mirror of
https://github.com/CPunch/Laika.git
synced 2025-01-11 11:40:06 +00:00
Inital commit
lib/ is just [FoxNet](https://git.openpunk.com/CPunch/FoxNet) ported to C99
This commit is contained in:
commit
8133a8d3cb
37
.vscode/settings.json
vendored
Normal file
37
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
{
|
||||
"files.associations": {
|
||||
"*.tcc": "cpp",
|
||||
"deque": "cpp",
|
||||
"list": "cpp",
|
||||
"string": "cpp",
|
||||
"unordered_map": "cpp",
|
||||
"unordered_set": "cpp",
|
||||
"vector": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"cstring": "cpp",
|
||||
"algorithm": "cpp",
|
||||
"chrono": "cpp",
|
||||
"array": "cpp",
|
||||
"compare": "cpp",
|
||||
"functional": "cpp",
|
||||
"istream": "cpp",
|
||||
"ostream": "cpp",
|
||||
"ratio": "cpp",
|
||||
"tuple": "cpp",
|
||||
"type_traits": "cpp",
|
||||
"utility": "cpp",
|
||||
"variant": "cpp"
|
||||
},
|
||||
"cSpell.words": [
|
||||
"CWARN",
|
||||
"epollfd",
|
||||
"EPOLLIN",
|
||||
"EWOULD",
|
||||
"ISPROTECTED",
|
||||
"Laika",
|
||||
"LAIKAMAGIC",
|
||||
"LAIKAMAGICLEN",
|
||||
"NOMINMAX",
|
||||
"rmvarray"
|
||||
]
|
||||
}
|
6
CMakeLists.txt
Normal file
6
CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
# compile laikalib, cnc & bot
|
||||
add_subdirectory(lib)
|
||||
add_subdirectory(cnc)
|
||||
add_subdirectory(bot)
|
7
README.md
Normal file
7
README.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Laika
|
||||
|
||||
This is a simple POC botnet written in C99. The net library shares some similarities to [FoxNet](https://github.com/CPunch/FoxNet), in fact lpolllist.c is just a port of the FoxPollList class. This botnet is also crossplatform with clients written for each platform (check the /clients folder).
|
||||
|
||||
## Why?
|
||||
|
||||
Malware development in recent years is soooooooo boring (esp. malware written by non-nationstate actors). I wanted to prove that homebrew malware can still be interesting and fun! Obviously use this on your own machines/get permission before running etc. etc.
|
25
bot/CMakeLists.txt
Normal file
25
bot/CMakeLists.txt
Normal file
@ -0,0 +1,25 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
set(CMAKE_C_STANDARD 99)
|
||||
set(CMAKE_C_STANDARD_REQUIRED ON)
|
||||
|
||||
set(BOT_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
|
||||
|
||||
project(LaikaBot VERSION 1.0)
|
||||
|
||||
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
# Set the project as the default startup project for VS
|
||||
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaBot)
|
||||
|
||||
# compile LaikaBot
|
||||
file(GLOB_RECURSE BOTSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
|
||||
add_executable(LaikaBot ${BOTSOURCE})
|
||||
target_link_libraries(LaikaBot PUBLIC LaikaLib)
|
||||
|
||||
# add the 'DEBUG' preprocessor definition if we're compiling as Debug
|
||||
target_compile_definitions(LaikaBot PUBLIC "$<$<CONFIG:Debug>:DEBUG>")
|
||||
|
||||
# add include directory
|
||||
target_include_directories(LaikaBot PUBLIC ${BOT_INCLUDEDIR})
|
0
bot/src/main.c
Normal file
0
bot/src/main.c
Normal file
25
cnc/CMakeLists.txt
Normal file
25
cnc/CMakeLists.txt
Normal file
@ -0,0 +1,25 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
set(CMAKE_C_STANDARD 99)
|
||||
set(CMAKE_C_STANDARD_REQUIRED ON)
|
||||
|
||||
set(CNC_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
|
||||
|
||||
project(LaikaCNC VERSION 1.0)
|
||||
|
||||
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
# Set the project as the default startup project for VS
|
||||
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaCNC)
|
||||
|
||||
# compile LaikaCNC
|
||||
file(GLOB_RECURSE CNCSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
|
||||
add_executable(LaikaCNC ${CNCSOURCE})
|
||||
target_link_libraries(LaikaCNC PUBLIC LaikaLib)
|
||||
|
||||
# add the 'DEBUG' preprocessor definition if we're compiling as Debug
|
||||
target_compile_definitions(LaikaCNC PUBLIC "$<$<CONFIG:Debug>:DEBUG>")
|
||||
|
||||
# add include directory
|
||||
target_include_directories(LaikaCNC PUBLIC ${CNC_INCLUDEDIR})
|
12
cnc/include/cnc.h
Normal file
12
cnc/include/cnc.h
Normal file
@ -0,0 +1,12 @@
|
||||
#ifndef LAIKA_CNC_H
|
||||
#define LAIKA_CNC_H
|
||||
|
||||
#include "laika.h"
|
||||
#include "lsocket.h"
|
||||
#include "lpolllist.h"
|
||||
|
||||
struct {
|
||||
struct sLaika_socket sock;
|
||||
} sLaika_cnc;
|
||||
|
||||
#endif
|
1
cnc/src/cnc.c
Normal file
1
cnc/src/cnc.c
Normal file
@ -0,0 +1 @@
|
||||
#include "cnc.h"
|
0
cnc/src/main.c
Normal file
0
cnc/src/main.c
Normal file
31
lib/CMakeLists.txt
Normal file
31
lib/CMakeLists.txt
Normal file
@ -0,0 +1,31 @@
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
set(CMAKE_C_STANDARD 99)
|
||||
set(CMAKE_C_STANDARD_REQUIRED ON)
|
||||
|
||||
set(LIB_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
|
||||
|
||||
# version details
|
||||
set(LIB_VERSION_MAJOR 0)
|
||||
set(LIB_VERSION_MINOR 0)
|
||||
|
||||
project(LaikaLib VERSION ${LIB_VERSION_MAJOR}.${LIB_VERSION_MINOR})
|
||||
|
||||
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
# Set the project as the default startup project for VS
|
||||
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaLib)
|
||||
|
||||
# compile LaikaLib library
|
||||
file(GLOB_RECURSE LIBSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
|
||||
add_library(LaikaLib STATIC ${LIBSOURCE})
|
||||
|
||||
# add the version definitions and the 'DEBUG' preprocessor definition if we're compiling as Debug
|
||||
target_compile_definitions(LaikaLib PUBLIC LIB_VERSION_MAJOR=${LIB_VERSION_MAJOR} LIB_VERSION_MINOR=${LIB_VERSION_MINOR} "$<$<CONFIG:Debug>:DEBUG>")
|
||||
|
||||
# add include directory
|
||||
target_include_directories(LaikaLib PUBLIC ${LIB_INCLUDEDIR})
|
||||
|
||||
# set library name
|
||||
set_target_properties(LaikaLib PROPERTIES OUTPUT_NAME net-${LIB_VERSION_MAJOR}.${LIB_VERSION_MINOR})
|
54
lib/include/hashmap.h
Normal file
54
lib/include/hashmap.h
Normal file
@ -0,0 +1,54 @@
|
||||
// Copyright 2020 Joshua J Baker. All rights reserved.
|
||||
// Use of this source code is governed by an MIT-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef HASHMAP_H
|
||||
#define HASHMAP_H
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
struct hashmap;
|
||||
|
||||
struct hashmap *hashmap_new(size_t elsize, size_t cap,
|
||||
uint64_t seed0, uint64_t seed1,
|
||||
uint64_t (*hash)(const void *item,
|
||||
uint64_t seed0, uint64_t seed1),
|
||||
int (*compare)(const void *a, const void *b,
|
||||
void *udata),
|
||||
void (*elfree)(void *item),
|
||||
void *udata);
|
||||
struct hashmap *hashmap_new_with_allocator(
|
||||
void *(*malloc)(size_t),
|
||||
void *(*realloc)(void *, size_t),
|
||||
void (*free)(void*),
|
||||
size_t elsize, size_t cap,
|
||||
uint64_t seed0, uint64_t seed1,
|
||||
uint64_t (*hash)(const void *item,
|
||||
uint64_t seed0, uint64_t seed1),
|
||||
int (*compare)(const void *a, const void *b,
|
||||
void *udata),
|
||||
void (*elfree)(void *item),
|
||||
void *udata);
|
||||
void hashmap_free(struct hashmap *map);
|
||||
void hashmap_clear(struct hashmap *map, bool update_cap);
|
||||
size_t hashmap_count(struct hashmap *map);
|
||||
bool hashmap_oom(struct hashmap *map);
|
||||
void *hashmap_get(struct hashmap *map, const void *item);
|
||||
void *hashmap_set(struct hashmap *map, void *item);
|
||||
void *hashmap_delete(struct hashmap *map, void *item);
|
||||
void *hashmap_probe(struct hashmap *map, uint64_t position);
|
||||
bool hashmap_scan(struct hashmap *map,
|
||||
bool (*iter)(const void *item, void *udata), void *udata);
|
||||
|
||||
uint64_t hashmap_sip(const void *data, size_t len,
|
||||
uint64_t seed0, uint64_t seed1);
|
||||
uint64_t hashmap_murmur(const void *data, size_t len,
|
||||
uint64_t seed0, uint64_t seed1);
|
||||
|
||||
|
||||
// DEPRECATED: use `hashmap_new_with_allocator`
|
||||
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*));
|
||||
|
||||
#endif
|
13
lib/include/laika.h
Normal file
13
lib/include/laika.h
Normal file
@ -0,0 +1,13 @@
|
||||
#ifndef LAIKA_LAIKA_H
|
||||
#define LAIKA_LAIKA_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#define ARRAY_START 4
|
||||
|
||||
#endif
|
47
lib/include/lerror.h
Normal file
47
lib/include/lerror.h
Normal file
@ -0,0 +1,47 @@
|
||||
#ifndef LAIKA_ERROR_H
|
||||
#define LAIKA_ERROR_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <setjmp.h>
|
||||
|
||||
/* defines errorstack size */
|
||||
#define LAIKA_MAXERRORS 32
|
||||
|
||||
/* DO NOT RETURN/GOTO/BREAK or otherwise skip LAIKA_TRYEND */
|
||||
#define LAIKA_TRY if (setjmp(eLaika_errStack[++eLaika_errIndx]) == 0) {
|
||||
#define LAIKA_CATCH } else {
|
||||
#define LAIKA_TRYEND } --eLaika_errIndx;
|
||||
|
||||
/* if eLaika_errIndx is >= 0, we have a safe spot to jump too if an error is thrown */
|
||||
#define LAIKA_ISPROTECTED (eLaika_errIndx >= 0)
|
||||
|
||||
/* CERROR(printf args):
|
||||
if called after a LAIKA_TRY block will jump to the previous LAIKA_CATCH/LAIKA_TRYEND block,
|
||||
otherwise program is exit()'d. if DEBUG is defined printf is called with passed args, else
|
||||
arguments are ignored.
