citra/src/audio_core/lle/lle.cpp

492 lines
16 KiB
C++
Raw Normal View History

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
2018-12-20 00:45:22 +00:00
#include <atomic>
#include <thread>
#include <teakra/teakra.h>
#include "audio_core/lle/lle.h"
2018-12-06 12:42:07 +00:00
#include "common/assert.h"
#include "common/bit_field.h"
2018-12-06 12:42:07 +00:00
#include "common/swap.h"
2018-12-20 00:45:22 +00:00
#include "common/thread.h"
#include "core/core.h"
#include "core/core_timing.h"
2018-12-20 00:45:22 +00:00
#include "core/hle/lock.h"
#include "core/hle/service/dsp/dsp_dsp.h"
namespace AudioCore {
enum class SegmentType : u8 {
ProgramA = 0,
ProgramB = 1,
Data = 2,
};
class Dsp1 {
public:
explicit Dsp1(const std::vector<u8>& raw);
struct Header {
std::array<u8, 0x100> signature;
std::array<u8, 0x4> magic;
u32_le binary_size;
u16_le memory_layout;
INSERT_PADDING_BYTES(3);
SegmentType special_segment_type;
u8 num_segments;
union {
BitField<0, 1, u8> recv_data_on_start;
BitField<1, 1, u8> load_special_segment;
};
u32_le special_segment_address;
u32_le special_segment_size;
u64_le zero;
struct Segment {
u32_le offset;
u32_le address;
u32_le size;
INSERT_PADDING_BYTES(3);
SegmentType memory_type;
std::array<u8, 0x20> sha256;
};
std::array<Segment, 10> segments;
};
static_assert(sizeof(Header) == 0x300);
struct Segment {
std::vector<u8> data;
SegmentType memory_type;
u32 target;
};
std::vector<Segment> segments;
bool recv_data_on_start;
};
Dsp1::Dsp1(const std::vector<u8>& raw) {
Header header;
std::memcpy(&header, raw.data(), sizeof(header));
recv_data_on_start = header.recv_data_on_start != 0;
for (u32 i = 0; i < header.num_segments; ++i) {
Segment segment;
segment.data =
std::vector<u8>(raw.begin() + header.segments[i].offset,
raw.begin() + header.segments[i].offset + header.segments[i].size);
segment.memory_type = header.segments[i].memory_type;
segment.target = header.segments[i].address;
segments.push_back(std::move(segment));
}
}
2018-12-06 12:42:07 +00:00
struct PipeStatus {
u16_le waddress;
u16_le bsize;
u16_le read_bptr;
u16_le write_bptr;
u8 slot_index;
u8 flags;
static constexpr u16 WrapBit = 0x8000;
static constexpr u16 PtrMask = 0x7FFF;
bool IsFull() const {
return (read_bptr ^ write_bptr) == WrapBit;
}
bool IsEmpty() const {
return (read_bptr ^ write_bptr) == 0;
}
/*
* IsWrapped: Are read and write pointers not in the same pass.
* false: ----[xxxx]----
* true: xxxx]----[xxxx (data is wrapping around the end)
*/
bool IsWrapped() const {
return (read_bptr ^ write_bptr) >= WrapBit;
}
2018-12-06 12:42:07 +00:00
};
static_assert(sizeof(PipeStatus) == 10);
enum class PipeDirection : u8 {
DSPtoCPU = 0,
CPUtoDSP = 1,
};
static u8 PipeIndexToSlotIndex(u8 pipe_index, PipeDirection direction) {
return (pipe_index << 1) + static_cast<u8>(direction);
2018-12-06 12:42:07 +00:00
}
struct DspLle::Impl final {
2018-12-20 00:45:22 +00:00
Impl(bool multithread) : multithread(multithread) {
teakra_slice_event = Core::System::GetInstance().CoreTiming().RegisterEvent(
"DSP slice", [this](u64, int late) { TeakraSliceEvent(static_cast<u64>(late)); });
}
2018-12-20 00:45:22 +00:00
~Impl() {
StopTeakraThread();
}
Teakra::Teakra teakra;
2018-12-06 12:42:07 +00:00
u16 pipe_base_waddr = 0;
2018-12-06 12:22:31 +00:00
bool semaphore_signaled = false;
bool data_signaled = false;
Core::TimingEventType* teakra_slice_event;
2018-12-20 00:45:22 +00:00
std::atomic<bool> loaded = false;
const bool multithread;
std::thread teakra_thread;
