fixup! RegAlloc: Simplify code

This commit is contained in:
MerryMage 2016-04-05 11:37:26 +01:00
parent b5e96a5b77
commit 257e130572
4 changed files with 253 additions and 221 deletions

View File

@ -88,13 +88,14 @@ struct BlockOfCode : Gen::XCodeBlock {
namespace JitX64 {
static Gen::RunJittedCode run_jit = {};
static Gen::BlockOfCode block_of_code = {};
static JitX64 compiler { &block_of_code };
struct ARM_Jit::Impl {
Gen::RunJittedCode run_jit = {};
Gen::BlockOfCode block_of_code = {};
JitX64 compiler{ &block_of_code };
};
ARM_Jit::ARM_Jit(PrivilegeMode initial_mode) {
ARM_Jit::ARM_Jit(PrivilegeMode initial_mode) : impl(std::make_unique<Impl>()), state(Common::make_unique<JitState>()) {
ASSERT_MSG(initial_mode == PrivilegeMode::USER32MODE, "Unimplemented");
state = Common::make_unique<JitState>();
ClearCache();
}
@ -173,9 +174,9 @@ void ARM_Jit::ExecuteInstructions(int num_instructions) {
else
state->cpu_state.Reg[15] &= 0xfffffffc;
u8 *ptr = compiler.GetBB(state->cpu_state.Reg[15], state->cpu_state.TFlag, EFlag);
u8 *ptr = impl->compiler.GetBB(state->cpu_state.Reg[15], state->cpu_state.TFlag, EFlag);
unsigned ticks_executed = run_jit.CallCode(state.get(), ptr, num_instructions, state->cpu_state.Reg[15]);
unsigned ticks_executed = impl->run_jit.CallCode(state.get(), ptr, num_instructions, state->cpu_state.Reg[15]);
num_instructions -= ticks_executed;
AddTicks(ticks_executed);
} while (!reschedule && num_instructions > 0);
@ -223,14 +224,14 @@ void ARM_Jit::PrepareReschedule() {
}
void ARM_Jit::ClearCache() {
compiler.ClearCache();
block_of_code.ClearCodeSpace();
impl->compiler.ClearCache();
impl->block_of_code.ClearCodeSpace();
state->cpu_state.instruction_cache.clear();
}
void ARM_Jit::FastClearCache() {
compiler.ClearCache();
block_of_code.ResetCodePtr();
impl->compiler.ClearCache();
impl->block_of_code.ResetCodePtr();
state->cpu_state.instruction_cache.clear();
}

View File

@ -44,7 +44,10 @@ public:
void FastClearCache();
private:
bool reschedule;
struct Impl;
std::unique_ptr<Impl> impl;
bool reschedule = false;
std::unique_ptr<JitState> state;
};

View File

@ -12,22 +12,24 @@
namespace JitX64 {
static const std::map<Gen::X64Reg, size_t> x64_reg_to_index = {
{ Gen::RAX, 0 },
{ Gen::RBX, 1 },
{ Gen::RCX, 2 },
{ Gen::RDX, 3 },
{ Gen::RBP, 4 },
{ Gen::RSI, 5 },
{ Gen::RDI, 6 },
{ Gen::RSP, 7 },
{ Gen::R8, 8 },
{ Gen::R9, 9 },
{ Gen::R10, 10 },
{ Gen::R11, 11 },
{ Gen::R12, 12 },
{ Gen::R13, 13 },
{ Gen::R14, 14 },
const std::map<Gen::X64Reg, size_t> RegAlloc::x64_reg_to_index = {
// Ordered such that the caller saved registers are on top,
// and registers often flushed at the bottom.