|
||||
*/
|
||||
#ifndef DEBUG
|
||||
#define CERROR(...) { \
|
||||
if (LAIKA_ISPROTECTED) \
|
||||
longjmp(eLaika_errStack[eLaika_errIndx], 1); \
|
||||
else \
|
||||
exit(1); \
|
||||
}
|
||||
#define CWARN(...)
|
||||
#else
|
||||
#define CERROR(...) { \
|
||||
printf("[ERROR] : " __VA_ARGS__); \
|
||||
if (LAIKA_ISPROTECTED) \
|
||||
longjmp(eLaika_errStack[eLaika_errIndx], 1); \
|
||||
else \
|
||||
exit(1); \
|
||||
}
|
||||
|
||||
#define CWARN(...) \
|
||||
printf("[WARN] : " __VA_ARGS__);
|
||||
#endif
|
||||
|
||||
extern int eLaika_errIndx;
|
||||
extern jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
|
||||
|
||||
#endif
|
26
lib/include/lmem.h
Normal file
26
lib/include/lmem.h
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef LAIKA_MEM_H
|
||||
#define LAIKA_MEM_H
|
||||
|
||||
#include "laika.h"
|
||||
|
||||
#define GROW_FACTOR 2
|
||||
|
||||
#define laikaM_malloc(sz) laikaM_realloc(NULL, sz)
|
||||
#define laikaM_free(buf) laikaM_realloc(buf, 0)
|
||||
#define laikaM_free(buf) laikaM_realloc(buf, 0)
|
||||
|
||||
#define laikaM_growarray(type, buf, count, capacity) \
|
||||
if (count >= capacity || buf == NULL) { \
|
||||
capacity *= GROW_FACTOR; \
|
||||
buf = (type*)cosmoM_realloc(buf, sizeof(type)*capacity); \
|
||||
}
|
||||
|
||||
/* moves array elements above indx down by numElem, removing numElem elements at indx */
|
||||
#define laikaM_rmvarray(type, buf, count, indx, numElem) { \
|
||||
memmove(&buf[indx], &buf[indx+numElem], ((count-indx)-numElem)*sizeof(type)); \
|
||||
count -= numElem; \
|
||||
}
|
||||
|
||||
void *laikaM_realloc(void *buf, size_t sz);
|
||||
|
||||
#endif
|
10
lib/include/lpacket.h
Normal file
10
lib/include/lpacket.h
Normal file
@ -0,0 +1,10 @@
|
||||
#ifndef LAIKA_PACKET_H
|
||||
#define LAIKA_PACKET_H
|
||||
|
||||
typedef enum {
|
||||
LAIKAPKT_HANDSHAKE_REQ,
|
||||
LAIKAPKT_HANDSHAKE_RES,
|
||||
LAIKAPKT_MAXNONE
|
||||
} LAIKAPKT_ID;
|
||||
|
||||
#endif
|
25
lib/include/lpeer.h
Normal file
25
lib/include/lpeer.h
Normal file
@ -0,0 +1,25 @@
|
||||
#ifndef LAIKA_PEER_H
|
||||
#define LAIKA_PEER_H
|
||||
|
||||
#include "laika.h"
|
||||
#include "lsocket.h"
|
||||
#include "lpacket.h"
|
||||
#include "lpolllist.h"
|
||||
|
||||
struct sLaika_peer {
|
||||
struct sLaika_socket sock;
|
||||
struct sLaika_pollList *pList; /* pollList we're active in */
|
||||
void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id);
|
||||
size_t pktSize; /* current pkt size */
|
||||
LAIKAPKT_ID pktID; /* current pkt ID */
|
||||
size_t *pktSizeTable; /* const table to pull pkt size data from */
|
||||
bool setPollOut; /* if EPOLLOUT/POLLOUT is set on sock's pollfd */
|
||||
};
|
||||
|
||||
struct sLaika_peer *laikaS_newPeer(void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id), struct sLaika_pollList *pList, size_t *pktSizeTable);
|
||||
void laikaS_freePeer(struct sLaika_peer *peer);
|
||||
|
||||
bool laikaS_handlePeerIn(struct sLaika_peer *peer);
|
||||
bool laikaS_handlePeerOut(struct sLaika_peer *peer);
|
||||
|
||||
#endif
|
43
lib/include/lpolllist.h
Normal file
43
lib/include/lpolllist.h
Normal file
@ -0,0 +1,43 @@
|
||||
#ifndef LAIKA_POLLLIST_H
|
||||
#define LAIKA_POLLLIST_H
|
||||
|
||||
#include "laika.h"
|
||||
#include "lsocket.h"
|
||||
#include "hashmap.h"
|
||||
|
||||
/* number of pollFDs or epollFDs we expect to start with */
|
||||
#define POLLSTARTCAP 8
|
||||
|
||||
struct sLaika_pollEvent {
|
||||
struct sLaika_socket *sock;
|
||||
bool pollIn;
|
||||
bool pollOut;
|
||||
};
|
||||
|
||||
struct sLaika_pollList {
|
||||
struct hashmap *sockets;
|
||||
struct sLaika_pollEvent *revents;
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
/* epoll */
|
||||
struct epoll_event ev, ep_events[MAX_EPOLL_EVENTS];
|
||||
SOCKET epollfd;
|
||||
#else
|
||||
/* raw poll descriptor */
|
||||
PollFD *fds;
|
||||
int fdCapacity;
|
||||
int fdCount;
|
||||
#endif
|
||||
int reventCapacity;
|
||||
int reventCount;
|
||||
};
|
||||
|
||||
void laikaP_initPList(struct sLaika_pollList *pList);
|
||||
void laikaP_cleanPList(struct sLaika_pollList *pList); /* free's all members */
|
||||
void laikaP_addSock(struct sLaika_pollList *pList, struct sLaika_socket *sock);
|
||||
void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock);
|
||||
void laikaP_addPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock);
|
||||
void laikaP_rmvPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock);
|
||||
|
||||
struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout, int *nevents);
|
||||
|
||||
#endif
|
86
lib/include/lsocket.h
Normal file
86
lib/include/lsocket.h
Normal file
@ -0,0 +1,86 @@
|
||||
/* socket/winsock headers */
|
||||
#ifdef _WIN32
|
||||
/* windows */
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#define _WINSOCK_DEPRECATED_NO_WARNINGS
|
||||
#include <winsock2.h>
|
||||
#include <windows.h>
|
||||
#include <ws2tcpip.h>
|
||||
#pragma comment(lib, "Ws2_32.lib")
|
||||
|
||||
typedef char buffer_t;
|
||||
#define PollFD WSAPOLLFD
|
||||
#define poll WSAPoll
|
||||
#define LN_ERRNO WSAGetLastError()
|
||||
#define LN_EWOULD WSAEWOULDBLOCK
|
||||
#define LN_MSG_NOSIGNAL 0
|
||||
#define SOCKETINVALID(x) (x == INVALID_SOCKET)
|
||||
#define SOCKETERROR(x) (x == SOCKET_ERROR)
|
||||
#else
|
||||
/* posix platform */
|
||||
#include <sys/types.h>
|
||||
#include <sys/socket.h>
|
||||
#include <netdb.h>
|
||||
#include <netinet/in.h>
|
||||
#include <arpa/inet.h>
|
||||
#include <poll.h>
|
||||
#ifdef __linux__
|
||||
#include <sys/epoll.h>
|
||||
/* max events for epoll() */
|
||||
#define MAX_EPOLL_EVENTS 128
|
||||
#define LAIKA_USE_EPOLL
|
||||
#endif
|
||||
#include <unistd.h>
|
||||
#include <errno.h>
|
||||
|
||||
typedef int SOCKET;
|
||||
typedef void buffer_t;
|
||||
#define PollFD struct pollfd
|
||||
#define LN_ERRNO errno
|
||||
#define LN_EWOULD EWOULDBLOCK
|
||||
#define LN_MSG_NOSIGNAL MSG_NOSIGNAL
|
||||
#define INVALID_SOCKET -1
|
||||
#define SOCKETINVALID(x) (x < 0)
|
||||
#define SOCKETERROR(x) (x == -1)
|
||||
#endif
|
||||
#include <fcntl.h>
|
||||
|
||||
typedef enum {
|
||||
RAWSOCK_OK,
|
||||
RAWSOCK_ERROR,
|
||||
RAWSOCK_CLOSED,
|
||||
RAWSOCK_POLL
|
||||
} RAWSOCKCODE;
|
||||
|
||||
struct sLaika_socket {
|
||||
uint8_t *outBuf; /* raw data to be sent() */
|
||||
uint8_t *inBuf; /* raw data we recv()'d */
|
||||
SOCKET sock; /* raw socket fd */
|
||||
int outCount;
|
||||
int inCount;
|
||||
int outCap;
|
||||
int inCap;
|
||||
};
|
||||
|
||||
#define laikaS_isAlive(sock) (sock->sock != INVALID_SOCKET)
|
||||
|
||||
void laikaS_init(void);
|
||||
void laikaS_cleanUp(void);
|
||||
|
||||
void laikaS_initSocket(struct sLaika_socket *sock);
|
||||
void laikaS_cleanSocket(struct sLaika_socket *sock);
|
||||
void laikaS_kill(struct sLaika_socket *sock); /* kills a socket */
|
||||
void laikaS_connect(struct sLaika_socket *sock, char *ip, char *port); /* connect to ip & port */
|
||||
void laikaS_bind(struct sLaika_socket *sock, uint16_t port); /* bind sock to port */
|
||||
bool laikaS_setNonBlock(struct sLaika_socket *sock);
|
||||
|
||||
void laikaS_read(struct sLaika_socket *sock, void *buf, size_t sz); /* reads from inBuf */
|
||||
void laikaS_write(struct sLaika_socket *sock, void *buf, size_t sz); /* writes to outBuf */
|
||||
|
||||
void laikaS_writeByte(struct sLaika_socket *sock, uint8_t data);
|
||||
uint8_t laikaS_readByte(struct sLaika_socket *sock);
|
||||
|
||||
RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed);
|
||||
RAWSOCKCODE laikaS_rawSend(struct sLaika_socket *sock, size_t sz, int *processed);
|
936
lib/src/hashmap.c
Normal file
936
lib/src/hashmap.c
Normal file
@ -0,0 +1,936 @@
|
||||
// Copyright 2020 Joshua J Baker. All rights reserved.