Common::Barrier teakra_slice_barrier{2};
std::atomic<bool> stop_signal = false;
std::size_t stop_generation;
static constexpr u32 DspDataOffset = 0x40000;
static constexpr u32 TeakraSlice = 16384;
2018-12-20 00:45:22 +00:00
void TeakraThread() {
while (true) {
teakra.Run(TeakraSlice);
teakra_slice_barrier.Sync();
if (stop_signal) {
if (stop_generation == teakra_slice_barrier.Generation())
break;
}
}
stop_signal = false;
}
void StopTeakraThread() {
if (teakra_thread.joinable()) {
stop_generation = teakra_slice_barrier.Generation() + 1;
stop_signal = true;
teakra_slice_barrier.Sync();
teakra_thread.join();
}
}
2018-12-06 12:22:31 +00:00
void RunTeakraSlice() {
2018-12-20 00:45:22 +00:00
if (multithread) {
teakra_slice_barrier.Sync();
} else {
teakra.Run(TeakraSlice);
}
2018-12-06 12:22:31 +00:00
}
2018-12-06 12:42:07 +00:00
void TeakraSliceEvent(u64 late) {
RunTeakraSlice();
u64 next = TeakraSlice * 2; // DSP runs at clock rate half of the CPU rate
if (next < late)
next = 0;
else
next -= late;
Core::System::GetInstance().CoreTiming().ScheduleEvent(next, teakra_slice_event, 0);
}
2018-12-06 12:42:07 +00:00
u8* GetDspDataPointer(u32 baddr) {
auto& memory = teakra.GetDspMemory();
return &memory[DspDataOffset + baddr];
2018-12-06 12:42:07 +00:00
}
const u8* GetDspDataPointer(u32 baddr) const {
auto& memory = teakra.GetDspMemory();
return &memory[DspDataOffset + baddr];
}
PipeStatus GetPipeStatus(u8 pipe_index, PipeDirection direction) const {
2018-12-06 12:42:07 +00:00
u8 slot_index = PipeIndexToSlotIndex(pipe_index, direction);
PipeStatus pipe_status;
std::memcpy(&pipe_status,
GetDspDataPointer(pipe_base_waddr * 2 + slot_index * sizeof(PipeStatus)),
sizeof(PipeStatus));
ASSERT(pipe_status.slot_index == slot_index);
return pipe_status;
}
void UpdatePipeStatus(const PipeStatus& pipe_status) {
u8 slot_index = pipe_status.slot_index;
u8* status_address =
GetDspDataPointer(pipe_base_waddr * 2 + slot_index * sizeof(PipeStatus));
if (slot_index % 2 == 0) {
std::memcpy(status_address + 4, &pipe_status.read_bptr, sizeof(u16));
} else {
std::memcpy(status_address + 6, &pipe_status.write_bptr, sizeof(u16));
}
}
void WritePipe(u8 pipe_index, const std::vector<u8>& data) {
PipeStatus pipe_status = GetPipeStatus(pipe_index, PipeDirection::CPUtoDSP);
bool need_update = false;
const u8* buffer_ptr = data.data();
u16 bsize = static_cast<u16>(data.size());
2018-12-06 12:42:07 +00:00
while (bsize != 0) {
ASSERT_MSG(!pipe_status.IsFull(), "Pipe is Full");
2018-12-06 12:42:07 +00:00
u16 write_bend;
if (pipe_status.IsWrapped())
write_bend = pipe_status.read_bptr & PipeStatus::PtrMask;
2018-12-06 12:42:07 +00:00
else
write_bend = pipe_status.bsize;
u16 write_bbegin = pipe_status.write_bptr & PipeStatus::PtrMask;
2018-12-06 12:42:07 +00:00
ASSERT_MSG(write_bend > write_bbegin,
"Pipe is in inconsistent state: end {:04X} <= begin {:04X}, size {:04X}",
write_bend, write_bbegin, pipe_status.bsize);
u16 write_bsize = std::min<u16>(bsize, write_bend - write_bbegin);
std::memcpy(GetDspDataPointer(pipe_status.waddress * 2 + write_bbegin), buffer_ptr,
write_bsize);
buffer_ptr += write_bsize;
pipe_status.write_bptr += write_bsize;
bsize -= write_bsize;
ASSERT_MSG((pipe_status.write_bptr & PipeStatus::PtrMask) <= pipe_status.bsize,
2018-12-06 12:42:07 +00:00
"Pipe is in inconsistent state: write > size");
if ((pipe_status.write_bptr & PipeStatus::PtrMask) == pipe_status.bsize) {
pipe_status.write_bptr &= PipeStatus::WrapBit;
pipe_status.write_bptr ^= PipeStatus::WrapBit;
