Laika/lib/vendor/hashmap.c

981 lines
30 KiB
C

// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#include "hashmap.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static void *(*_malloc)(size_t) = NULL;
static void *(*_realloc)(void *, size_t) = NULL;
static void (*_free)(void *) = NULL;
// hashmap_set_allocator allows for configuring a custom allocator for
// all hashmap library operations. This function, if needed, should be called
// only once at startup and a prior to calling hashmap_new().
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
{
_malloc = malloc;
_free = free;
}
#define panic(_msg_) { \
fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__); \
exit(1); \
}
struct bucket {
uint64_t hash:48;
uint64_t dib:16;
};
// hashmap is an open addressed hash map using robinhood hashing.
struct hashmap {
void *(*malloc)(size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
bool oom;
size_t elsize;
size_t cap;
uint64_t seed0;
uint64_t seed1;
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
int (*compare)(const void *a, const void *b, void *udata);
void (*elfree)(void *item);
void *udata;
size_t bucketsz;
size_t nbuckets;
size_t count;
size_t mask;
size_t growat;
size_t shrinkat;
void *buckets;
void *spare;
void *edata;
};
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
return (struct bucket*)(((char*)map->buckets)+(map->bucketsz*index));
}
static void *bucket_item(struct bucket *entry) {
return ((char*)entry)+sizeof(struct bucket);
}
static uint64_t get_hash(struct hashmap *map, const void *key) {
return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
}
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
// See hashmap_new for more information information
struct hashmap *hashmap_new_with_allocator(
void *(*_malloc)(size_t),
void *(*_realloc)(void*, size_t),
void (*_free)(void*),
size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
{
_malloc = _malloc ? _malloc : malloc;
_realloc = _realloc ? _realloc : realloc;
_free = _free ? _free : free;
int ncap = 16;
if (cap < ncap) {
cap = ncap;
} else {
while (ncap < cap) {
ncap *= 2;
}
cap = ncap;
}
size_t bucketsz = sizeof(struct bucket) + elsize;
while (bucketsz & (sizeof(uintptr_t)-1)) {
bucketsz++;
}
// hashmap + spare + edata
size_t size = sizeof(struct hashmap)+bucketsz*2;
struct hashmap *map = _malloc(size);
if (!map) {
return NULL;
}
memset(map, 0, sizeof(struct hashmap));
map->elsize = elsize;
map->bucketsz = bucketsz;
map->seed0 = seed0;
map->seed1 = seed1;
map->hash = hash;
map->compare = compare;
map->elfree = elfree;
map->udata = udata;
map->spare = ((char*)map)+sizeof(struct hashmap);
map->edata = (char*)map->spare+bucketsz;
map->cap = cap;
map->nbuckets = cap;
map->mask = map->nbuckets-1;
map->buckets = _malloc(map->bucketsz*map->nbuckets);
if (!map->buckets) {
_free(map);
return NULL;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
map->malloc = _malloc;
map->realloc = _realloc;
map->free = _free;
return map;
}
// hashmap_new returns a new hash map.
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or retrieved will be this size.
// Param `cap` is the default lower capacity of the hashmap. Setting this to
// zero will default to 16.
// Params `seed0` and `seed1` are optional seed values that are passed to the
// following `hash` function. These can be any value you wish but it's often
// best to use randomly generated values.
// Param `hash` is a function that generates a hash value for an item. It's
// important that you provide a good hash function, otherwise it will perform
// poorly or be vulnerable to Denial-of-service attacks. This implementation
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
// Param `compare` is a function that compares items in the tree. See the
// qsort stdlib function for an example of how this function works.
// The hashmap must be freed with hashmap_free().
// Param `elfree` is a function that frees a specific item. This should be NULL
// unless you're storing some kind of reference data in the hash.
struct hashmap *hashmap_new(size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
{
return hashmap_new_with_allocator(
(_malloc?_malloc:malloc),
(_realloc?_realloc:realloc),
(_free?_free:free),
elsize, cap, seed0, seed1, hash, compare, elfree, udata
);
}
static void free_elements(struct hashmap *map) {
if (map->elfree) {
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) map->elfree(bucket_item(bucket));
}
}
}
// hashmap_clear quickly clears the map.