{ Gen::R10, 0 },
{ Gen::R11, 1 },
{ Gen::RBX, 2 },
{ Gen::RBP, 3 },
{ Gen::R12, 4 },
{ Gen::R13, 5 },
{ Gen::R14, 6 },
{ Gen::RAX, 7 },
{ Gen::R9, 8 },
{ Gen::R8, 9 },
{ Gen::RSI, 10 },
{ Gen::RDX, 11 },
{ Gen::RDI, 12 },
{ Gen::RCX, 13 },
{ Gen::RSP, 14 },
};
constexpr Gen::X64Reg jit_state_reg = Gen::R15;
@ -50,40 +52,41 @@ void RegAlloc::Init(Gen::XEmitter* emitter) {
code = emitter;
for (size_t i = 0; i < arm_gpr.size(); i++) {
arm_gpr[i].locked = false;
arm_gpr[i].location = MJitStateCpuReg(static_cast<ArmReg>(i));
const ArmReg arm_reg = static_cast<ArmReg>(i);
arm_gpr[i] = { arm_reg, MJitStateCpuReg(arm_reg), false };
}
for (size_t i = 0; i < x64_gpr.size(); i++) {
x64_gpr[i].locked = false;
x64_gpr[i].state = X64State::State::Free;
x64_gpr[i].arm_reg = ArmReg::INVALID_REG;
for (const auto& entry : x64_reg_to_index) {
const Gen::X64Reg x64_reg = entry.first;
const size_t i = entry.second;
x64_gpr[i] = { x64_reg, false, X64State::State::Free, ArmReg::INVALID_REG };
}
}
void RegAlloc::FlushX64(Gen::X64Reg x64_reg) {
const size_t x64_index = x64_reg_to_index.at(x64_reg);
X64State& state = x64_gpr[x64_index];
X64State& x64_state = GetState(x64_reg);
ASSERT(!state.locked);
ASSERT(!x64_state.locked);
switch (state.state) {
switch (x64_state.state) {
case X64State::State::Free:
case X64State::State::Temp:
state.state = X64State::State::Free;
x64_state.state = X64State::State::Free;
break;
case X64State::State::CleanArmReg: {
state.state = X64State::State::Free;
ArmState& arm_state = arm_gpr[static_cast<unsigned>(state.arm_reg)];
arm_state.location = MJitStateCpuReg(state.arm_reg);
ArmState& arm_state = GetState(x64_state.arm_reg);
AssertStatesConsistent(x64_state, arm_state);
// We ignore the value in the x64 register since it's not dirty.
x64_state.state = X64State::State::Free;
arm_state.location = MJitStateCpuReg(x64_state.arm_reg);
break;
}
case X64State::State::DirtyArmReg: {
ArmState& arm_state = arm_gpr[static_cast<unsigned>(state.arm_reg)];
ASSERT(arm_state.location.IsSimpleReg());
ASSERT(arm_state.location.GetSimpleReg() == x64_reg);
FlushArm(state.arm_reg);
ASSERT(state.state == X64State::State::Free);
AssertStatesConsistent(x64_state, GetState(x64_state.arm_reg));
// Flush the value in the x64 register back into ARMul_State since it's dirty.
FlushArm(x64_state.arm_reg);
break;
}
default:
@ -91,113 +94,101 @@ void RegAlloc::FlushX64(Gen::X64Reg x64_reg) {
break;
}
ASSERT(state.state == X64State::State::Free);
ASSERT(!state.locked);
ASSERT(x64_state.state == X64State::State::Free);
ASSERT(!x64_state.locked);
}
void RegAlloc::LockX64(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(x64_reg);
ASSERT(!x64_state.locked && x64_state.state == X64State::State::Free);
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::Free);
x64_state.locked = true;
x64_state.state = X64State::State::UserManuallyLocked;
}
void RegAlloc::UnlockX64(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(x64_reg);
ASSERT(x64_state.locked && x64_state.state == X64State::State::UserManuallyLocked);
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::UserManuallyLocked);
x64_state.locked = false;
x64_state.state = X64State::State::Free;
}
void RegAlloc::FlushArm(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg));
ArmState& arm_state = GetState(arm_reg);
ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
ASSERT(!arm_state.locked);
if (!arm_state.location.IsSimpleReg()) {
return;
}
Gen::X64Reg x64_reg = GetX64For(arm_reg);
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
if (!arm_state.IsInX64Register())
return; // Nothing to do
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