2018-12-06 12:42:07 +00:00
}
need_update = true;
}
if (need_update) {
UpdatePipeStatus(pipe_status);
while (!teakra.SendDataIsEmpty(2))
RunTeakraSlice();
teakra.SendData(2, pipe_status.slot_index);
}
}
std::vector<u8> ReadPipe(u8 pipe_index, u16 bsize) {
PipeStatus pipe_status = GetPipeStatus(pipe_index, PipeDirection::DSPtoCPU);
bool need_update = false;
std::vector<u8> data(bsize);
u8* buffer_ptr = data.data();
while (bsize != 0) {
ASSERT_MSG(!pipe_status.IsEmpty(), "Pipe is empty");
u16 read_bend;
if (pipe_status.IsWrapped()) {
read_bend = pipe_status.bsize;
} else {
read_bend = pipe_status.write_bptr & PipeStatus::PtrMask;
}
u16 read_bbegin = pipe_status.read_bptr & PipeStatus::PtrMask;
ASSERT(read_bend > read_bbegin);
u16 read_bsize = std::min<u16>(bsize, read_bend - read_bbegin);
std::memcpy(buffer_ptr, GetDspDataPointer(pipe_status.waddress * 2 + read_bbegin),
read_bsize);
buffer_ptr += read_bsize;
pipe_status.read_bptr += read_bsize;
bsize -= read_bsize;
ASSERT_MSG((pipe_status.read_bptr & PipeStatus::PtrMask) <= pipe_status.bsize,
"Pipe is in inconsistent state: read > size");
if ((pipe_status.read_bptr & PipeStatus::PtrMask) == pipe_status.bsize) {
pipe_status.read_bptr &= PipeStatus::WrapBit;
pipe_status.read_bptr ^= PipeStatus::WrapBit;
}
need_update = true;
}
if (need_update) {
UpdatePipeStatus(pipe_status);
while (!teakra.SendDataIsEmpty(2))
RunTeakraSlice();
teakra.SendData(2, pipe_status.slot_index);
}
return data;
}
u16 GetPipeReadableSize(u8 pipe_index) const {
PipeStatus pipe_status = GetPipeStatus(pipe_index, PipeDirection::DSPtoCPU);
u16 size = pipe_status.write_bptr - pipe_status.read_bptr;
if (pipe_status.IsWrapped()) {
size += pipe_status.bsize;
}
return size & PipeStatus::PtrMask;
}
void LoadComponent(const std::vector<u8>& buffer) {
if (loaded) {
LOG_ERROR(Audio_DSP, "Component already loaded!");
return;
}
teakra.Reset();
Dsp1 dsp(buffer);
auto& dsp_memory = teakra.GetDspMemory();
u8* program = dsp_memory.data();
u8* data = dsp_memory.data() + DspDataOffset;
for (const auto& segment : dsp.segments) {
if (segment.memory_type == SegmentType::ProgramA ||
segment.memory_type == SegmentType::ProgramB) {
std::memcpy(program + segment.target * 2, segment.data.data(), segment.data.size());
} else if (segment.memory_type == SegmentType::Data) {
std::memcpy(data + segment.target * 2, segment.data.data(), segment.data.size());
}
}
// TODO: load special segment
Core::System::GetInstance().CoreTiming().ScheduleEvent(TeakraSlice, teakra_slice_event, 0);
2018-12-20 00:45:22 +00:00
if (multithread) {
teakra_thread = std::thread(&Impl::TeakraThread, this);
}
// Wait for initialization
if (dsp.recv_data_on_start) {
for (u8 i = 0; i < 3; ++i) {
do {
while (!teakra.RecvDataIsReady(i))
RunTeakraSlice();
} while (teakra.RecvData(i) != 1);
}
}
// Get pipe base address
while (!teakra.RecvDataIsReady(2))
RunTeakraSlice();
pipe_base_waddr = teakra.RecvData(2);
loaded = true;
}
void UnloadComponent() {
if (!loaded) {
LOG_ERROR(Audio_DSP, "Component not loaded!");
return;
}
2018-12-20 00:45:22 +00:00
loaded = false;
// Send finalization signal via command/reply register 2
constexpr u16 FinalizeSignal = 0x8000;
while (!teakra.SendDataIsEmpty(2))
RunTeakraSlice();
teakra.SendData(2, FinalizeSignal);
// Wait for completion
while (!teakra.RecvDataIsReady(2))
RunTeakraSlice();
teakra.RecvData(2); // discard the value
Core::System::GetInstance().CoreTiming().UnscheduleEvent(teakra_slice_event, 0);
