citra/src/core/memory.h

419 lines
14 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <cstddef>
#include <memory>
2016-06-27 17:42:42 +00:00
#include <string>
#include <vector>
2020-01-03 17:19:59 +00:00
#include <boost/serialization/array.hpp>
#include <boost/serialization/vector.hpp>
#include "common/common_types.h"
2020-01-04 22:39:54 +00:00
#include "common/memory_ref.h"
#include "core/mmio.h"
2019-02-01 17:43:55 +00:00
class ARM_Interface;
namespace Kernel {
class Process;
}
namespace AudioCore {
class DspInterface;
}
namespace Memory {
// Are defined in a system header
#undef PAGE_SIZE
#undef PAGE_MASK
/**
* Page size used by the ARM architecture. This is the smallest granularity with which memory can
* be mapped.
*/
const u32 PAGE_SIZE = 0x1000;
const u32 PAGE_MASK = PAGE_SIZE - 1;
const int PAGE_BITS = 12;
const std::size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - PAGE_BITS);
enum class PageType {
/// Page is unmapped and should cause an access error.
Unmapped,
/// Page is mapped to regular memory. This is the only type you can get pointers to.
Memory,
/// Page is mapped to regular memory, but also needs to check for rasterizer cache flushing and
/// invalidation
RasterizerCachedMemory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special,
};
struct SpecialRegion {
VAddr base;
u32 size;
MMIORegionPointer handler;
2019-08-06 14:59:31 +00:00
2020-01-03 17:19:59 +00:00
private:
2019-12-27 21:07:29 +00:00
template <class Archive>
void serialize(Archive& ar, const unsigned int file_version) {
ar& base;
ar& size;
ar& handler;
2019-08-06 14:59:31 +00:00
}
2020-01-03 17:19:59 +00:00
friend class boost::serialization::access;
};
/**
* A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
* fetching requirements when accessing. In the usual case of an access to regular memory, it only
* requires an indexed fetch and a check for NULL.
*/
struct PageTable {
/**
* Array of memory pointers backing each page. An entry can only be non-null if the
* corresponding entry in the `attributes` array is of type `Memory`.
*/
2020-01-04 22:39:54 +00:00
// The reason for this rigmarole is to keep the 'raw' and 'refs' arrays in sync.
// We need 'raw' for dynarmic and 'refs' for serialization
struct Pointers {
struct Entry {
Entry(Pointers& pointers_, VAddr idx_) : pointers(pointers_), idx(idx_) {}
Entry& operator=(MemoryRef value) {
2020-01-04 22:39:54 +00:00
pointers.raw[idx] = value.GetPtr();
pointers.refs[idx] = std::move(value);
return *this;
2020-01-04 22:39:54 +00:00
}
operator u8*() {
2020-01-04 22:39:54 +00:00
return pointers.raw[idx];
}
private:
Pointers& pointers;
VAddr idx;
};
Entry operator[](std::size_t idx) {
2020-01-04 22:39:54 +00:00
return Entry(*this, static_cast<VAddr>(idx));
}
private:
std::array<u8*, PAGE_TABLE_NUM_ENTRIES> raw;
std::array<MemoryRef, PAGE_TABLE_NUM_ENTRIES> refs;
friend struct PageTable;
};
Pointers pointers;
/**
* Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of
* type `Special`.
*/
std::vector<SpecialRegion> special_regions;
/**
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
* the corresponding entry in `pointers` MUST be set to null.