|
||||
// Use of this source code is governed by an MIT-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include "hashmap.h"
|
||||
|
||||
static void *(*_malloc)(size_t) = NULL;
|
||||
static void *(*_realloc)(void *, size_t) = NULL;
|
||||
static void (*_free)(void *) = NULL;
|
||||
|
||||
// hashmap_set_allocator allows for configuring a custom allocator for
|
||||
// all hashmap library operations. This function, if needed, should be called
|
||||
// only once at startup and a prior to calling hashmap_new().
|
||||
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
|
||||
{
|
||||
_malloc = malloc;
|
||||
_free = free;
|
||||
}
|
||||
|
||||
#define panic(_msg_) { \
|
||||
/*fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__);*/ \
|
||||
exit(1); \
|
||||
}
|
||||
|
||||
struct bucket {
|
||||
uint64_t hash:48;
|
||||
uint64_t dib:16;
|
||||
};
|
||||
|
||||
// hashmap is an open addressed hash map using robinhood hashing.
|
||||
struct hashmap {
|
||||
void *(*malloc)(size_t);
|
||||
void *(*realloc)(void *, size_t);
|
||||
void (*free)(void *);
|
||||
bool oom;
|
||||
size_t elsize;
|
||||
size_t cap;
|
||||
uint64_t seed0;
|
||||
uint64_t seed1;
|
||||
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
|
||||
int (*compare)(const void *a, const void *b, void *udata);
|
||||
void (*elfree)(void *item);
|
||||
void *udata;
|
||||
size_t bucketsz;
|
||||
size_t nbuckets;
|
||||
size_t count;
|
||||
size_t mask;
|
||||
size_t growat;
|
||||
size_t shrinkat;
|
||||
void *buckets;
|
||||
void *spare;
|
||||
void *edata;
|
||||
};
|
||||
|
||||
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
|
||||
return (struct bucket*)(((char*)map->buckets)+(map->bucketsz*index));
|
||||
}
|
||||
|
||||
static void *bucket_item(struct bucket *entry) {
|
||||
return ((char*)entry)+sizeof(struct bucket);
|
||||
}
|
||||
|
||||
static uint64_t get_hash(struct hashmap *map, const void *key) {
|
||||
return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
|
||||
}
|
||||
|
||||
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
|
||||
// See hashmap_new for more information information
|
||||
struct hashmap *hashmap_new_with_allocator(
|
||||
void *(*_malloc)(size_t),
|
||||
void *(*_realloc)(void*, size_t),
|
||||
void (*_free)(void*),
|
||||
size_t elsize, size_t cap,
|
||||
uint64_t seed0, uint64_t seed1,
|
||||
uint64_t (*hash)(const void *item,
|
||||
uint64_t seed0, uint64_t seed1),
|
||||
int (*compare)(const void *a, const void *b,
|
||||
void *udata),
|
||||
void (*elfree)(void *item),
|
||||
void *udata)
|
||||
{
|
||||
_malloc = _malloc ? _malloc : malloc;
|
||||
_realloc = _realloc ? _realloc : realloc;
|
||||
_free = _free ? _free : free;
|
||||
int ncap = 16;
|
||||
if (cap < ncap) {
|
||||
cap = ncap;
|
||||
} else {
|
||||
while (ncap < cap) {
|
||||
ncap *= 2;
|
||||
}
|
||||
cap = ncap;
|
||||
}
|
||||
size_t bucketsz = sizeof(struct bucket) + elsize;
|
||||
while (bucketsz & (sizeof(uintptr_t)-1)) {
|
||||
bucketsz++;
|
||||
}
|
||||
// hashmap + spare + edata
|
||||
size_t size = sizeof(struct hashmap)+bucketsz*2;
|
||||
struct hashmap *map = _malloc(size);
|
||||
if (!map) {
|
||||
return NULL;
|
||||
}
|
||||
memset(map, 0, sizeof(struct hashmap));
|
||||
map->elsize = elsize;
|
||||
map->bucketsz = bucketsz;
|
||||
map->seed0 = seed0;
|
||||
map->seed1 = seed1;
|
||||
map->hash = hash;
|
||||
map->compare = compare;
|
||||
map->elfree = elfree;
|
||||
map->udata = udata;
|
||||
map->spare = ((char*)map)+sizeof(struct hashmap);
|
||||
map->edata = (char*)map->spare+bucketsz;
|
||||
map->cap = cap;
|
||||
map->nbuckets = cap;
|
||||
map->mask = map->nbuckets-1;
|
||||
map->buckets = _malloc(map->bucketsz*map->nbuckets);
|
||||
if (!map->buckets) {
|
||||
_free(map);
|
||||
return NULL;
|
||||
}
|
||||
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
|
||||
map->growat = map->nbuckets*0.75;
|
||||
map->shrinkat = map->nbuckets*0.10;
|
||||
map->malloc = _malloc;
|
||||
map->realloc = _realloc;
|
||||
map->free = _free;
|
||||
return map;
|
||||
}
|
||||
|
||||
|
||||
// hashmap_new returns a new hash map.
|
||||
// Param `elsize` is the size of each element in the tree. Every element that
|
||||
// is inserted, deleted, or retrieved will be this size.
|
||||
// Param `cap` is the default lower capacity of the hashmap. Setting this to
|
||||
// zero will default to 16.
|
||||
// Params `seed0` and `seed1` are optional seed values that are passed to the
|
||||
// following `hash` function. These can be any value you wish but it's often
|
||||
// best to use randomly generated values.
|
||||
// Param `hash` is a function that generates a hash value for an item. It's
|
||||
// important that you provide a good hash function, otherwise it will perform
|
||||
// poorly or be vulnerable to Denial-of-service attacks. This implementation
|
||||
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
|
||||
// Param `compare` is a function that compares items in the tree. See the
|
||||
// qsort stdlib function for an example of how this function works.
|
||||
// The hashmap must be freed with hashmap_free().
|
||||
// Param `elfree` is a function that frees a specific item. This should be NULL
|
||||
// unless you're storing some kind of reference data in the hash.
|
||||
struct hashmap *hashmap_new(size_t elsize, size_t cap,
|
||||
uint64_t seed0, uint64_t seed1,
|
||||
uint64_t (*hash)(const void *item,
|
||||
uint64_t seed0, uint64_t seed1),
|
||||
int (*compare)(const void *a, const void *b,
|
||||
void *udata),
|
||||
void (*elfree)(void *item),
|
||||
void *udata)
|
||||
{
|
||||
return hashmap_new_with_allocator(
|
||||
(_malloc?_malloc:malloc),
|
||||
(_realloc?_realloc:realloc),
|
||||
(_free?_free:free),
|
||||
elsize, cap, seed0, seed1, hash, compare, elfree, udata
|
||||
);
|
||||
}
|
||||
|
||||
static void free_elements(struct hashmap *map) {
|
||||
if (map->elfree) {
|
||||
for (size_t i = 0; i < map->nbuckets; i++) {
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (bucket->dib) map->elfree(bucket_item(bucket));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// hashmap_clear quickly clears the map.
|
||||
// Every item is called with the element-freeing function given in hashmap_new,
|
||||
// if present, to free any data referenced in the elements of the hashmap.
|
||||
// When the update_cap is provided, the map's capacity will be updated to match
|
||||
// the currently number of allocated buckets. This is an optimization to ensure
|
||||
// that this operation does not perform any allocations.