2018-12-20 00:45:22 +00:00
StopTeakraThread();
}
};
2018-12-06 12:22:31 +00:00
u16 DspLle::RecvData(u32 register_number) {
while (!impl->teakra.RecvDataIsReady(register_number)) {
impl->RunTeakraSlice();
}
return impl->teakra.RecvData(static_cast<u8>(register_number));
}
bool DspLle::RecvDataIsReady(u32 register_number) const {
return impl->teakra.RecvDataIsReady(register_number);
}
void DspLle::SetSemaphore(u16 semaphore_value) {
impl->teakra.SetSemaphore(semaphore_value);
}
std::vector<u8> DspLle::PipeRead(DspPipe pipe_number, u32 length) {
return impl->ReadPipe(static_cast<u8>(pipe_number), static_cast<u16>(length));
}
std::size_t DspLle::GetPipeReadableSize(DspPipe pipe_number) const {
return impl->GetPipeReadableSize(static_cast<u8>(pipe_number));
}
2018-12-06 12:42:07 +00:00
void DspLle::PipeWrite(DspPipe pipe_number, const std::vector<u8>& buffer) {
impl->WritePipe(static_cast<u8>(pipe_number), buffer);
}
std::array<u8, Memory::DSP_RAM_SIZE>& DspLle::GetDspMemory() {
return impl->teakra.GetDspMemory();
}
void DspLle::SetServiceToInterrupt(std::weak_ptr<Service::DSP::DSP_DSP> dsp) {
2018-12-20 00:45:22 +00:00
impl->teakra.SetRecvDataHandler(0, [this, dsp]() {
if (!impl->loaded)
return;
std::lock_guard lock(HLE::g_hle_lock);
if (auto locked = dsp.lock()) {
locked->SignalInterrupt(Service::DSP::DSP_DSP::InterruptType::Zero,
static_cast<DspPipe>(0));
}
});
2018-12-20 00:45:22 +00:00
impl->teakra.SetRecvDataHandler(1, [this, dsp]() {
if (!impl->loaded)
return;
std::lock_guard lock(HLE::g_hle_lock);
if (auto locked = dsp.lock()) {
locked->SignalInterrupt(Service::DSP::DSP_DSP::InterruptType::One,
static_cast<DspPipe>(0));
}
});
auto ProcessPipeEvent = [this, dsp](bool event_from_data) {
if (!impl->loaded)
return;
auto& teakra = impl->teakra;
if (event_from_data) {
impl->data_signaled = true;
} else {
if ((teakra.GetSemaphore() & 0x8000) == 0)
return;
impl->semaphore_signaled = true;
}
if (impl->semaphore_signaled && impl->data_signaled) {
impl->semaphore_signaled = impl->data_signaled = false;
u16 slot = teakra.RecvData(2);
u16 side = slot % 2;
u16 pipe = slot / 2;
ASSERT(pipe < 16);
if (side != static_cast<u16>(PipeDirection::DSPtoCPU))
return;
if (pipe == 0) {
// pipe 0 is for debug. 3DS automatically drains this pipe and discards the data
impl->ReadPipe(pipe, impl->GetPipeReadableSize(pipe));
} else {
2018-12-20 00:45:22 +00:00
std::lock_guard lock(HLE::g_hle_lock);
if (auto locked = dsp.lock()) {
locked->SignalInterrupt(Service::DSP::DSP_DSP::InterruptType::Pipe,
static_cast<DspPipe>(pipe));
}
}
}
};
impl->teakra.SetRecvDataHandler(2, [ProcessPipeEvent]() { ProcessPipeEvent(true); });
impl->teakra.SetSemaphoreHandler([ProcessPipeEvent]() { ProcessPipeEvent(false); });
}
void DspLle::LoadComponent(const std::vector<u8>& buffer) {
impl->LoadComponent(buffer);
}
void DspLle::UnloadComponent() {
impl->UnloadComponent();
}
2018-12-20 00:45:22 +00:00
DspLle::DspLle(Memory::MemorySystem& memory, bool multithread)
: impl(std::make_unique<Impl>(multithread)) {
Teakra::AHBMCallback ahbm;
ahbm.read8 = [&memory](u32 address) -> u8 {
return *memory.GetFCRAMPointer(address - Memory::FCRAM_PADDR);
};
ahbm.write8 = [&memory](u32 address, u8 value) {
*memory.GetFCRAMPointer(address - Memory::FCRAM_PADDR) = value;
};
impl->teakra.SetAHBMCallback(ahbm);
2020-01-28 14:19:36 +00:00
impl->teakra.SetAudioCallback(
[this](std::array<s16, 2> sample) { OutputSample(std::move(sample)); });
}
DspLle::~DspLle() = default;
} // namespace AudioCore