*/
std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes;
2020-01-03 17:19:59 +00:00
std::array<u8*, PAGE_TABLE_NUM_ENTRIES>& GetPointerArray() {
2020-01-04 22:39:54 +00:00
return pointers.raw;
}
void Clear();
2020-01-03 17:19:59 +00:00
private:
template <class Archive>
void serialize(Archive& ar, const unsigned int) {
2020-01-04 22:39:54 +00:00
ar& pointers.refs;
2020-01-03 17:19:59 +00:00
ar& special_regions;
ar& attributes;
for (std::size_t i = 0; i < PAGE_TABLE_NUM_ENTRIES; i++) {
2020-01-04 22:39:54 +00:00
pointers.raw[i] = pointers.refs[i].GetPtr();
}
2020-01-03 17:19:59 +00:00
}
friend class boost::serialization::access;
};
/// Physical memory regions as seen from the ARM11
enum : PAddr {
/// IO register area
IO_AREA_PADDR = 0x10100000,
2018-11-12 20:12:12 +00:00
IO_AREA_SIZE = 0x00400000, ///< IO area size (4MB)
IO_AREA_PADDR_END = IO_AREA_PADDR + IO_AREA_SIZE,
/// MPCore internal memory region
MPCORE_RAM_PADDR = 0x17E00000,
MPCORE_RAM_SIZE = 0x00002000, ///< MPCore internal memory size (8KB)
MPCORE_RAM_PADDR_END = MPCORE_RAM_PADDR + MPCORE_RAM_SIZE,
/// Video memory
VRAM_PADDR = 0x18000000,
VRAM_SIZE = 0x00600000, ///< VRAM size (6MB)
VRAM_PADDR_END = VRAM_PADDR + VRAM_SIZE,
/// New 3DS additional memory. Supposedly faster than regular FCRAM. Part of it can be used by
/// applications and system modules if mapped via the ExHeader.
N3DS_EXTRA_RAM_PADDR = 0x1F000000,
N3DS_EXTRA_RAM_SIZE = 0x00400000, ///< New 3DS additional memory size (4MB)
N3DS_EXTRA_RAM_PADDR_END = N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_SIZE,
/// DSP memory
DSP_RAM_PADDR = 0x1FF00000,
DSP_RAM_SIZE = 0x00080000, ///< DSP memory size (512KB)
DSP_RAM_PADDR_END = DSP_RAM_PADDR + DSP_RAM_SIZE,
/// AXI WRAM
AXI_WRAM_PADDR = 0x1FF80000,
AXI_WRAM_SIZE = 0x00080000, ///< AXI WRAM size (512KB)
AXI_WRAM_PADDR_END = AXI_WRAM_PADDR + AXI_WRAM_SIZE,
/// Main FCRAM
FCRAM_PADDR = 0x20000000,
FCRAM_SIZE = 0x08000000, ///< FCRAM size on the Old 3DS (128MB)
FCRAM_N3DS_SIZE = 0x10000000, ///< FCRAM size on the New 3DS (256MB)
FCRAM_PADDR_END = FCRAM_PADDR + FCRAM_SIZE,
FCRAM_N3DS_PADDR_END = FCRAM_PADDR + FCRAM_N3DS_SIZE,
};
2020-01-04 22:39:54 +00:00
enum class Region { FCRAM, VRAM, DSP, N3DS };
/// Virtual user-space memory regions
enum : VAddr {
/// Where the application text, data and bss reside.
PROCESS_IMAGE_VADDR = 0x00100000,
PROCESS_IMAGE_MAX_SIZE = 0x03F00000,
PROCESS_IMAGE_VADDR_END = PROCESS_IMAGE_VADDR + PROCESS_IMAGE_MAX_SIZE,
/// Area where IPC buffers are mapped onto.
IPC_MAPPING_VADDR = 0x04000000,
IPC_MAPPING_SIZE = 0x04000000,
IPC_MAPPING_VADDR_END = IPC_MAPPING_VADDR + IPC_MAPPING_SIZE,
/// Application heap (includes stack).
HEAP_VADDR = 0x08000000,
HEAP_SIZE = 0x08000000,
HEAP_VADDR_END = HEAP_VADDR + HEAP_SIZE,
/// Area where shared memory buffers are mapped onto.
SHARED_MEMORY_VADDR = 0x10000000,
SHARED_MEMORY_SIZE = 0x04000000,
SHARED_MEMORY_VADDR_END = SHARED_MEMORY_VADDR + SHARED_MEMORY_SIZE,
/// Maps 1:1 to an offset in FCRAM. Used for HW allocations that need to be linear in physical
/// memory.