|
||||
void hashmap_clear(struct hashmap *map, bool update_cap) {
|
||||
map->count = 0;
|
||||
free_elements(map);
|
||||
if (update_cap) {
|
||||
map->cap = map->nbuckets;
|
||||
} else if (map->nbuckets != map->cap) {
|
||||
void *new_buckets = map->malloc(map->bucketsz*map->cap);
|
||||
if (new_buckets) {
|
||||
map->free(map->buckets);
|
||||
map->buckets = new_buckets;
|
||||
}
|
||||
map->nbuckets = map->cap;
|
||||
}
|
||||
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
|
||||
map->mask = map->nbuckets-1;
|
||||
map->growat = map->nbuckets*0.75;
|
||||
map->shrinkat = map->nbuckets*0.10;
|
||||
}
|
||||
|
||||
|
||||
static bool resize(struct hashmap *map, size_t new_cap) {
|
||||
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
|
||||
map->seed1, map->hash, map->compare,
|
||||
map->elfree, map->udata);
|
||||
if (!map2) {
|
||||
return false;
|
||||
}
|
||||
for (size_t i = 0; i < map->nbuckets; i++) {
|
||||
struct bucket *entry = bucket_at(map, i);
|
||||
if (!entry->dib) {
|
||||
continue;
|
||||
}
|
||||
entry->dib = 1;
|
||||
size_t j = entry->hash & map2->mask;
|
||||
for (;;) {
|
||||
struct bucket *bucket = bucket_at(map2, j);
|
||||
if (bucket->dib == 0) {
|
||||
memcpy(bucket, entry, map->bucketsz);
|
||||
break;
|
||||
}
|
||||
if (bucket->dib < entry->dib) {
|
||||
memcpy(map2->spare, bucket, map->bucketsz);
|
||||
memcpy(bucket, entry, map->bucketsz);
|
||||
memcpy(entry, map2->spare, map->bucketsz);
|
||||
}
|
||||
j = (j + 1) & map2->mask;
|
||||
entry->dib += 1;
|
||||
}
|
||||
}
|
||||
map->free(map->buckets);
|
||||
map->buckets = map2->buckets;
|
||||
map->nbuckets = map2->nbuckets;
|
||||
map->mask = map2->mask;
|
||||
map->growat = map2->growat;
|
||||
map->shrinkat = map2->shrinkat;
|
||||
map->free(map2);
|
||||
return true;
|
||||
}
|
||||
|
||||
// hashmap_set inserts or replaces an item in the hash map. If an item is
|
||||
// replaced then it is returned otherwise NULL is returned. This operation
|
||||
// may allocate memory. If the system is unable to allocate additional
|
||||
// memory then NULL is returned and hashmap_oom() returns true.
|
||||
void *hashmap_set(struct hashmap *map, void *item) {
|
||||
if (!item) {
|
||||
panic("item is null");
|
||||
}
|
||||
map->oom = false;
|
||||
if (map->count == map->growat) {
|
||||
if (!resize(map, map->nbuckets*2)) {
|
||||
map->oom = true;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct bucket *entry = map->edata;
|
||||
entry->hash = get_hash(map, item);
|
||||
entry->dib = 1;
|
||||
memcpy(bucket_item(entry), item, map->elsize);
|
||||
|
||||
size_t i = entry->hash & map->mask;
|
||||
for (;;) {
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (bucket->dib == 0) {
|
||||
memcpy(bucket, entry, map->bucketsz);
|
||||
map->count++;
|
||||
return NULL;
|
||||
}
|
||||
if (entry->hash == bucket->hash &&
|
||||
map->compare(bucket_item(entry), bucket_item(bucket),
|
||||
map->udata) == 0)
|
||||
{
|
||||
memcpy(map->spare, bucket_item(bucket), map->elsize);
|
||||
memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
|
||||
return map->spare;
|
||||
}
|
||||
if (bucket->dib < entry->dib) {
|
||||
memcpy(map->spare, bucket, map->bucketsz);
|
||||
memcpy(bucket, entry, map->bucketsz);
|
||||
memcpy(entry, map->spare, map->bucketsz);
|
||||
}
|
||||
i = (i + 1) & map->mask;
|
||||
entry->dib += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// hashmap_get returns the item based on the provided key. If the item is not
|
||||
// found then NULL is returned.
|
||||
void *hashmap_get(struct hashmap *map, const void *key) {
|
||||
if (!key) {
|
||||
panic("key is null");
|
||||
}
|
||||
uint64_t hash = get_hash(map, key);
|
||||
size_t i = hash & map->mask;
|
||||
for (;;) {
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (!bucket->dib) {
|
||||
return NULL;
|
||||
}
|
||||
if (bucket->hash == hash &&
|
||||
map->compare(key, bucket_item(bucket), map->udata) == 0)
|
||||
{
|
||||
return bucket_item(bucket);
|
||||
}
|
||||
i = (i + 1) & map->mask;
|
||||
}
|
||||
}
|
||||
|
||||
// hashmap_probe returns the item in the bucket at position or NULL if an item
|
||||
// is not set for that bucket. The position is 'moduloed' by the number of
|
||||
// buckets in the hashmap.
|
||||
void *hashmap_probe(struct hashmap *map, uint64_t position) {
|
||||
size_t i = position & map->mask;
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (!bucket->dib) {
|
||||
return NULL;
|
||||
}
|
||||
return bucket_item(bucket);
|
||||
}
|
||||
|
||||
|
||||
// hashmap_delete removes an item from the hash map and returns it. If the
|
||||
// item is not found then NULL is returned.
|
||||
void *hashmap_delete(struct hashmap *map, void *key) {
|
||||
if (!key) {
|
||||
panic("key is null");
|
||||
}
|
||||
map->oom = false;
|
||||
uint64_t hash = get_hash(map, key);
|
||||
size_t i = hash & map->mask;
|
||||
for (;;) {
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (!bucket->dib) {
|
||||
return NULL;
|
||||
}
|
||||
if (bucket->hash == hash &&
|
||||
map->compare(key, bucket_item(bucket), map->udata) == 0)
|
||||
{
|
||||
memcpy(map->spare, bucket_item(bucket), map->elsize);
|
||||
bucket->dib = 0;
|
||||
for (;;) {
|
||||
struct bucket *prev = bucket;
|
||||
i = (i + 1) & map->mask;
|
||||
bucket = bucket_at(map, i);
|
||||
if (bucket->dib <= 1) {
|
||||
prev->dib = 0;
|
||||
break;
|
||||
}
|
||||
memcpy(prev, bucket, map->bucketsz);
|
||||
prev->dib--;
|
||||
}
|
||||
map->count--;
|
||||
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
|
||||
// Ignore the return value. It's ok for the resize operation to
|
||||
// fail to allocate enough memory because a shrink operation
|
||||
// does not change the integrity of the data.
|
||||
resize(map, map->nbuckets/2);
|
||||
}
|
||||
return map->spare;
|
||||
}
|
||||
i = (i + 1) & map->mask;
|
||||
}
|
||||
}
|
||||
|
||||
// hashmap_count returns the number of items in the hash map.
|
||||
size_t hashmap_count(struct hashmap *map) {
|
||||
return map->count;
|
||||
}
|
||||
|
||||
// hashmap_free frees the hash map
|
||||
// Every item is called with the element-freeing function given in hashmap_new,
|
||||
// if present, to free any data referenced in the elements of the hashmap.
|
||||
void hashmap_free(struct hashmap *map) {
|
||||
if (!map) return;
|
||||
free_elements(map);
|
||||
map->free(map->buckets);
|
||||
map->free(map);
|
||||
}
|
||||
|
||||
// hashmap_oom returns true if the last hashmap_set() call failed due to the
|
||||
// system being out of memory.
|
||||
bool hashmap_oom(struct hashmap *map) {
|
||||
return map->oom;
|
||||
}
|
||||
|
||||
// hashmap_scan iterates over all items in the hash map
|
||||
// Param `iter` can return false to stop iteration early.
|
||||
// Returns false if the iteration has been stopped early.
|
||||
bool hashmap_scan(struct hashmap *map,
|
||||
bool (*iter)(const void *item, void *udata), void *udata)
|
||||
{
|
||||
for (size_t i = 0; i < map->nbuckets; i++) {
|
||||
struct bucket *bucket = bucket_at(map, i);
|
||||
if (bucket->dib) {
|
||||
if (!iter(bucket_item(bucket), udata)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// SipHash reference C implementation
|
||||
//
|
||||
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
|
||||
// <jeanphilippe.aumasson@gmail.com>
|
||||
// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
|
||||
//
|
||||
// To the extent possible under law, the author(s) have dedicated all copyright
|
||||
// and related and neighboring rights to this software to the public domain
|
||||
// worldwide. This software is distributed without any warranty.
|
||||
//
|
||||
// You should have received a copy of the CC0 Public Domain Dedication along
|
||||
// with this software. If not, see
|
||||
// <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
//
|
||||
// default: SipHash-2-4
|
||||
//-----------------------------------------------------------------------------
|
||||
static uint64_t SIP64(const uint8_t *in, const size_t inlen,
|
||||
uint64_t seed0, uint64_t seed1)
|
||||
{
|
||||
#define U8TO64_LE(p) \
|
||||
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
|
||||
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
|
||||
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
|
||||
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
|
||||
#define U64TO8_LE(p, v) \
|
||||
{ U32TO8_LE((p), (uint32_t)((v))); \
|
||||
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
|
||||
#define U32TO8_LE(p, v) \
|
||||
{ (p)[0] = (uint8_t)((v)); \
|
||||
(p)[1] = (uint8_t)((v) >> 8); \
|
||||
(p)[2] = (uint8_t)((v) >> 16); \
|
||||
(p)[3] = (uint8_t)((v) >> 24); }
|
||||
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
|
||||
#define SIPROUND \
|
||||
{ v0 += v1; v1 = ROTL(v1, 13); \
|
||||
v1 ^= v0; v0 = ROTL(v0, 32); \
|
||||
v2 += v3; v3 = ROTL(v3, 16); \
|
||||
v3 ^= v2; \
|
||||
v0 += v3; v3 = ROTL(v3, 21); \
|
||||
v3 ^= v0; \
|
||||
v2 += v1; v1 = ROTL(v1, 17); \
|
||||
v1 ^= v2; v2 = ROTL(v2, 32); }
|
||||
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
|
||||
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
|
||||
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
|
||||
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
|
||||
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
|
||||
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
|
||||
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
|
||||
for (; in != end; in += 8) {
|
||||
uint64_t m = U8TO64_LE(in);
|
||||
v3 ^= m;
|
||||
SIPROUND; SIPROUND;
|
||||
v0 ^= m;
|
||||
}
|
||||
const int left = inlen & 7;
|
||||
uint64_t b = ((uint64_t)inlen) << 56;
|
||||
switch (left) {
|
||||
case 7: b |= ((uint64_t)in[6]) << 48;
|
||||
case 6: b |= ((uint64_t)in[5]) << 40;
|
||||
case 5: b |= ((uint64_t)in[4]) << 32;
|
||||
case 4: b |= ((uint64_t)in[3]) << 24;
|
||||
case 3: b |= ((uint64_t)in[2]) << 16;
|
||||
case 2: b |= ((uint64_t)in[1]) << 8;
|
||||
case 1: b |= ((uint64_t)in[0]); break;
|
||||
case 0: break;
|
||||
}
|
||||
v3 ^= b;
|
||||
SIPROUND; SIPROUND;
|
||||
v0 ^= b;
|
||||
v2 ^= 0xff;
|
||||
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
|
||||
b = v0 ^ v1 ^ v2 ^ v3;
|
||||
uint64_t out = 0;
|
||||
U64TO8_LE((uint8_t*)&out, b);
|
||||
return out;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
||||
// domain. The author hereby disclaims copyright to this source code.