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
// When the update_cap is provided, the map's capacity will be updated to match
// the currently number of allocated buckets. This is an optimization to ensure
// that this operation does not perform any allocations.
void hashmap_clear(struct hashmap *map, bool update_cap) {
map->count = 0;
free_elements(map);
if (update_cap) {
map->cap = map->nbuckets;
} else if (map->nbuckets != map->cap) {
void *new_buckets = map->malloc(map->bucketsz*map->cap);
if (new_buckets) {
map->free(map->buckets);
map->buckets = new_buckets;
}
map->nbuckets = map->cap;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->mask = map->nbuckets-1;
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
}
static bool resize(struct hashmap *map, size_t new_cap) {
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
map->seed1, map->hash, map->compare,
map->elfree, map->udata);
if (!map2) {
return false;
}
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *entry = bucket_at(map, i);
if (!entry->dib) {
continue;
}
entry->dib = 1;
size_t j = entry->hash & map2->mask;
for (;;) {
struct bucket *bucket = bucket_at(map2, j);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
break;
}
if (bucket->dib < entry->dib) {
memcpy(map2->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map2->spare, map->bucketsz);
}
j = (j + 1) & map2->mask;
entry->dib += 1;
}
}
map->free(map->buckets);
map->buckets = map2->buckets;
map->nbuckets = map2->nbuckets;
map->mask = map2->mask;
map->growat = map2->growat;
map->shrinkat = map2->shrinkat;
map->free(map2);
return true;
}
// hashmap_set inserts or replaces an item in the hash map. If an item is
// replaced then it is returned otherwise NULL is returned. This operation
// may allocate memory. If the system is unable to allocate additional
// memory then NULL is returned and hashmap_oom() returns true.
void *hashmap_set(struct hashmap *map, const void *item) {
if (!item) {
panic("item is null");
}
map->oom = false;
if (map->count == map->growat) {
if (!resize(map, map->nbuckets*2)) {
map->oom = true;
return NULL;
}
}
struct bucket *entry = map->edata;
entry->hash = get_hash(map, item);
entry->dib = 1;
memcpy(bucket_item(entry), item, map->elsize);
size_t i = entry->hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
map->count++;
return NULL;
}
if (entry->hash == bucket->hash &&
map->compare(bucket_item(entry), bucket_item(bucket),
map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
return map->spare;
}
if (bucket->dib < entry->dib) {
memcpy(map->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map->spare, map->bucketsz);
}
i = (i + 1) & map->mask;
entry->dib += 1;
}
}
// hashmap_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
void *hashmap_get(struct hashmap *map, const void *key) {
if (!key) {
panic("key is null");
}
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
return bucket_item(bucket);
}
i = (i + 1) & map->mask;
}
}
// hashmap_probe returns the item in the bucket at position or NULL if an item
// is not set for that bucket. The position is 'moduloed' by the number of
// buckets in the hashmap.
void *hashmap_probe(struct hashmap *map, uint64_t position) {
size_t i = position & map->mask;
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
return bucket_item(bucket);
}
// hashmap_delete removes an item from the hash map and returns it. If the
// item is not found then NULL is returned.
void *hashmap_delete(struct hashmap *map, void *key) {
if (!key) {
panic("key is null");
}
map->oom = false;
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
bucket->dib = 0;
for (;;) {
struct bucket *prev = bucket;
i = (i + 1) & map->mask;
bucket = bucket_at(map, i);
if (bucket->dib <= 1) {
prev->dib = 0;
break;
}
memcpy(prev, bucket, map->bucketsz);
prev->dib--;
}
map->count--;
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
// Ignore the return value. It's ok for the resize operation to
// fail to allocate enough memory because a shrink operation
// does not change the integrity of the data.
resize(map, map->nbuckets/2);
}
return map->spare;
}
i = (i + 1) & map->mask;
}
}
// hashmap_count returns the number of items in the hash map.
size_t hashmap_count(struct hashmap *map) {
return map->count;
}
// hashmap_free frees the hash map
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
void hashmap_free(struct hashmap *map) {
if (!map) return;
free_elements(map);
map->free(map->buckets);
map->free(map);
}
// hashmap_oom returns true if the last hashmap_set() call failed due to the
// system being out of memory.
bool hashmap_oom(struct hashmap *map) {
return map->oom;
}
// hashmap_scan iterates over all items in the hash map
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata)
{
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) {
if (!iter(bucket_item(bucket), udata)) {
return false;
}
}
}
return true;
}
// hashmap_iter iterates one key at a time yielding a reference to an
// entry at each iteration. Useful to write simple loops and avoid writing
// dedicated callbacks and udata structures, as in hashmap_scan.
//
// map is a hash map handle. i is a pointer to a size_t cursor that
// should be initialized to 0 at the beginning of the loop. item is a void
// pointer pointer that is populated with the retrieved item. Note that this
// is NOT a copy of the item stored in the hash map and can be directly
// modified.
//
// Note that if hashmap_delete() is called on the hashmap being iterated,
// the buckets are rearranged and the iterator must be reset to 0, otherwise
// unexpected results may be returned after deletion.