if (x64_state.state == X64State::State::DirtyArmReg) {
code->MOV(32, MJitStateCpuReg(arm_reg), R(x64_reg));
code->MOV(32, MJitStateCpuReg(arm_reg), R(x64_state.x64_reg));
}
x64_state.state = X64State::State::Free;
arm_state.location = MJitStateCpuReg(arm_reg);
}
Gen::OpArg RegAlloc::LockArmForRead(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg) && arm_reg != ArmReg::PC); // Not valid for R15 (cannot read from it)
ASSERT(arm_reg != ArmReg::PC); // Not valid for R15 (cannot read from it)
ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
ArmState& arm_state = GetState(arm_reg);
if (arm_state.IsInX64Register()) {
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(!x64_state.locked);
x64_state.locked = true;
}
ASSERT(!arm_state.locked);
arm_state.locked = true;
if (arm_state.location.IsSimpleReg()) {
Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = true;
}
return arm_state.location;
}
Gen::OpArg RegAlloc::LockArmForWrite(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg)); // Valid for R15 (write-only)
// Valid for R15 (write-only)
ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
ArmState& arm_state = GetState(arm_reg);
ASSERT(!arm_state.locked);
arm_state.locked = true;
if (arm_state.location.IsSimpleReg()) {
Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
if (arm_state.IsInX64Register()) {
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = true;
x64_state.state = X64State::State::DirtyArmReg;
}
ASSERT(!arm_state.locked);
arm_state.locked = true;
return arm_state.location;
}
Gen::X64Reg RegAlloc::BindArmToX64(ArmReg arm_reg, bool load) {
ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
ArmState& arm_state = GetState(arm_reg);
ASSERT(!arm_state.locked);
arm_state.locked = true;
if (arm_state.location.IsSimpleReg()) {
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
if (arm_state.IsInX64Register()) {
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(!x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
arm_state.locked = true;
x64_state.locked = true;
return x64_reg;
return x64_state.x64_reg;
}
const Gen::X64Reg x64_reg = AllocReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(x64_reg);
ASSERT(!x64_state.locked && x64_state.state == X64State::State::Free);
x64_state.locked = true;
x64_state.arm_reg = arm_reg;
x64_state.state = X64State::State::CleanArmReg;
@ -205,21 +196,20 @@ Gen::X64Reg RegAlloc::BindArmToX64(ArmReg arm_reg, bool load) {
if (load)
code->MOV(32, R(x64_reg), MJitStateCpuReg(arm_reg));
arm_state.locked = true;
arm_state.location = R(x64_reg);
return x64_reg;
}
Gen::X64Reg RegAlloc::BindArmForRead(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg) && arm_reg != ArmReg::PC); // Not valid for R15 (cannot read from it)
ASSERT(arm_reg != ArmReg::PC); // Not valid for R15 (cannot read from it)
const Gen::X64Reg x64_reg = BindArmToX64(arm_reg, true);
return x64_reg;
return BindArmToX64(arm_reg, true);
}
Gen::X64Reg RegAlloc::BindArmForWrite(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg)); // Valid for R15 (we're not reading from it)
// Valid for R15 (we're not reading from it)
const Gen::X64Reg x64_reg = BindArmToX64(arm_reg, false);
@ -229,55 +219,45 @@ Gen::X64Reg RegAlloc::BindArmForWrite(ArmReg arm_reg) {
}
void RegAlloc::UnlockArm(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg));
ArmState& arm_state = GetState(arm_reg);
ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
if (arm_state.IsInX64Register()) {
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(x64_state.locked);
x64_state.locked = false;
}
ASSERT(arm_state.locked);
arm_state.locked = false;
if (arm_state.location.IsSimpleReg()) {