|
||||
//
|
||||
// Murmur3_86_128
|
||||
//-----------------------------------------------------------------------------
|
||||
static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
|
||||
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
|
||||
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 16;
|
||||
uint32_t h1 = seed;
|
||||
uint32_t h2 = seed;
|
||||
uint32_t h3 = seed;
|
||||
uint32_t h4 = seed;
|
||||
uint32_t c1 = 0x239b961b;
|
||||
uint32_t c2 = 0xab0e9789;
|
||||
uint32_t c3 = 0x38b34ae5;
|
||||
uint32_t c4 = 0xa1e38b93;
|
||||
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
|
||||
for (int i = -nblocks; i; i++) {
|
||||
uint32_t k1 = blocks[i*4+0];
|
||||
uint32_t k2 = blocks[i*4+1];
|
||||
uint32_t k3 = blocks[i*4+2];
|
||||
uint32_t k4 = blocks[i*4+3];
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
|
||||
}
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
||||
uint32_t k1 = 0;
|
||||
uint32_t k2 = 0;
|
||||
uint32_t k3 = 0;
|
||||
uint32_t k4 = 0;
|
||||
switch(len & 15) {
|
||||
case 15: k4 ^= tail[14] << 16;
|
||||
case 14: k4 ^= tail[13] << 8;
|
||||
case 13: k4 ^= tail[12] << 0;
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
case 12: k3 ^= tail[11] << 24;
|
||||
case 11: k3 ^= tail[10] << 16;
|
||||
case 10: k3 ^= tail[ 9] << 8;
|
||||
case 9: k3 ^= tail[ 8] << 0;
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
case 8: k2 ^= tail[ 7] << 24;
|
||||
case 7: k2 ^= tail[ 6] << 16;
|
||||
case 6: k2 ^= tail[ 5] << 8;
|
||||
case 5: k2 ^= tail[ 4] << 0;
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
case 4: k1 ^= tail[ 3] << 24;
|
||||
case 3: k1 ^= tail[ 2] << 16;
|
||||
case 2: k1 ^= tail[ 1] << 8;
|
||||
case 1: k1 ^= tail[ 0] << 0;
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
((uint32_t*)out)[0] = h1;
|
||||
((uint32_t*)out)[1] = h2;
|
||||
((uint32_t*)out)[2] = h3;
|
||||
((uint32_t*)out)[3] = h4;
|
||||
}
|
||||
|
||||
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
|
||||
uint64_t hashmap_sip(const void *data, size_t len,
|
||||
uint64_t seed0, uint64_t seed1)
|
||||
{
|
||||
return SIP64((uint8_t*)data, len, seed0, seed1);
|
||||
}
|
||||
|
||||
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
|
||||
uint64_t hashmap_murmur(const void *data, size_t len,
|
||||
uint64_t seed0, uint64_t seed1)
|
||||
{
|
||||
char out[16];
|
||||
MM86128(data, len, seed0, &out);
|
||||
return *(uint64_t*)out;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
// TESTS AND BENCHMARKS
|
||||
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
|
||||
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
|
||||
//==============================================================================
|
||||
#ifdef HASHMAP_TEST
|
||||
|
||||
static size_t deepcount(struct hashmap *map) {
|
||||
size_t count = 0;
|
||||
for (size_t i = 0; i < map->nbuckets; i++) {
|
||||
if (bucket_at(map, i)->dib) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
#pragma GCC diagnostic ignored "-Wextra"
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include "hashmap.h"
|
||||
|
||||
static bool rand_alloc_fail = false;
|
||||
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
|
||||
static uintptr_t total_allocs = 0;
|
||||
static uintptr_t total_mem = 0;
|
||||
|
||||
static void *xmalloc(size_t size) {
|
||||
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
|
||||
return NULL;
|
||||
}
|
||||
void *mem = malloc(sizeof(uintptr_t)+size);
|
||||
assert(mem);
|
||||
*(uintptr_t*)mem = size;
|
||||
total_allocs++;
|
||||
total_mem += size;
|
||||
return (char*)mem+sizeof(uintptr_t);
|
||||
}
|
||||
|
||||
static void xfree(void *ptr) {
|
||||
if (ptr) {
|
||||
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
|
||||
free((char*)ptr-sizeof(uintptr_t));
|
||||
total_allocs--;
|
||||
}
|
||||
}
|
||||
|
||||
static void shuffle(void *array, size_t numels, size_t elsize) {
|
||||
char tmp[elsize];
|
||||
char *arr = array;
|
||||
for (size_t i = 0; i < numels - 1; i++) {
|
||||
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
|
||||
memcpy(tmp, arr + j * elsize, elsize);
|
||||
memcpy(arr + j * elsize, arr + i * elsize, elsize);
|
||||
memcpy(arr + i * elsize, tmp, elsize);
|
||||
}
|
||||
}
|
||||
|
||||
static bool iter_ints(const void *item, void *udata) {
|
||||
int *vals = *(int**)udata;
|
||||
vals[*(int*)item] = 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
static int compare_ints(const void *a, const void *b) {
|
||||
return *(int*)a - *(int*)b;
|
||||
}
|
||||
|
||||
static int compare_ints_udata(const void *a, const void *b, void *udata) {
|
||||
return *(int*)a - *(int*)b;
|
||||
}
|
||||
|
||||
static int compare_strs(const void *a, const void *b, void *udata) {
|
||||
return strcmp(*(char**)a, *(char**)b);
|
||||
}
|
||||
|
||||
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
|
||||
return hashmap_murmur(item, sizeof(int), seed0, seed1);
|
||||
}
|
||||
|
||||
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
|
||||
return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
|
||||
}
|
||||
|
||||
static void free_str(void *item) {
|
||||
xfree(*(char**)item);
|
||||
}
|
||||
|
||||
static void all() {
|
||||
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
|
||||
int N = getenv("N")?atoi(getenv("N")):2000;
|
||||
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
|
||||
srand(seed);
|
||||
|
||||
rand_alloc_fail = true;
|
||||
|
||||
// test sip and murmur hashes
|
||||
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
|
||||
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
|
||||
|
||||
int *vals;
|
||||
while (!(vals = xmalloc(N * sizeof(int)))) {}
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = i;
|
||||
}
|
||||
|
||||
struct hashmap *map;
|
||||
|
||||
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
|
||||
hash_int, compare_ints_udata, NULL, NULL))) {}
|
||||
shuffle(vals, N, sizeof(int));
|
||||
for (int i = 0; i < N; i++) {
|
||||
// // printf("== %d ==\n", vals[i]);
|
||||
assert(map->count == i);
|
||||
assert(map->count == hashmap_count(map));
|
||||
assert(map->count == deepcount(map));
|
||||
int *v;
|
||||
assert(!hashmap_get(map, &vals[i]));
|
||||
assert(!hashmap_delete(map, &vals[i]));
|
||||
while (true) {
|
||||
assert(!hashmap_set(map, &vals[i]));
|
||||
if (!hashmap_oom(map)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < i; j++) {
|
||||
v = hashmap_get(map, &vals[j]);
|
||||
assert(v && *v == vals[j]);
|
||||
}
|
||||
while (true) {
|
||||
v = hashmap_set(map, &vals[i]);
|
||||
if (!v) {
|
||||
assert(hashmap_oom(map));
|
||||
continue;
|
||||
} else {
|
||||
assert(!hashmap_oom(map));
|
||||
assert(v && *v == vals[i]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
v = hashmap_get(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
v = hashmap_delete(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
assert(!hashmap_get(map, &vals[i]));
|
||||
assert(!hashmap_delete(map, &vals[i]));
|
||||
assert(!hashmap_set(map, &vals[i]));
|
||||
assert(map->count == i+1);
|
||||
assert(map->count == hashmap_count(map));
|
||||
assert(map->count == deepcount(map));
|
||||
}
|
||||
|
||||
int *vals2;
|
||||