//
// This function has not been tested for thread safety.
//
// The function returns true if an item was retrieved; false if the end of the
// iteration has been reached.
bool hashmap_iter(struct hashmap *map, size_t *i, void **item)
{
struct bucket *bucket;
do {
if (*i >= map->nbuckets) return false;
bucket = bucket_at(map, *i);
(*i)++;
} while (!bucket->dib);
*item = bucket_item(bucket);
return true;
}
//-----------------------------------------------------------------------------
// SipHash reference C implementation
//
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
// <jeanphilippe.aumasson@gmail.com>
// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// default: SipHash-2-4
//-----------------------------------------------------------------------------
static uint64_t SIP64(const uint8_t *in, const size_t inlen,
uint64_t seed0, uint64_t seed1)
{
#define U8TO64_LE(p) \
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
#define U64TO8_LE(p, v) \
{ U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
#define U32TO8_LE(p, v) \
{ (p)[0] = (uint8_t)((v)); \
(p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); \
(p)[3] = (uint8_t)((v) >> 24); }
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
#define SIPROUND \
{ v0 += v1; v1 = ROTL(v1, 13); \
v1 ^= v0; v0 = ROTL(v0, 32); \
v2 += v3; v3 = ROTL(v3, 16); \
v3 ^= v2; \
v0 += v3; v3 = ROTL(v3, 21); \
v3 ^= v0; \
v2 += v1; v1 = ROTL(v1, 17); \
v1 ^= v2; v2 = ROTL(v2, 32); }
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
for (; in != end; in += 8) {
uint64_t m = U8TO64_LE(in);
v3 ^= m;
SIPROUND; SIPROUND;
v0 ^= m;
}
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
switch (left) {
case 7: b |= ((uint64_t)in[6]) << 48;
case 6: b |= ((uint64_t)in[5]) << 40;
case 5: b |= ((uint64_t)in[4]) << 32;
case 4: b |= ((uint64_t)in[3]) << 24;
case 3: b |= ((uint64_t)in[2]) << 16;
case 2: b |= ((uint64_t)in[1]) << 8;
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
}
v3 ^= b;
SIPROUND; SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
uint64_t out = 0;
U64TO8_LE((uint8_t*)&out, b);
return out;
}
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
//
// Murmur3_86_128
//-----------------------------------------------------------------------------
static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
const uint8_t * data = (const uint8_t*)key;
const int nblocks = len / 16;
uint32_t h1 = seed;
uint32_t h2 = seed;
uint32_t h3 = seed;
uint32_t h4 = seed;
uint32_t c1 = 0x239b961b;
uint32_t c2 = 0xab0e9789;
uint32_t c3 = 0x38b34ae5;
uint32_t c4 = 0xa1e38b93;
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
for (int i = -nblocks; i; i++) {
uint32_t k1 = blocks[i*4+0];
uint32_t k2 = blocks[i*4+1];
uint32_t k3 = blocks[i*4+2];
uint32_t k4 = blocks[i*4+3];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
}
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
uint32_t k4 = 0;
switch(len & 15) {
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8;
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
case 8: k2 ^= tail[ 7] << 24;
case 7: k2 ^= tail[ 6] << 16;
case 6: k2 ^= tail[ 5] << 8;
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
case 4: k1 ^= tail[ 3] << 24;
case 3: k1 ^= tail[ 2] << 16;
case 2: k1 ^= tail[ 1] << 8;
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
};
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
((uint32_t*)out)[0] = h1;
((uint32_t*)out)[1] = h2;
((uint32_t*)out)[2] = h3;
((uint32_t*)out)[3] = h4;
}
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
uint64_t hashmap_sip(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
return SIP64((uint8_t*)data, len, seed0, seed1);
}
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
uint64_t hashmap_murmur(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
char out[16];
MM86128(data, len, seed0, &out);
return *(uint64_t*)out;
}
//==============================================================================
// TESTS AND BENCHMARKS
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
//==============================================================================
#ifdef HASHMAP_TEST
static size_t deepcount(struct hashmap *map) {
size_t count = 0;
for (size_t i = 0; i < map->nbuckets; i++) {
if (bucket_at(map, i)->dib) {
count++;
}
}
return count;
}
#pragma GCC diagnostic ignored "-Wextra"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <stdio.h>
#include "hashmap.h"
static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;
static void *xmalloc(size_t size) {
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
return NULL;
}
void *mem = malloc(sizeof(uintptr_t)+size);
assert(mem);
*(uintptr_t*)mem = size;
total_allocs++;
total_mem += size;
return (char*)mem+sizeof(uintptr_t);
}
static void xfree(void *ptr) {
if (ptr) {
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
free((char*)ptr-sizeof(uintptr_t));
total_allocs--;
}
}
static void shuffle(void *array, size_t numels, size_t elsize) {
char tmp[elsize];
char *arr = array;
