||||
|
||||
StackInfo currentStack;
|
||||
StackInfo current_stack;
|
||||
|
||||
// For thread end.
|
||||
std::vector<UID> waiting_threads;
|
||||
@ -214,15 +413,276 @@ public:
|
||||
std::map<UID, u64> paused_waits;
|
||||
};
|
||||
|
||||
void ThreadContext::reset() {
|
||||
for (int i = 0; i < 16; i++) {
|
||||
reg[i] = 0;
|
||||
}
|
||||
reg[13] = Memory::SCRATCHPAD_VADDR_END;
|
||||
cpsr = 0;
|
||||
}
|
||||
|
||||
// Lists all thread ids that aren't deleted/etc.
|
||||
std::vector<UID> g_thread_queue;
|
||||
|
||||
// Lists only ready thread ids
|
||||
ThreadQueueList g_thread_ready_queue;
|
||||
|
||||
UID g_current_thread;
|
||||
Thread* g_current_thread_ptr;
|
||||
const char *g_hle_current_thread_name = NULL;
|
||||
|
||||
Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority,
|
||||
u32 entrypoint, u32 arg, u32 stack_top, u32 processor_id, int stack_size) {
|
||||
|
||||
Thread *t = new Thread;
|
||||
id = g_kernel_objects.Create(t);
|
||||
|
||||
g_thread_queue.push_back(id);
|
||||
g_thread_ready_queue.prepare(priority);
|
||||
|
||||
memset(&t->nt, 0xCD, sizeof(t->nt));
|
||||
|
||||
t->nt.entry_point = entrypoint;
|
||||
t->nt.native_size = sizeof(t->nt);
|
||||
t->nt.initial_priority = t->nt.current_priority = priority;
|
||||
t->nt.status = THREADSTATUS_DORMANT;
|
||||
t->nt.initial_stack = t->nt.stack_top = stack_top;
|
||||
t->nt.stack_size = stack_size;
|
||||
t->nt.processor_id = processor_id;
|
||||
|
||||
strncpy(t->nt.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
|
||||
t->nt.name[KERNELOBJECT_MAX_NAME_LENGTH] = '\0';
|
||||
|
||||
t->nt.stack_size = stack_size;
|
||||
t->SetupStack(stack_top, stack_size);
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
void __KernelResetThread(Thread *t, int lowest_priority) {
|
||||
t->context.reset();
|
||||
t->context.pc = t->nt.entry_point;
|
||||
|
||||
// If the thread would be better than lowestPriority, reset to its initial. Yes, kinda odd...
|
||||
if (t->nt.current_priority < lowest_priority)
|
||||
t->nt.current_priority = t->nt.initial_priority;
|
||||
|
||||
//t->nt.wait_type = WAITTYPE_NONE;
|
||||
//t->nt.wait_id = 0;
|
||||
memset(&t->waitInfo, 0, sizeof(t->waitInfo));
|
||||
|
||||
//t->nt.exitStatus = SCE_KERNEL_ERROR_NOT_DORMANT;
|
||||
//t->isProcessingCallbacks = false;
|
||||
//t->currentCallbackId = 0;
|
||||
//t->currentMipscallId = 0;
|
||||
//t->pendingMipsCalls.clear();
|
||||
|
||||
//t->context.r[MIPS_REG_RA] = threadReturnHackAddr; //hack! TODO fix
|
||||
// TODO: Not sure if it's reset here, but this makes sense.
|
||||
//t->context.r[MIPS_REG_GP] = t->nt.gpreg;
|
||||
//t->FillStack();
|
||||
|
||||
//if (!t->waitingThreads.empty())
|
||||
// ERROR_LOG(KERNEL, "Resetting thread with threads waiting on end?");
|
||||
}
|
||||
|
||||
|
||||
inline Thread *__GetCurrentThread() {
|
||||
return g_current_thread_ptr;
|
||||
}
|
||||
|
||||
inline void __SetCurrentThread(Thread *thread, UID thread_id, const char *name) {
|
||||
g_current_thread = thread_id;
|
||||
g_current_thread_ptr = thread;
|
||||
g_hle_current_thread_name = name;
|
||||
}
|
||||
|
||||
// TODO: Use __KernelChangeThreadState instead? It has other affects...
|
||||
void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready) {
|
||||
// Passing the id as a parameter is just an optimization, if it's wrong it will cause havoc.
|
||||
_dbg_assert_msg_(KERNEL, thread->GetUID() == thread_id, "Incorrect thread_id");
|
||||
int prio = thread->nt.current_priority;
|
||||
|
||||
if (thread->IsReady()) {
|
||||
if (!ready)
|
||||
g_thread_ready_queue.remove(prio, thread_id);
|
||||
} else if (ready) {
|
||||
if (thread->IsRunning()) {
|
||||
g_thread_ready_queue.push_front(prio, thread_id);
|
||||
} else {
|
||||
g_thread_ready_queue.push_back(prio, thread_id);
|
||||
}
|
||||
thread->nt.status = THREADSTATUS_READY;
|
||||
}
|
||||
}
|
||||
|
||||
void __KernelChangeReadyState(UID thread_id, bool ready) {
|
||||
u32 error;
|
||||
Thread *thread = g_kernel_objects.Get<Thread>(thread_id, error);
|
||||
if (thread) {
|
||||
__KernelChangeReadyState(thread, thread_id, ready);
|
||||
} else {
|
||||
WARN_LOG(KERNEL, "Trying to change the ready state of an unknown thread?");
|
||||
}
|
||||
}
|
||||
|
||||
// Returns NULL if the current thread is fine.