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
|
||||
memset(vals2, 0, N * sizeof(int));
|
||||
assert(hashmap_scan(map, iter_ints, &vals2));
|
||||
for (int i = 0; i < N; i++) {
|
||||
assert(vals2[i] == 1);
|
||||
}
|
||||
xfree(vals2);
|
||||
|
||||
shuffle(vals, N, sizeof(int));
|
||||
for (int i = 0; i < N; i++) {
|
||||
int *v;
|
||||
v = hashmap_delete(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
assert(!hashmap_get(map, &vals[i]));
|
||||
assert(map->count == N-i-1);
|
||||
assert(map->count == hashmap_count(map));
|
||||
assert(map->count == deepcount(map));
|
||||
for (int j = N-1; j > i; j--) {
|
||||
v = hashmap_get(map, &vals[j]);
|
||||
assert(v && *v == vals[j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
while (true) {
|
||||
assert(!hashmap_set(map, &vals[i]));
|
||||
if (!hashmap_oom(map)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
assert(map->count != 0);
|
||||
size_t prev_cap = map->cap;
|
||||
hashmap_clear(map, true);
|
||||
assert(prev_cap < map->cap);
|
||||
assert(map->count == 0);
|
||||
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
while (true) {
|
||||
assert(!hashmap_set(map, &vals[i]));
|
||||
if (!hashmap_oom(map)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prev_cap = map->cap;
|
||||
hashmap_clear(map, false);
|
||||
assert(prev_cap == map->cap);
|
||||
|
||||
hashmap_free(map);
|
||||
|
||||
xfree(vals);
|
||||
|
||||
|
||||
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
|
||||
hash_str, compare_strs, free_str, NULL)));
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
char *str;
|
||||
while (!(str = xmalloc(16)));
|
||||
sprintf(str, "s%i", i);
|
||||
while(!hashmap_set(map, &str));
|
||||
}
|
||||
|
||||
hashmap_clear(map, false);
|
||||
assert(hashmap_count(map) == 0);
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
char *str;
|
||||
while (!(str = xmalloc(16)));
|
||||
sprintf(str, "s%i", i);
|
||||
while(!hashmap_set(map, &str));
|
||||
}
|
||||
|
||||
hashmap_free(map);
|
||||
|
||||
if (total_allocs != 0) {
|
||||
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
#define bench(name, N, code) {{ \
|
||||
if (strlen(name) > 0) { \
|
||||
printf("%-14s ", name); \
|
||||
} \
|
||||
size_t tmem = total_mem; \
|
||||
size_t tallocs = total_allocs; \
|
||||
uint64_t bytes = 0; \
|
||||
clock_t begin = clock(); \
|
||||
for (int i = 0; i < N; i++) { \
|
||||
(code); \
|
||||
} \
|
||||
clock_t end = clock(); \
|
||||
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
|
||||
double bytes_sec = (double)bytes/elapsed_secs; \
|
||||
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
|
||||
N, elapsed_secs, \
|
||||
elapsed_secs/(double)N*1e9, \
|
||||
(double)N/elapsed_secs \
|
||||
); \
|
||||
if (bytes > 0) { \
|
||||
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
|
||||
} \
|
||||
if (total_mem > tmem) { \
|
||||
size_t used_mem = total_mem-tmem; \
|
||||
printf(", %.2f bytes/op", (double)used_mem/N); \
|
||||
} \
|
||||
if (total_allocs > tallocs) { \
|
||||
size_t used_allocs = total_allocs-tallocs; \
|
||||
printf(", %.2f allocs/op", (double)used_allocs/N); \
|
||||
} \
|
||||
printf("\n"); \
|
||||
}}
|
||||
|
||||
static void benchmarks() {
|
||||
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
|
||||
int N = getenv("N")?atoi(getenv("N")):5000000;
|
||||
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
|
||||
srand(seed);
|
||||
|
||||
|
||||
int *vals = xmalloc(N * sizeof(int));
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = i;
|
||||
}
|
||||
|
||||
shuffle(vals, N, sizeof(int));
|
||||
|
||||
struct hashmap *map;
|
||||
shuffle(vals, N, sizeof(int));
|
||||
|
||||
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
|
||||
NULL, NULL);
|
||||
bench("set", N, {
|
||||
int *v = hashmap_set(map, &vals[i]);
|
||||
assert(!v);
|
||||
})
|
||||
shuffle(vals, N, sizeof(int));
|
||||
bench("get", N, {
|
||||
int *v = hashmap_get(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
})
|
||||
shuffle(vals, N, sizeof(int));
|
||||
bench("delete", N, {
|
||||
int *v = hashmap_delete(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
})
|
||||
hashmap_free(map);
|
||||
|
||||
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
|
||||
NULL, NULL);
|
||||
bench("set (cap)", N, {
|
||||
int *v = hashmap_set(map, &vals[i]);
|
||||
assert(!v);
|
||||
})
|
||||
shuffle(vals, N, sizeof(int));
|
||||
bench("get (cap)", N, {
|
||||
int *v = hashmap_get(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
})
|
||||
shuffle(vals, N, sizeof(int));
|
||||
bench("delete (cap)" , N, {
|
||||
int *v = hashmap_delete(map, &vals[i]);
|
||||
assert(v && *v == vals[i]);
|
||||
})
|
||||
|
||||
hashmap_free(map);
|
||||
|
||||
|
||||
xfree(vals);
|
||||
|
||||
if (total_allocs != 0) {
|
||||
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
hashmap_set_allocator(xmalloc, xfree);
|
||||
|
||||
if (getenv("BENCH")) {
|
||||
printf("Running hashmap.c benchmarks...\n");
|
||||
benchmarks();
|
||||
} else {
|
||||
printf("Running hashmap.c tests...\n");
|
||||
all();
|
||||
printf("PASSED\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
4
lib/src/lerror.c
Normal file
4
lib/src/lerror.c
Normal file
@ -0,0 +1,4 @@
|
||||
#include "lerror.h"
|
||||
|
||||
jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
|
||||
int eLaika_errIndx = -1;
|
18
lib/src/lmem.c
Normal file
18
lib/src/lmem.c
Normal file
@ -0,0 +1,18 @@
|
||||
#include "lerror.h"
|
||||
#include "lmem.h"
|
||||
|
||||
void *laikaM_realloc(void *buf, size_t sz) {
|
||||
void *newBuf;
|
||||
|
||||
/* are we free'ing the buffer? */
|
||||
if (sz == 0) {
|
||||
free(buf);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* if NULL is passed, realloc() acts like malloc() */
|
||||
if ((newBuf = realloc(buf, sz)) == NULL)
|
||||
CERROR("failed to allocate memory!");
|
||||
|
||||
return newBuf;
|
||||
}
|
88
lib/src/lpeer.c
Normal file
88
lib/src/lpeer.c
Normal file
@ -0,0 +1,88 @@
|
||||
#include "lerror.h"
|
||||
#include "lmem.h"
|
||||
#include "lpeer.h"
|
||||
|
||||
struct sLaika_peer *laikaS_newPeer(void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id), struct sLaika_pollList *pList, size_t *pktSizeTable) {
|
||||
struct sLaika_peer *peer = laikaM_malloc(sizeof(struct sLaika_peer));
|
||||
|
||||
laikaS_initSocket(&peer->sock);
|
||||
peer->pktHandler = pktHandler;
|
||||
peer->pList = pList;
|
||||
peer->pktSizeTable = pktSizeTable;
|
||||
peer->pktSize = 0;
|
||||
peer->pktID = LAIKAPKT_MAXNONE;
|
||||
peer->setPollOut = false;
|
||||
return peer;
|
||||
}
|
||||
|
||||
void laikaS_freePeer(struct sLaika_peer *peer) {
|
||||
laikaS_cleanSocket(&peer->sock);
|
||||
laikaM_free(peer);
|
||||
}
|
||||
|
||||
bool laikaS_handlePeerIn(struct sLaika_peer *peer) {
|
||||
RAWSOCKCODE err;
|
||||
int recvd;
|
||||
bool _tryCatchRes;
|
||||
|
||||
switch (peer->pktID) {
|
||||
case LAIKAPKT_MAXNONE:
|
||||
/* try grabbing pktID */
|
||||
if (laikaS_rawRecv(&peer->sock, sizeof(uint8_t), &recvd) != RAWSOCK_OK)
|
||||
return false;
|
||||
|
||||
peer->pktID = laikaS_readByte(&peer->sock);
|
||||
|
||||
/* sanity check packet ID */
|
||||
if (peer->pktID >= LAIKAPKT_MAXNONE)
|
||||
CERROR("received evil pktID!")