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.locked = false;
}
}
void RegAlloc::MarkDirty(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
const ArmState& arm_state = GetState(arm_reg);
ASSERT(arm_state.locked);
ASSERT(arm_state.location.IsSimpleReg());
ASSERT(arm_state.locked && arm_state.IsInX64Register());
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(GetX64For(arm_reg));
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
x64_state.state = X64State::State::DirtyArmReg;
}
void RegAlloc::FlushEverything() {
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
ASSERT(!x64_state.locked || x64_state.state == X64State::State::UserManuallyLocked);
FlushX64(i.first);
for (const X64State& x64_state : x64_gpr) {
ASSERT(!x64_state.locked);
FlushX64(x64_state.x64_reg);
ASSERT(x64_state.state == X64State::State::Free);
}
}
void RegAlloc::FlushABICallerSaved() {
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
for (const X64State& x64_state : x64_gpr) {
if (!ABI_ALL_CALLER_SAVED[x64_state.x64_reg])
continue;
if (x64_state.state != X64State::State::UserManuallyLocked) {
ASSERT(!x64_state.locked);
FlushX64(i.first);
FlushX64(x64_state.x64_reg);
ASSERT(x64_state.state == X64State::State::Free);
} else {
ASSERT(x64_state.locked);
@ -287,29 +267,62 @@ void RegAlloc::FlushABICallerSaved() {
ASSERT(!ABI_ALL_CALLER_SAVED[JitStateReg()]);
}
Gen::X64Reg RegAlloc::GetX64For(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
RegAlloc::X64State& RegAlloc::GetState(Gen::X64Reg x64_reg) {
ASSERT(x64_reg_to_index.find(x64_reg) != x64_reg_to_index.end());
const size_t x64_index = x64_reg_to_index.at(x64_reg);
ASSERT(x64_gpr[x64_index].x64_reg == x64_reg);
return x64_gpr[x64_index];
}
ASSERT(arm_state.location.IsSimpleReg());
const RegAlloc::X64State& RegAlloc::GetState(Gen::X64Reg x64_reg) const {
ASSERT(x64_reg_to_index.find(x64_reg) != x64_reg_to_index.end());
const size_t x64_index = x64_reg_to_index.at(x64_reg);
ASSERT(x64_gpr[x64_index].x64_reg == x64_reg);
return x64_gpr[x64_index];
}
RegAlloc::ArmState& RegAlloc::GetState(ArmReg arm_reg) {
ASSERT(IsValidArmReg(arm_reg));
const size_t arm_index = static_cast<size_t>(arm_reg);
ASSERT(arm_gpr[arm_index].arm_reg == arm_reg);
return arm_gpr[arm_index];
}
const RegAlloc::ArmState& RegAlloc::GetState(ArmReg arm_reg) const {
ASSERT(IsValidArmReg(arm_reg));
const size_t arm_index = static_cast<size_t>(arm_reg);
ASSERT(arm_gpr[arm_index].arm_reg == arm_reg);
return arm_gpr[arm_index];
}
void RegAlloc::AssertStatesConsistent(const X64State& x64_state, const ArmState& arm_state) const {
ASSERT(arm_state.locked == x64_state.locked);
ASSERT(arm_state.IsInX64Register());
ASSERT(arm_state.location.GetSimpleReg() == x64_state.x64_reg);
ASSERT(x64_state.arm_reg == arm_state.arm_reg);
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
}
Gen::X64Reg RegAlloc::GetX64For(ArmReg arm_reg) const {
const ArmState& arm_state = GetState(arm_reg);
ASSERT(arm_state.IsInX64Register());
const Gen::X64Reg x64_reg = arm_state.location.GetSimpleReg();
const X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == arm_reg);
AssertStatesConsistent(GetState(x64_reg), arm_state);
return x64_reg;
}
bool RegAlloc::IsBoundToX64(ArmReg arm_reg) {
const ArmState& arm_state = arm_gpr[static_cast<unsigned>(arm_reg)];
return arm_state.location.IsSimpleReg();
}
Gen::X64Reg RegAlloc::AllocTemp() {
const Gen::X64Reg x64_reg = AllocReg();
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(x64_reg);
ASSERT(!x64_state.locked && x64_state.state == X64State::State::Free);
x64_state.locked = true;
x64_state.state = X64State::State::Temp;
@ -317,7 +330,7 @@ Gen::X64Reg RegAlloc::AllocTemp() {
}
