#ifndef LAIKA_VM_H #define LAIKA_VM_H /* Laika VM: This is an obfuscation technique where vital code can be executed in a stack-based VM, inlined into the function. The VM instruction-set is fairly simple, see the OP_* for avaliable opcodes and their expected arguments. */ #include #include "lerror.h" #define LAIKA_VM_CODESIZE 512 #define LAIKA_VM_STACKSIZE 64 #define LAIKA_VM_CONSTSIZE 32 struct sLaika_vm_val { union { uint8_t i; void *ptr; }; }; struct sLaika_vm { struct sLaika_vm_val stack[LAIKA_VM_STACKSIZE]; struct sLaika_vm_val constList[LAIKA_VM_CONSTSIZE]; uint8_t code[LAIKA_VM_CODESIZE]; int pc; }; #define LAIKA_MAKE_VM(consts, code) (struct sLaika_vm)({.constList = consts, .code = code, .pc = 0}) /* constants */ #define LAIKA_MAKE_VM_INT(i) (struct sLaika_vm_val)({.i = i}) #define LAIKA_MAKE_VM_PTR(ptr) (struct sLaika_vm_val)({.ptr = ptr}) /* instructions */ #define LAIKA_MAKE_VM_IA(opcode, a) opcode, a #define LAIKA_MAKE_VM_IAB(opcode, a, b) opcode, a, b #define LAIKA_MAKE_VM_IABC(opcode, a, b, c) opcode, a, b, c enum { OP_EXIT, OP_LOADCONST, /* stk_indx[uint8_t] = const_indx[uint8_t] */ OP_READ, /* stk_indx[uint8_t] = *(int8_t*)stk_indx[uint8_t] */ OP_WRITE, /* *(uint8_t*)stk_indx[uint8_t] = stk_indx[uint8_t] */ /* arithmetic */ OP_ADD, /* stk_indx[uint8_t] = stk_indx[uint8_t] + stk_indx[uint8_t] */ OP_SUB, /* stk_indx[uint8_t] = stk_indx[uint8_t] - stk_indx[uint8_t] */ OP_MUL, /* stk_indx[uint8_t] = stk_indx[uint8_t] * stk_indx[uint8_t] */ OP_DIV, /* stk_indx[uint8_t] = stk_indx[uint8_t] / stk_indx[uint8_t] */ OP_AND, /* stk_indx[uint8_t] = stk_indx[uint8_t] & stk_indx[uint8_t] */ OP_OR, /* stk_indx[uint8_t] = stk_indx[uint8_t] | stk_indx[uint8_t] */ OP_XOR, /* stk_indx[uint8_t] = stk_indx[uint8_t] ^ stk_indx[uint8_t] */ /* control-flow */ OP_TESTJMP, /* if stk_indx[uint8_t] != 0, pc += [uint8_t] */ }; inline void laikaV_execute(struct sLaika_vm *vm) { #define READBYTE (vm->code[vm->pc++]) #define BINOP(x) { \ uint8_t a = READBYTE; \ uint8_t b = READBYTE; \ uint8_t c = READBYTE; \ vm->stack[a].i = vm->stack[b].i x vm->stack[c].i; \ break; \ } while (vm->code[vm->pc]) { switch (vm->code[vm->pc++]) { case OP_LOADCONST: { uint8_t indx = READBYTE; uint8_t constIndx = READBYTE; vm->stack[indx] = vm->constList[constIndx]; break; } case OP_READ: { uint8_t indx = READBYTE; uint8_t ptr = READBYTE; vm->stack[indx].i = *(uint8_t*)vm->stack[ptr].ptr; break; } case OP_WRITE: { uint8_t ptr = READBYTE; uint8_t indx = READBYTE; *(uint8_t*)vm->stack[ptr].ptr = vm->stack[indx].i; break; } case OP_ADD: BINOP(+); case OP_SUB: BINOP(-); case OP_MUL: BINOP(*); case OP_DIV: BINOP(/); case OP_AND: BINOP(&); case OP_OR: BINOP(|); case OP_XOR: BINOP(^); default: LAIKA_ERROR("laikaV_execute: unknown opcode [%d]!", vm->code[vm->pc]) } } #undef READBYTE #undef BINOP } #endif