|
||||
Thread* __KernelNextThread() {
|
||||
UID bestThread;
|
||||
|
||||
// If the current thread is running, it's a valid candidate.
|
||||
Thread *cur = __GetCurrentThread();
|
||||
if (cur && cur->IsRunning()) {
|
||||
bestThread = g_thread_ready_queue.pop_first_better(cur->nt.current_priority);
|
||||
if (bestThread != 0) {
|
||||
__KernelChangeReadyState(cur, g_current_thread, true);
|
||||
}
|
||||
} else {
|
||||
bestThread = g_thread_ready_queue.pop_first();
|
||||
}
|
||||
|
||||
// Assume g_thread_ready_queue has not become corrupt.
|
||||
if (bestThread != 0) {
|
||||
return g_kernel_objects.GetFast<Thread>(bestThread);
|
||||
} else {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Saves the current CPU context
|
||||
void __KernelSaveContext(ThreadContext *ctx) {
|
||||
ctx->reg[0] = Core::g_app_core->GetReg(0);
|
||||
ctx->reg[1] = Core::g_app_core->GetReg(1);
|
||||
ctx->reg[2] = Core::g_app_core->GetReg(2);
|
||||
ctx->reg[3] = Core::g_app_core->GetReg(3);
|
||||
ctx->reg[4] = Core::g_app_core->GetReg(4);
|
||||
ctx->reg[5] = Core::g_app_core->GetReg(5);
|
||||
ctx->reg[6] = Core::g_app_core->GetReg(6);
|
||||
ctx->reg[7] = Core::g_app_core->GetReg(7);
|
||||
ctx->reg[8] = Core::g_app_core->GetReg(8);
|
||||
ctx->reg[9] = Core::g_app_core->GetReg(9);
|
||||
ctx->reg[10] = Core::g_app_core->GetReg(10);
|
||||
ctx->reg[11] = Core::g_app_core->GetReg(11);
|
||||
ctx->reg[12] = Core::g_app_core->GetReg(12);
|
||||
ctx->reg[13] = Core::g_app_core->GetReg(13);
|
||||
ctx->reg[14] = Core::g_app_core->GetReg(14);
|
||||
ctx->reg[15] = Core::g_app_core->GetReg(15);
|
||||
ctx->pc = Core::g_app_core->GetPC();
|
||||
ctx->cpsr = Core::g_app_core->GetCPSR();
|
||||
}
|
||||
|
||||
// Loads a CPU context
|
||||
void __KernelLoadContext(ThreadContext *ctx) {
|
||||
Core::g_app_core->SetReg(0, ctx->reg[0]);
|
||||
Core::g_app_core->SetReg(1, ctx->reg[1]);
|
||||
Core::g_app_core->SetReg(2, ctx->reg[2]);
|
||||
Core::g_app_core->SetReg(3, ctx->reg[3]);
|
||||
Core::g_app_core->SetReg(4, ctx->reg[4]);
|
||||
Core::g_app_core->SetReg(5, ctx->reg[5]);
|
||||
Core::g_app_core->SetReg(6, ctx->reg[6]);
|
||||
Core::g_app_core->SetReg(7, ctx->reg[7]);
|
||||
Core::g_app_core->SetReg(8, ctx->reg[8]);
|
||||
Core::g_app_core->SetReg(9, ctx->reg[9]);
|
||||
Core::g_app_core->SetReg(10, ctx->reg[10]);
|
||||
Core::g_app_core->SetReg(11, ctx->reg[11]);
|
||||
Core::g_app_core->SetReg(12, ctx->reg[12]);
|
||||
Core::g_app_core->SetReg(13, ctx->reg[13]);
|
||||
Core::g_app_core->SetReg(14, ctx->reg[14]);
|
||||
Core::g_app_core->SetReg(15, ctx->reg[15]);
|
||||
Core::g_app_core->SetPC(ctx->pc);
|
||||
Core::g_app_core->SetCPSR(ctx->cpsr);
|
||||
}
|
||||
|
||||
void __KernelSwitchContext(Thread *target, const char *reason) {
|
||||
u32 oldPC = 0;
|
||||
UID oldUID = 0;
|
||||
const char *oldName = g_hle_current_thread_name != NULL ? g_hle_current_thread_name : "(none)";
|
||||
|
||||
Thread *cur = __GetCurrentThread();
|
||||
if (cur) { // It might just have been deleted.
|
||||
__KernelSaveContext(&cur->context);
|
||||
oldPC = Core::g_app_core->GetPC();
|
||||
oldUID = cur->GetUID();
|
||||
|
||||
// Normally this is taken care of in __KernelNextThread().