void RegAlloc::UnlockTemp(Gen::X64Reg x64_reg) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(x64_reg)];
X64State& x64_state = GetState(x64_reg);
ASSERT(x64_state.locked);
ASSERT(x64_state.state == X64State::State::Temp);
@ -326,49 +339,41 @@ void RegAlloc::UnlockTemp(Gen::X64Reg x64_reg) {
x64_state.state = X64State::State::Free;
}
void RegAlloc::AssertNoLocked() {
for (size_t i = 0; i < arm_gpr.size(); i++) {
ArmState& arm_state = arm_gpr[i];
ASSERT(!arm_state.locked);
if (arm_state.location.IsSimpleReg()) {
X64State& x64_state = x64_gpr[x64_reg_to_index.at(arm_state.location.GetSimpleReg())];
ASSERT(x64_state.state == X64State::State::CleanArmReg || x64_state.state == X64State::State::DirtyArmReg);
ASSERT(x64_state.arm_reg == static_cast<ArmReg>(i));
void RegAlloc::AssertNoLocked() const {
ASSERT(std::all_of(arm_gpr.begin(), arm_gpr.end(), [&](const ArmState& arm_state) {
if (arm_state.IsInX64Register()) {
const X64State& x64_state = GetState(GetX64For(arm_state.arm_reg));
AssertStatesConsistent(x64_state, arm_state);
}
}
return !arm_state.locked;
}));
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
ASSERT(!x64_state.locked);
}
ASSERT(std::all_of(x64_gpr.begin(), x64_gpr.end(), [](const X64State& x64_state) {
ASSERT(x64_state.state != X64State::State::Temp); // Temp is never unlocked.
return !x64_state.locked;
}));
}
Gen::X64Reg RegAlloc::AllocReg() {
// TODO: Improve with an actual register allocator as this is terrible.
// First check to see if there anything free.
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
auto free_x64 = std::find_if(x64_gpr.begin(), x64_gpr.end(), [](const auto& x64_state) {
return !x64_state.locked && x64_state.state == X64State::State::Free;
});
if (x64_state.locked)
continue;
ASSERT(x64_state.state != X64State::State::Temp); // This can never happen.
if (x64_state.state == X64State::State::Free) {
return i.first;
}
if (free_x64 != x64_gpr.end()) {
return free_x64->x64_reg;
}
// Otherwise flush something.
for (auto i : x64_reg_to_index) {
X64State& x64_state = x64_gpr[i.second];
auto flushable_x64 = std::find_if(x64_gpr.begin(), x64_gpr.end(), [](const auto& x64_state) {
return !x64_state.locked;
});
if (x64_state.locked)
continue;
FlushX64(i.first);
return i.first;
if (flushable_x64 != x64_gpr.end()) {
FlushX64(flushable_x64->x64_reg);
return flushable_x64->x64_reg;
}
ASSERT_MSG(false, "Ran out of x64 registers");

View File

@ -5,6 +5,7 @@
#pragma once
#include <array>
#include <map>
#include "common/common_types.h"
#include "common/common_funcs.h"
@ -20,49 +21,6 @@ namespace JitX64 {
// (Designed so it should be simple to implement later.)
class RegAlloc final {
private:
struct ArmState {
/**
* Where is the current value of this register? There are two cases:
* - In an x64 register, in which case location.IsSimpleReg() == true.
* - In memory in ARMul_State, in which case location == MJitStateCpuReg(arm_reg).
*/
Gen::OpArg location = { 0, 0, Gen::INVALID_REG, Gen::INVALID_REG };
bool locked = false;
};
/**
* Possible states of X64State:
*
* Free (locked must be false): This x64 reg is free to be allocated for any purpose.
* Temp (locked must be true): This x64 reg is being used as a temporary in a calculation.
* DirtyArmReg (arm_reg is valid): This x64 reg is bound to an ARM reg.
* It is marked as dirty (value has changed).
* This value MUST be flushed back to memory.
* CleanArmReg (arm_reg is valid): This x64 reg is bound to an ARM reg.
* It hasn't been written to (i.e.: value is still the same as the in-memory version).
* This value WILL NOT be flushed back to memory.
* UserManuallyLocked: User has called LockX64 on this register. User must call UnlockX64 to unlock.