LINEAR_HEAP_VADDR = 0x14000000,
LINEAR_HEAP_SIZE = 0x08000000,
LINEAR_HEAP_VADDR_END = LINEAR_HEAP_VADDR + LINEAR_HEAP_SIZE,
/// Maps 1:1 to New 3DS additional memory
N3DS_EXTRA_RAM_VADDR = 0x1E800000,
N3DS_EXTRA_RAM_VADDR_END = N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_SIZE,
/// Maps 1:1 to the IO register area.
IO_AREA_VADDR = 0x1EC00000,
IO_AREA_VADDR_END = IO_AREA_VADDR + IO_AREA_SIZE,
/// Maps 1:1 to VRAM.
VRAM_VADDR = 0x1F000000,
VRAM_VADDR_END = VRAM_VADDR + VRAM_SIZE,
/// Maps 1:1 to DSP memory.
DSP_RAM_VADDR = 0x1FF00000,
DSP_RAM_VADDR_END = DSP_RAM_VADDR + DSP_RAM_SIZE,
/// Read-only page containing kernel and system configuration values.
CONFIG_MEMORY_VADDR = 0x1FF80000,
CONFIG_MEMORY_SIZE = 0x00001000,
CONFIG_MEMORY_VADDR_END = CONFIG_MEMORY_VADDR + CONFIG_MEMORY_SIZE,
/// Usually read-only page containing mostly values read from hardware.
SHARED_PAGE_VADDR = 0x1FF81000,
SHARED_PAGE_SIZE = 0x00001000,
SHARED_PAGE_VADDR_END = SHARED_PAGE_VADDR + SHARED_PAGE_SIZE,
/// Area where TLS (Thread-Local Storage) buffers are allocated.
TLS_AREA_VADDR = 0x1FF82000,
TLS_ENTRY_SIZE = 0x200,
/// Equivalent to LINEAR_HEAP_VADDR, but expanded to cover the extra memory in the New 3DS.
NEW_LINEAR_HEAP_VADDR = 0x30000000,
NEW_LINEAR_HEAP_SIZE = 0x10000000,
NEW_LINEAR_HEAP_VADDR_END = NEW_LINEAR_HEAP_VADDR + NEW_LINEAR_HEAP_SIZE,
};
2016-04-16 22:57:57 +00:00
/**
* Flushes any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushRegion(PAddr start, u32 size);
/**
* Invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerInvalidateRegion(PAddr start, u32 size);
2016-04-16 22:57:57 +00:00
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given region.
*/
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size);
enum class FlushMode {
/// Write back modified surfaces to RAM
Flush,
/// Remove region from the cache
Invalidate,
/// Write back modified surfaces to RAM, and also remove them from the cache
FlushAndInvalidate,
};
/**
* Flushes and invalidates all memory in the rasterizer cache and removes any leftover state
* If flush is true, the rasterizer should flush any cached resources to RAM before clearing
*/
void RasterizerClearAll(bool flush);
/**
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual
* address region.
*/
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode);
2018-11-21 03:38:47 +00:00
class MemorySystem {
public:
MemorySystem();
~MemorySystem();
/**
* Maps an allocated buffer onto a region of the emulated process address space.
*
* @param page_table The page table of the emulated process.
* @param base The address to start mapping at. Must be page-aligned.
* @param size The amount of bytes to map. Must be page-aligned.
* @param target Buffer with the memory backing the mapping. Must be of length at least `size`.
*/
2020-01-04 22:39:54 +00:00
void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, MemoryRef target);
/**
* Maps a region of the emulated process address space as a IO region.
* @param page_table The page table of the emulated process.
* @param base The address to start mapping at. Must be page-aligned.
* @param size The amount of bytes to map. Must be page-aligned.
* @param mmio_handler The handler that backs the mapping.