|
||||
if (cur->IsRunning())
|
||||
__KernelChangeReadyState(cur, oldUID, true);
|
||||
}
|
||||
|
||||
if (target) {
|
||||
__SetCurrentThread(target, target->GetUID(), target->nt.name);
|
||||
__KernelChangeReadyState(target, g_current_thread, false);
|
||||
target->nt.status = (target->nt.status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
|
||||
|
||||
__KernelLoadContext(&target->context);
|
||||
} else {
|
||||
__SetCurrentThread(NULL, 0, NULL);
|
||||
}
|
||||
|
||||
#if DEBUG_LEVEL <= MAX_LOGLEVEL || DEBUG_LOG == NOTICE_LOG
|
||||
//bool fromIdle = oldUID == threadIdleID[0] || oldUID == threadIdleID[1];
|
||||
//bool toIdle = currentThread == threadIdleID[0] || currentThread == threadIdleID[1];
|
||||
//if (!(fromIdle && toIdle))
|
||||
//{
|
||||
// u64 nowCycles = CoreTiming::GetTicks();
|
||||
// s64 consumedCycles = nowCycles - lastSwitchCycles;
|
||||
// lastSwitchCycles = nowCycles;
|
||||
|
||||
// DEBUG_LOG(SCEKERNEL, "Context switch: %s -> %s (%i->%i, pc: %08x->%08x, %s) +%lldus",
|
||||
// oldName, hleCurrentThreadName,
|
||||
// oldUID, currentThread,
|
||||
// oldPC, currentMIPS->pc,
|
||||
// reason,
|
||||
// cyclesToUs(consumedCycles));
|
||||
//}
|
||||
#endif
|
||||
|
||||
if (target) {
|
||||
//// No longer waiting.
|
||||
//target->nt.waitType = WAITTYPE_NONE;
|
||||
//target->nt.waitID = 0;
|
||||
|
||||
//__KernelExecutePendingARMCalls(target, true);
|
||||
}
|
||||
}
|
||||
|
||||
UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size) {
|
||||
UID id;
|
||||
|
||||
Thread *thread = __KernelCreateThread(id, module_id, "root", prio, Core::g_app_core->GetPC(),
|
||||
arg, Memory::SCRATCHPAD_VADDR_END, 0xFFFFFFFE, stack_size=stack_size);
|
||||
|
||||
if (thread->current_stack.start == 0) {
|
||||
ERROR_LOG(KERNEL, "Unable to allocate stack for root thread.");
|
||||
}
|
||||
__KernelResetThread(thread, 0);
|
||||
|
||||
Thread *prev_thread = __GetCurrentThread();
|
||||
if (prev_thread && prev_thread->IsRunning())
|
||||
__KernelChangeReadyState(g_current_thread, true);
|
||||
__SetCurrentThread(thread, id, "root");
|
||||
thread->nt.status = THREADSTATUS_RUNNING; // do not schedule
|
||||
|
||||
strcpy(thread->nt.name, "root");
|
||||
|
||||
__KernelLoadContext(&thread->context);
|
||||
|
||||
// NOTE(bunnei): Not sure this is really correct, ignore args for now...
|
||||
//Core::g_app_core->SetReg(0, args);
|
||||
//Core::g_app_core->SetReg(13, (args + 0xf) & ~0xf); // Setup SP - probably not correct
|
||||
//u32 location = Core::g_app_core->GetReg(13); // SP
|
||||
//Core::g_app_core->SetReg(1, location);
|
||||
|
||||
//if (argp)
|
||||
// Memory::Memcpy(location, argp, args);
|
||||
//// Let's assume same as starting a new thread, 64 bytes for safety/kernel.
|
||||
//Core::g_app_core->SetReg(13, Core::g_app_core->GetReg(13) - 64);
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
void __KernelThreadingInit() {
|
||||
}
|
||||
|
||||
void __KernelThreadingShutdown() {
|
||||
}
|
||||
|
||||
//const char *__KernelGetThreadName(UID threadID);
|
||||
//
|
||||
//void __KernelSaveContext(ThreadContext *ctx);
|
||||
//void __KernelLoadContext(ThreadContext *ctx);
|
||||
|
||||
//void __KernelSwitchContext(Thread *target, const char *reason);
|
@ -25,6 +25,19 @@ struct ThreadContext {
|
||||
u32 pc;
|
||||
};
|
||||
|
||||
class Thread;
|
||||
|
||||
Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority, u32 entrypoint,
|
||||
u32 arg, u32 stack_top, u32 processor_id, int stack_size=0x4000);
|
||||
void __KernelResetThread(Thread *t, int lowest_priority);
|
||||
void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready);
|
||||
void __KernelChangeReadyState(UID thread_id, bool ready);
|
||||
Thread* __KernelNextThread();
|
||||
void __KernelSaveContext(ThreadContext *ctx);
|
||||
void __KernelLoadContext(ThreadContext *ctx);
|
||||
void __KernelSwitchContext(Thread *target, const char *reason);
|
||||
UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size=0x4000);
|
||||
|
||||
void __KernelThreadingInit();
|
||||
void __KernelThreadingShutdown();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user