for (size_t i = 0; i < numels - 1; i++) {
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
memcpy(tmp, arr + j * elsize, elsize);
memcpy(arr + j * elsize, arr + i * elsize, elsize);
memcpy(arr + i * elsize, tmp, elsize);
}
}
static bool iter_ints(const void *item, void *udata) {
int *vals = *(int**)udata;
vals[*(int*)item] = 1;
return true;
}
static int compare_ints(const void *a, const void *b) {
return *(int*)a - *(int*)b;
}
static int compare_ints_udata(const void *a, const void *b, void *udata) {
return *(int*)a - *(int*)b;
}
static int compare_strs(const void *a, const void *b, void *udata) {
return strcmp(*(char**)a, *(char**)b);
}
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_murmur(item, sizeof(int), seed0, seed1);
}
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
}
static void free_str(void *item) {
xfree(*(char**)item);
}
static void all() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):2000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
rand_alloc_fail = true;
// test sip and murmur hashes
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
int *vals;
while (!(vals = xmalloc(N * sizeof(int)))) {}
for (int i = 0; i < N; i++) {
vals[i] = i;
}
struct hashmap *map;
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
hash_int, compare_ints_udata, NULL, NULL))) {}
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
// // printf("== %d ==\n", vals[i]);
assert(map->count == i);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
int *v;
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
for (int j = 0; j < i; j++) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
while (true) {
v = hashmap_set(map, &vals[i]);
if (!v) {
assert(hashmap_oom(map));
continue;
} else {
assert(!hashmap_oom(map));
assert(v && *v == vals[i]);
break;
}
}
v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
assert(!hashmap_set(map, &vals[i]));
assert(map->count == i+1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
}
int *vals2;
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
memset(vals2, 0, N * sizeof(int));
assert(hashmap_scan(map, iter_ints, &vals2));
// Test hashmap_iter. This does the same as hashmap_scan above.
size_t iter = 0;
void *iter_val;
while (hashmap_iter (map, &iter, &iter_val)) {
assert (iter_ints(iter_val, &vals2));
}
for (int i = 0; i < N; i++) {
assert(vals2[i] == 1);
}
xfree(vals2);
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
int *v;
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(map->count == N-i-1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
for (int j = N-1; j > i; j--) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
}
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
assert(map->count != 0);
size_t prev_cap = map->cap;
hashmap_clear(map, true);
assert(prev_cap < map->cap);
assert(map->count == 0);
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
prev_cap = map->cap;
hashmap_clear(map, false);
assert(prev_cap == map->cap);
hashmap_free(map);
xfree(vals);
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
hash_str, compare_strs, free_str, NULL)));
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_clear(map, false);
assert(hashmap_count(map) == 0);
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_free(map);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
#define bench(name, N, code) {{ \
if (strlen(name) > 0) { \
printf("%-14s ", name); \
} \
size_t tmem = total_mem; \
size_t tallocs = total_allocs; \
uint64_t bytes = 0; \
clock_t begin = clock(); \
for (int i = 0; i < N; i++) { \
(code); \
} \
clock_t end = clock(); \
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
double bytes_sec = (double)bytes/elapsed_secs; \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
N, elapsed_secs, \
elapsed_secs/(double)N*1e9, \
(double)N/elapsed_secs \
); \
if (bytes > 0) { \
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
} \
if (total_mem > tmem) { \
size_t used_mem = total_mem-tmem; \
printf(", %.2f bytes/op", (double)used_mem/N); \
} \
if (total_allocs > tallocs) { \
size_t used_allocs = total_allocs-tallocs; \
printf(", %.2f allocs/op", (double)used_allocs/N); \
} \
printf("\n"); \
}}
static void benchmarks() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):5000000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
int *vals = xmalloc(N * sizeof(int));
for (int i = 0; i < N; i++) {
vals[i] = i;
}
shuffle(vals, N, sizeof(int));
struct hashmap *map;
shuffle(vals, N, sizeof(int));
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete", N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set (cap)", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get (cap)", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete (cap)" , N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
int main() {
hashmap_set_allocator(xmalloc, xfree);
if (getenv("BENCH")) {
printf("Running hashmap.c benchmarks...\n");
benchmarks();
} else {
printf("Running hashmap.c tests...\n");
all();
printf("PASSED\n");
}
}
#endif