|
||||
|
||||
peer->pktSize = peer->pktSizeTable[peer->pktID];
|
||||
break;
|
||||
default:
|
||||
/* try grabbing the rest of the packet */
|
||||
if (laikaS_rawRecv(&peer->sock, peer->pktSize - peer->sock.inCount, &recvd) != RAWSOCK_OK)
|
||||
return false;
|
||||
|
||||
/* have we received the full packet? */
|
||||
if (peer->pktSize == peer->sock.inCount) {
|
||||
/* dispatch to packet handler */
|
||||
LAIKA_TRY
|
||||
peer->pktHandler(peer, peer->pktID);
|
||||
_tryCatchRes = true;
|
||||
LAIKA_CATCH
|
||||
_tryCatchRes = false;
|
||||
LAIKA_TRYEND /* can't skip this, so the return is after */
|
||||
|
||||
return _tryCatchRes;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool laikaS_handlePeerOut(struct sLaika_peer *peer) {
|
||||
RAWSOCKCODE err;
|
||||
int sent;
|
||||
|
||||
if (peer->sock.outCount == 0) /* sanity check */
|
||||
return;
|
||||
|
||||
switch (laikaS_rawSend(&peer->sock, peer->sock.outCount, &sent)) {
|
||||
case RAWSOCK_OK: /* we're ok! */
|
||||
if (peer->setPollOut) { /* if POLLOUT was set, unset it */
|
||||
laikaP_rmvPollOut(peer->pList, &peer->sock);
|
||||
peer->setPollOut = false;
|
||||
}
|
||||
return true;
|
||||
case RAWSOCK_POLL: /* we've been asked to set the POLLOUT flag */
|
||||
if (!peer->setPollOut) { /* if POLLOUT wasn't set, set it so we'll be notified whenever the kernel has room :) */
|
||||
laikaP_addPollOut(peer->pList, &peer->sock);
|
||||
peer->setPollOut = true;
|
||||
}
|
||||
return true;
|
||||
default: /* panic! */
|
||||
case RAWSOCK_CLOSED:
|
||||
case RAWSOCK_ERROR:
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
191
lib/src/lpolllist.c
Normal file
191
lib/src/lpolllist.c
Normal file
@ -0,0 +1,191 @@
|
||||
#include "lerror.h"
|
||||
#include "lmem.h"
|
||||
#include "lpolllist.h"
|
||||
|
||||
typedef struct sLaika_hashMapElem {
|
||||
SOCKET fd;
|
||||
struct sLaika_socket *sock;
|
||||
} tLaika_hashMapElem;
|
||||
|
||||
int elem_compare(const void *a, const void *b, void *udata) {
|
||||
const tLaika_hashMapElem *ua = a;
|
||||
const tLaika_hashMapElem *ub = b;
|
||||
|
||||
return ua->fd != ub->fd;
|
||||
}
|
||||
|
||||
uint64_t elem_hash(const void *item, uint64_t seed0, uint64_t seed1) {
|
||||
const tLaika_hashMapElem *u = item;
|
||||
return (uint64_t)(u->fd);
|
||||
}
|
||||
|
||||
void laikaP_initPList(struct sLaika_pollList *pList) {
|
||||
laikaS_init();
|
||||
|
||||
/* setup hashmap */
|
||||
pList->sockets = hashmap_new(sizeof(tLaika_hashMapElem), POLLSTARTCAP, 0, 0, elem_hash, elem_compare, NULL, NULL);
|
||||
pList->revents = NULL; /* laikaP_pollList() will allocate the buffer */
|
||||
pList->reventCapacity = POLLSTARTCAP/GROW_FACTOR;
|
||||
pList->reventCount = 0;
|
||||
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
/* setup our epoll */
|
||||
memset(&pList->ev, 0, sizeof(struct epoll_event));
|
||||
if ((pList->epollfd = epoll_create(POLLSTARTCAP)) == -1)
|
||||
CERROR("epoll_create() failed!");
|
||||
|
||||
#else
|
||||
pList->fds = NULL; /* laikaP_addSock will allocate the buffer */
|
||||
pList->fdCapacity = POLLSTARTCAP/GROW_FACTOR; /* div by GROW_FACTOR since laikaM_growarray multiplies by GROW_FACTOR */
|
||||
pList->fdCount = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaP_cleanPList(struct sLaika_pollList *pList) {
|
||||
laikaM_free(pList->revents);
|
||||
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
close(pList->epollfd);
|
||||
#else
|
||||
laikaM_free(pList->fds);
|
||||
#endif
|
||||
|
||||
laikaS_cleanUp();
|
||||
}
|
||||
|
||||
void laikaP_addSock(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
|
||||
/* add socket to hashmap */
|
||||
hashmap_set(pList->sockets, &(tLaika_hashMapElem){.fd = sock->sock, .sock = sock});
|
||||
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
pList->ev.events = EPOLLIN;
|
||||
pList->ev.data.ptr = (void*)sock;
|
||||
|
||||
if (epoll_ctl(pList->epollfd, EPOLL_CTL_ADD, sock->sock, &pList->ev) == -1)
|
||||
CERROR("epoll_ctl [ADD] failed");
|
||||
|
||||
#else
|
||||
/* allocate space in array & add PollFD */
|
||||
laikaM_growarray(PollFD, pList->fds, pList->fdCount, pList->fdCapacity);
|
||||
pList->fds[pList->fdCount++] = (PollFD){sock->sock, POLLIN};
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
|
||||
/* remove socket from hashmap */
|
||||
hashmap_delete(pList->sockets, &(tLaika_hashMapElem){.fd = sock->sock, .sock = sock});
|
||||
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
/* epoll_event* isn't needed with EPOLL_CTL_DEL, however we still need to pass a NON-NULL pointer. [see: https://man7.org/linux/man-pages/man2/epoll_ctl.2.html#BUGS] */
|
||||
if (epoll_ctl(pList->epollfd, EPOLL_CTL_DEL, sock->sock, &pList->ev) == -1) {
|
||||
/* non-fatal error, socket probably just didn't exist, so ignore it. */
|
||||
CWARN("epoll_ctl [DEL] failed");
|
||||
}
|
||||
#else
|
||||
int i;
|
||||
|
||||
/* search fds for socket, remove it and shrink array */
|
||||
for (i = 0; i < pList->fdCount; i++) {
|
||||
if (pList->fds[i].fd == sock->sock) {
|
||||
/* remove from array */
|
||||
laikaM_rmvarray(PollFD, pList->fds, pList->fdCount, i, 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaP_addPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
pList->ev.events = EPOLLIN | EPOLLOUT;
|
||||
pList->ev.data.ptr = (void*)sock;
|
||||
if (epoll_ctl(pList->epollfd, EPOLL_CTL_MOD, sock->sock, &pList->ev) == -1) {
|
||||
/* non-fatal error, socket probably just didn't exist, so ignore it. */
|
||||
CWARN("epoll_ctl [MOD] failed");
|
||||
}
|
||||
#else
|
||||
int i;
|
||||
|
||||
/* search fds for socket, add POLLOUT flag */
|
||||
for (i = 0; i < pList->fdCount; i++) {
|
||||
if (pList->fds[i].fd == sock->sock) {
|
||||
pList->fds[i].events = POLLIN | POLLOUT;
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaP_rmvPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
pList->ev.events = EPOLLIN;
|
||||
pList->ev.data.ptr = (void*)sock;
|
||||
if (epoll_ctl(pList->epollfd, EPOLL_CTL_MOD, sock->sock, &pList->ev) == -1) {
|
||||
/* non-fatal error, socket probably just didn't exist, so ignore it. */
|
||||
CWARN("epoll_ctl [MOD] failed");
|
||||
}
|
||||
#else
|
||||
int i;
|
||||
|
||||
/* search fds for socket, remove POLLOUT flag */
|
||||
for (i = 0; i < pList->fdCount; i++) {
|
||||
if (pList->fds[i].fd == sock->sock) {
|
||||
pList->fds[i].events = POLLIN;
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout, int *_nevents) {
|
||||
int nEvents, i;
|
||||
|
||||
pList->reventCount = 0; /* reset revent array */
|
||||
#ifdef LAIKA_USE_EPOLL
|
||||
/* fastpath: we store the sLaika_socket* pointer directly in the epoll_data_t, saving us a lookup into our socket hashmap
|
||||
not to mention the various improvements epoll() has over poll() :D
|
||||
*/
|
||||
nEvents = epoll_wait(pList->epollfd, pList->ep_events, MAX_EPOLL_EVENTS, timeout);
|
||||
|
||||
if (SOCKETERROR(nEvents))
|
||||
CERROR("epoll_wait() failed!");
|
||||
|
||||
for (i = 0; i < nEvents; i++) {
|
||||
/* add event to revent array */
|
||||
laikaM_growarray(struct sLaika_pollEvent, pList->revents, pList->reventCount, pList->reventCapacity);
|
||||
pList->revents[pList->reventCount++] = (struct sLaika_pollEvent){
|
||||
.sock = pList->ep_events[i].data.ptr,
|
||||
.pollIn = pList->ep_events[i].events & EPOLLIN,
|
||||
.pollOut = pList->ep_events[i].events & EPOLLOUT
|
||||
};
|
||||
}
|
||||
#else
|
||||
nEvents = poll(pList->fds, pList->fdCount, timeout); /* poll returns -1 for error, or the number of events */
|
||||
|
||||
if (SOCKETERROR(nEvents))
|
||||
CERROR("poll() failed!");
|
||||
|
||||
/* walk through the returned poll fds, if they have an event, add it to our revents array */
|
||||
for (i = 0; i < pList->fdCount && nEvents > 0; i++) {
|
||||
PollFD pfd = pList->fds[i];
|
||||
if (pList->fds[i].revents != 0) {
|
||||
/* grab socket from hashmap */
|
||||
struct sLaika_socket *sock = hashmap_get(pList->sockets, &(tLaika_hashMapElem){.fd = (SOCKET)pfd.fd});
|
||||
|
||||
/* insert event into revents array */
|
||||
laikaM_growarray(struct sLaika_pollEvent, pList->revents, pList->reventCount, pList->reventCapacity);
|
||||
pList->revents[pList->reventCount++] = (struct sLaika_pollEvent){
|
||||
.sock = sock,
|
||||
.pollIn = pfd.revents & POLLIN,
|
||||
.pollOut = pfd.revents & POLLOUT
|
||||
};
|
||||
|
||||
nEvents--;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* return revents array */
|
||||
*_nevents = i;
|
||||
return pList->revents;
|
||||
}
|
254
lib/src/lsocket.c
Normal file
254
lib/src/lsocket.c
Normal file
@ -0,0 +1,254 @@
|
||||
#include "lerror.h"
|
||||
#include "lmem.h"
|
||||
#include "lpolllist.h"
|
||||
#include "lsocket.h"
|
||||
|
||||
static int _LNSetup = 0;
|
||||
|
||||
void laikaS_init(void) {
|
||||
if (_LNSetup++ > 0)
|
||||
return; /* WSA is already setup! */
|
||||
|
||||
#ifdef _WIN32
|
||||
WSADATA wsaData;
|
||||
|
||||
if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)
|
||||
CERROR("WSAStartup failed!")