*/
void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler);
void UnmapRegion(PageTable& page_table, VAddr base, u32 size);
/// Currently active page table
2020-01-05 16:35:01 +00:00
void SetCurrentPageTable(std::shared_ptr<PageTable> page_table);
std::shared_ptr<PageTable> GetCurrentPageTable() const;
u8 Read8(VAddr addr);
u16 Read16(VAddr addr);
u32 Read32(VAddr addr);
u64 Read64(VAddr addr);
void Write8(VAddr addr, u8 data);
void Write16(VAddr addr, u16 data);
void Write32(VAddr addr, u32 data);
void Write64(VAddr addr, u64 data);
void ReadBlock(const Kernel::Process& process, VAddr src_addr, void* dest_buffer,
std::size_t size);
void WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer,
std::size_t size);
void ZeroBlock(const Kernel::Process& process, VAddr dest_addr, const std::size_t size);
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
std::size_t size);
void CopyBlock(const Kernel::Process& dest_process, const Kernel::Process& src_process,
VAddr dest_addr, VAddr src_addr, std::size_t size);
std::string ReadCString(VAddr vaddr, std::size_t max_length);
/// Gets a pointer to the memory region beginning at the specified physical address.
u8* GetPhysicalPointer(PAddr address);
/// Gets a pointer to the memory region beginning at the specified physical address.
const u8* GetPhysicalPointer(PAddr address) const;
MemoryRef GetPhysicalRef(PAddr address) const;
2020-01-04 22:39:54 +00:00
2018-11-21 18:51:12 +00:00
u8* GetPointer(VAddr vaddr);
const u8* GetPointer(VAddr vaddr) const;
2018-11-21 18:51:12 +00:00
bool IsValidPhysicalAddress(PAddr paddr) const;
/// Gets offset in FCRAM from a pointer inside FCRAM range
u32 GetFCRAMOffset(const u8* pointer) const;
/// Gets pointer in FCRAM with given offset
u8* GetFCRAMPointer(std::size_t offset);
/// Gets pointer in FCRAM with given offset
const u8* GetFCRAMPointer(std::size_t offset) const;
2020-01-04 22:39:54 +00:00
/// Gets a serializable ref to FCRAM with the given offset
MemoryRef GetFCRAMRef(std::size_t offset) const;
2020-01-04 22:39:54 +00:00
/**
* Mark each page touching the region as cached.
*/
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached);
/// Registers page table for rasterizer cache marking
2020-01-05 16:35:01 +00:00
void RegisterPageTable(std::shared_ptr<PageTable> page_table);
/// Unregisters page table for rasterizer cache marking
2020-01-05 16:35:01 +00:00
void UnregisterPageTable(std::shared_ptr<PageTable> page_table);
void SetDSP(AudioCore::DspInterface& dsp);
private:
template <typename T>
T Read(const VAddr vaddr);
template <typename T>
void Write(const VAddr vaddr, const T data);
2018-11-21 21:18:23 +00:00
/**
* Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory.
* This is used to access the memory where the page pointer is nullptr due to rasterizer cache.
* Since the cache only happens on linear heap or VRAM, we know the exact physical address and
* pointer of such virtual address
*/
MemoryRef GetPointerForRasterizerCache(VAddr addr) const;
2018-11-21 21:18:23 +00:00
2020-01-04 22:39:54 +00:00
void MapPages(PageTable& page_table, u32 base, u32 size, MemoryRef memory, PageType type);
class Impl;
2018-11-21 21:18:23 +00:00
std::unique_ptr<Impl> impl;
2019-08-07 01:53:56 +00:00
friend class boost::serialization::access;
2019-12-27 21:07:29 +00:00
template <class Archive>
void serialize(Archive& ar, const unsigned int file_version);
2020-01-04 22:39:54 +00:00
public:
template <Region R>
class BackingMemImpl;
2018-11-21 03:38:47 +00:00
};
/// Determines if the given VAddr is valid for the specified process.
bool IsValidVirtualAddress(const Kernel::Process& process, VAddr vaddr);
} // namespace Memory
2020-01-04 22:39:54 +00:00
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::FCRAM>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::VRAM>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::DSP>)
BOOST_CLASS_EXPORT_KEY(Memory::MemorySystem::BackingMemImpl<Memory::Region::N3DS>)