*/
struct X64State {
enum class State {
Free,
Temp,
DirtyArmReg,
CleanArmReg,
UserManuallyLocked
};
bool locked = false;
State state = State::Free;
ArmReg arm_reg = ArmReg::INVALID_REG; ///< Only holds a valid value when state == DirtyArmReg / CleanArmReg
};
std::array<ArmState, 16> arm_gpr;
std::array<X64State, 16> x64_gpr;
Gen::XEmitter* code = nullptr;
public:
RegAlloc() { Init(nullptr); }
@ -95,7 +53,7 @@ public:
*/
Gen::OpArg LockArmForReadWrite(ArmReg arm_reg) {
Gen::OpArg ret = LockArmForRead(arm_reg);
if (IsBoundToX64(arm_reg)) {
if (GetState(arm_reg).IsInX64Register()) {
MarkDirty(arm_reg);
}
return ret;
@ -171,13 +129,78 @@ public:
// Debug:
void AssertNoLocked();
void AssertNoLocked() const;
private:
struct ArmState {
ArmState() = default;
ArmState(ArmReg arm_reg, Gen::OpArg location, bool locked) : arm_reg(arm_reg), location(location), locked(locked) {}
/// Which register is this?
ArmReg arm_reg = ArmReg::INVALID_REG;
/**
* Where is the current value of this register? There are two cases:
* - In an x64 register, in which case location.IsSimpleReg() == true.
* - In memory in ARMul_State, in which case location == MJitStateCpuReg(arm_reg).
*/
Gen::OpArg location = { 0, 0, Gen::INVALID_REG, Gen::INVALID_REG };
/// Are we currently in-use?
bool locked = false;
bool IsInX64Register() const { return location.IsSimpleReg(); }
};
/**
* Possible states of X64State:
*
* Free (locked must be false): This x64 reg is free to be allocated for any purpose.
* Temp (locked must be true): This x64 reg is being used as a temporary in a calculation.
* DirtyArmReg (arm_reg is valid): This x64 reg is bound to an ARM reg.
* It is marked as dirty (value has changed).
* This value MUST be flushed back to memory.
* CleanArmReg (arm_reg is valid): This x64 reg is bound to an ARM reg.
* It hasn't been written to (i.e.: value is still the same as the in-memory version).
* This value WILL NOT be flushed back to memory.
* UserManuallyLocked: User has called LockX64 on this register. User must call UnlockX64 to unlock.
*/
struct X64State {
enum class State {
Free,
Temp,
DirtyArmReg,
CleanArmReg,
UserManuallyLocked
};
X64State() = default;
X64State(Gen::X64Reg x64_reg, bool locked, State state, ArmReg arm_reg) : x64_reg(x64_reg), locked(locked), state(state), arm_reg(arm_reg) {}
Gen::X64Reg x64_reg = Gen::INVALID_REG;
bool locked = false;
State state = State::Free;
ArmReg arm_reg = ArmReg::INVALID_REG; ///< Only holds a valid value when state == DirtyArmReg / CleanArmReg
};
std::array<ArmState, 16> arm_gpr;
std::array<X64State, 15> x64_gpr;
Gen::XEmitter* code = nullptr;
private:
static const std::map<Gen::X64Reg, size_t> x64_reg_to_index;
/// INTERNAL: Gets the X64State that corresponds to x64_reg.
X64State& GetState(Gen::X64Reg x64_reg);
const X64State& GetState(Gen::X64Reg x64_reg) const;
/// INTERNAL: Gets the ArmState that corresponds to arm_reg.
ArmState& GetState(ArmReg x64_reg);
const ArmState& GetState(ArmReg x64_reg) const;
/// INTERNAL: Checks consistency of the two states
void AssertStatesConsistent(const X64State& x64_state, const ArmState& arm_state) const;
/// INTERNAL: Gets the x64 register this ArmReg is currently bound to.
Gen::X64Reg GetX64For(ArmReg arm_reg);
/// INTERNAL: Is this ARM register currently in an x64 register?
bool IsBoundToX64(ArmReg arm_reg);
Gen::X64Reg GetX64For(ArmReg arm_reg) const;
/// INTERNAL: Marks register as dirty. Ensures that it is written back to memory if it's in a x64 register.
void MarkDirty(ArmReg arm_reg);
/// INTERNAL: Allocates a register that is free. Flushes registers that are not locked if necessary.