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaS_cleanUp(void) {
|
||||
if (--_LNSetup > 0)
|
||||
return; /* WSA still needs to be up, a FoxNet peer is still using it */
|
||||
|
||||
#ifdef _WIN32
|
||||
WSACleanup();
|
||||
#endif
|
||||
}
|
||||
|
||||
void laikaS_initSocket(struct sLaika_socket *sock) {
|
||||
sock->sock = INVALID_SOCKET;
|
||||
sock->inBuf = NULL;
|
||||
sock->inCap = ARRAY_START;
|
||||
sock->inCount = 0;
|
||||
sock->outBuf = NULL;
|
||||
sock->outCap = ARRAY_START;
|
||||
sock->outCount = 0;
|
||||
|
||||
laikaS_init();
|
||||
return sock;
|
||||
}
|
||||
|
||||
void laikaS_cleanSocket(struct sLaika_socket *sock) {
|
||||
/* free in & out arrays */
|
||||
laikaM_free(sock->inBuf);
|
||||
laikaM_free(sock->outBuf);
|
||||
|
||||
/* kill socket & cleanup WSA */
|
||||
laikaS_kill(sock);
|
||||
laikaS_cleanUp();
|
||||
}
|
||||
|
||||
void laikaS_kill(struct sLaika_socket *sock) {
|
||||
if (!laikaS_isAlive(sock)) /* sanity check */
|
||||
return;
|
||||
|
||||
#ifdef _WIN32
|
||||
shutdown(sock->sock, SD_BOTH);
|
||||
closesocket(sock->sock);
|
||||
#else
|
||||
shutdown(sock->sock, SHUT_RDWR);
|
||||
close(sock->sock);
|
||||
#endif
|
||||
|
||||
sock->sock = INVALID_SOCKET;
|
||||
}
|
||||
|
||||
void laikaS_connect(struct sLaika_socket *sock, char *ip, char *port) {
|
||||
struct addrinfo res, *result, *curr;
|
||||
|
||||
if (!SOCKETINVALID(sock->sock))
|
||||
CERROR("socket already setup!");
|
||||
|
||||
/* zero out our address info and setup the type */
|
||||
memset(&res, 0, sizeof(struct addrinfo));
|
||||
res.ai_family = AF_UNSPEC;
|
||||
res.ai_socktype = SOCK_STREAM;
|
||||
|
||||
/* grab the address info */
|
||||
if (getaddrinfo(ip, port, &res, &result) != 0)
|
||||
CERROR("getaddrinfo() failed!");
|
||||
|
||||
/* getaddrinfo returns a list of possible addresses, step through them and try them until we find a valid address */
|
||||
for (curr = result; curr != NULL; curr = curr->ai_next) {
|
||||
sock->sock = socket(curr->ai_family, curr->ai_socktype, curr->ai_protocol);
|
||||
|
||||
/* if it failed, try the next sock */
|
||||
if (SOCKETINVALID(sock->sock))
|
||||
continue;
|
||||
|
||||
/* if it's not an invalid socket, break and exit the loop, we found a working addr! */
|
||||
if (!SOCKETINVALID(connect(sock->sock, curr->ai_addr, curr->ai_addrlen)))
|
||||
break;
|
||||
|
||||
laikaS_kill(sock);
|
||||
}
|
||||
freeaddrinfo(result);
|
||||
|
||||
/* if we reached the end of the linked list, we failed looking up the addr */
|
||||
if (curr == NULL)
|
||||
CERROR("couldn't connect a valid address handle to socket!");
|
||||
}
|
||||
|
||||
void laikaS_bind(struct sLaika_socket *sock, uint16_t port) {
|
||||
socklen_t addressSize;
|
||||
struct sockaddr_in address;
|
||||
|
||||
if (!SOCKETINVALID(sock))
|
||||
CERROR("socket already setup!")
|
||||
|
||||
/* open our socket */
|
||||
sock->sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
if (SOCKETINVALID(sock))
|
||||
CERROR("socket() failed!");
|
||||
|
||||
/* attach socket to the port */
|
||||
int opt = 1;
|
||||
#ifdef _WIN32
|
||||
if (setsockopt(sock->sock, SOL_SOCKET, SO_REUSEADDR, (const char*)&opt, sizeof(int)) != 0)
|
||||
#else
|
||||
if (setsockopt(sock->sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(int)) != 0)
|
||||
#endif
|
||||
CERROR("setsockopt() failed!");
|
||||
|
||||
address.sin_family = AF_INET;
|
||||
address.sin_addr.s_addr = INADDR_ANY;
|
||||
address.sin_port = htons(port);
|
||||
|
||||
addressSize = sizeof(struct sockaddr_in);
|
||||
|
||||
/* bind to the port */
|
||||
if (SOCKETERROR(bind(sock->sock, (struct sockaddr *)&address, addressSize)))
|
||||
CERROR("bind() failed!");
|
||||
|
||||
if (SOCKETERROR(listen(sock->sock, SOMAXCONN)))
|
||||
CERROR("listen() failed!");
|
||||
}
|
||||
|
||||
void laikaS_acceptFrom(struct sLaika_socket *sock, struct sLaika_socket *from) {
|
||||
socklen_t addressSize;
|
||||
struct sockaddr address;
|
||||
|
||||
sock = accept(from->sock, &address, &addressSize);
|
||||
if (SOCKETINVALID(sock))
|
||||
CERROR("accept() failed!")
|
||||
}
|
||||
|
||||
bool laikaS_setNonBlock(struct sLaika_socket *sock) {
|
||||
#ifdef _WIN32
|
||||
unsigned long mode = 1;
|
||||
if (ioctlsocket(sock->sock, FIONBIO, &mode) != 0) {
|
||||
#else
|
||||
if (fcntl(sock->sock, F_SETFL, (fcntl(sock->sock, F_GETFL, 0) | O_NONBLOCK)) != 0) {
|
||||
#endif
|
||||
CWARN("fcntl failed on new connection");
|
||||
laikaS_kill(sock);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void laikaS_read(struct sLaika_socket *sock, void *buf, size_t sz) {
|
||||
memcpy(buf, sock->inBuf, sz);
|
||||
laikaM_rmvarray(uint8_t, sock->inBuf, sock->inCount, 0, sz);
|
||||
}
|
||||
|
||||
void laikaS_write(struct sLaika_socket *sock, void *buf, size_t sz) {
|
||||
/* make sure we have enough space to copy the buffer */
|
||||
laikaM_growarray(uint8_t, sock->outBuf, sock->outCount + sz, sock->outCap);\
|
||||
|
||||
/* copy the buffer, then increment outCount */
|
||||
memcpy(&sock->outBuf[sock->outCount], buf, sz);
|
||||
sock->outCount += sz;
|
||||
}
|
||||
|
||||
void laikaS_writeByte(struct sLaika_socket *sock, uint8_t data) {
|
||||
laikaM_growarray(uint8_t, sock->outBuf, sock->outCount, sock->outCap);
|
||||
sock->outBuf[sock->outCount++] = data;
|
||||
}
|
||||
|
||||
uint8_t laikaS_readByte(struct sLaika_socket *sock) {
|
||||
uint8_t tmp = *sock->inBuf;
|
||||
|
||||
/* pop 1 byte */
|
||||
laikaM_rmvarray(uint8_t, sock->inBuf, sock->inCount, 0, 1);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed) {
|
||||
RAWSOCKCODE errCode = RAWSOCK_OK;
|
||||
int rcvd, start = sock->inCount;
|
||||
|
||||
/* make sure we have enough space to recv */
|
||||
laikaM_growarray(uint8_t, sock->inBuf, sock->inCount + sz, sock->inCap);
|
||||
rcvd = recv(sock->sock, (buffer_t*)&sock->inBuf[sock->inCount], sz, LN_MSG_NOSIGNAL);
|
||||
|
||||
if (rcvd == 0) {
|
||||
errCode = RAWSOCK_CLOSED;
|
||||
} else if (SOCKETERROR(rcvd) && LN_ERRNO != LN_EWOULD
|
||||
#ifndef _WIN32
|
||||
/* if it's a posix system, also make sure its not a EAGAIN result (which is a recoverable error, there's just nothing to read lol) */
|
||||
&& LN_ERRNO != EAGAIN
|
||||
#endif
|
||||
) {
|
||||
/* if the socket closed or an error occurred, return the error result */
|
||||
errCode = RAWSOCK_ERROR;
|
||||
} else if (rcvd > 0) {
|
||||
/* recv() worked, add rcvd to inCount */
|
||||
sock->inCount += rcvd;
|
||||
}
|
||||
|
||||
*processed = rcvd;
|
||||
return errCode;
|
||||
}
|
||||
|
||||
RAWSOCKCODE laikaS_rawSend(struct sLaika_socket *sock, size_t sz, int *processed) {
|
||||
RAWSOCKCODE errCode = RAWSOCK_OK;
|
||||
int sent, sentBytes = 0;
|
||||
|
||||
/* write bytes to the socket until an error occurs or we finish sending */
|
||||
do {
|
||||
sent = send(sock->sock, (buffer_t*)(&sock->outBuf[sentBytes]), sz - sentBytes, LN_MSG_NOSIGNAL);
|
||||
|
||||
/* check for error result */
|
||||
if (sent == 0) { /* connection closed gracefully */
|
||||
errCode = RAWSOCK_CLOSED;
|
||||
goto _rawWriteExit;
|
||||
} else if (SOCKETERROR(sent)) { /* socket error? */
|
||||
if (LN_ERRNO != LN_EWOULD
|
||||
#ifndef _WIN32
|
||||
/* posix also has some platforms which define EAGAIN as a different value than EWOULD, might as well support it. */
|
||||
&& LN_ERRNO != EAGAIN
|
||||
#endif
|
||||
) { /* socket error! */
|
||||
errCode = RAWSOCK_ERROR;
|
||||
goto _rawWriteExit;
|
||||
}
|
||||
|
||||
/*
|
||||
it was a result of EWOULD or EAGAIN, kernel socket send buffer is full,
|
||||
tell the caller we need to set our poll event POLLOUT
|
||||
*/
|
||||
errCode = RAWSOCK_POLL;
|
||||
goto _rawWriteExit;
|
||||
}
|
||||
} while((sentBytes += sent) < sz);
|
||||
|
||||
_rawWriteExit:
|
||||
/* trim sent data from outBuf */
|
||||
laikaM_rmvarray(uint8_t, sock->outBuf, sock->outCount, 0, sentBytes);
|
||||
|
||||
*processed = sentBytes;
|
||||
return errCode;
|
||||
}
|
Loading…
Reference in New Issue
Block a user