Inital commit

lib/ is just [FoxNet](https://git.openpunk.com/CPunch/FoxNet) ported to C99
This commit is contained in:
CPunch 2022-01-23 21:28:16 -06:00
commit 8133a8d3cb
24 changed files with 1939 additions and 0 deletions

37
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,37 @@
{
"files.associations": {
"*.tcc": "cpp",
"deque": "cpp",
"list": "cpp",
"string": "cpp",
"unordered_map": "cpp",
"unordered_set": "cpp",
"vector": "cpp",
"cinttypes": "cpp",
"cstring": "cpp",
"algorithm": "cpp",
"chrono": "cpp",
"array": "cpp",
"compare": "cpp",
"functional": "cpp",
"istream": "cpp",
"ostream": "cpp",
"ratio": "cpp",
"tuple": "cpp",
"type_traits": "cpp",
"utility": "cpp",
"variant": "cpp"
},
"cSpell.words": [
"CWARN",
"epollfd",
"EPOLLIN",
"EWOULD",
"ISPROTECTED",
"Laika",
"LAIKAMAGIC",
"LAIKAMAGICLEN",
"NOMINMAX",
"rmvarray"
]
}

6
CMakeLists.txt Normal file
View File

@ -0,0 +1,6 @@
cmake_minimum_required(VERSION 3.10)
# compile laikalib, cnc & bot
add_subdirectory(lib)
add_subdirectory(cnc)
add_subdirectory(bot)

7
README.md Normal file
View File

@ -0,0 +1,7 @@
# Laika
This is a simple POC botnet written in C99. The net library shares some similarities to [FoxNet](https://github.com/CPunch/FoxNet), in fact lpolllist.c is just a port of the FoxPollList class. This botnet is also crossplatform with clients written for each platform (check the /clients folder).
## Why?
Malware development in recent years is soooooooo boring (esp. malware written by non-nationstate actors). I wanted to prove that homebrew malware can still be interesting and fun! Obviously use this on your own machines/get permission before running etc. etc.

25
bot/CMakeLists.txt Normal file
View File

@ -0,0 +1,25 @@
cmake_minimum_required(VERSION 3.10)
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED ON)
set(BOT_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
project(LaikaBot VERSION 1.0)
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# Set the project as the default startup project for VS
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaBot)
# compile LaikaBot
file(GLOB_RECURSE BOTSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
add_executable(LaikaBot ${BOTSOURCE})
target_link_libraries(LaikaBot PUBLIC LaikaLib)
# add the 'DEBUG' preprocessor definition if we're compiling as Debug
target_compile_definitions(LaikaBot PUBLIC "$<$<CONFIG:Debug>:DEBUG>")
# add include directory
target_include_directories(LaikaBot PUBLIC ${BOT_INCLUDEDIR})

0
bot/src/main.c Normal file
View File

25
cnc/CMakeLists.txt Normal file
View File

@ -0,0 +1,25 @@
cmake_minimum_required(VERSION 3.10)
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED ON)
set(CNC_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
project(LaikaCNC VERSION 1.0)
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# Set the project as the default startup project for VS
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaCNC)
# compile LaikaCNC
file(GLOB_RECURSE CNCSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
add_executable(LaikaCNC ${CNCSOURCE})
target_link_libraries(LaikaCNC PUBLIC LaikaLib)
# add the 'DEBUG' preprocessor definition if we're compiling as Debug
target_compile_definitions(LaikaCNC PUBLIC "$<$<CONFIG:Debug>:DEBUG>")
# add include directory
target_include_directories(LaikaCNC PUBLIC ${CNC_INCLUDEDIR})

12
cnc/include/cnc.h Normal file
View File

@ -0,0 +1,12 @@
#ifndef LAIKA_CNC_H
#define LAIKA_CNC_H
#include "laika.h"
#include "lsocket.h"
#include "lpolllist.h"
struct {
struct sLaika_socket sock;
} sLaika_cnc;
#endif

1
cnc/src/cnc.c Normal file
View File

@ -0,0 +1 @@
#include "cnc.h"

0
cnc/src/main.c Normal file
View File

31
lib/CMakeLists.txt Normal file
View File

@ -0,0 +1,31 @@
cmake_minimum_required(VERSION 3.10)
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED ON)
set(LIB_INCLUDEDIR ${CMAKE_CURRENT_SOURCE_DIR}/include)
# version details
set(LIB_VERSION_MAJOR 0)
set(LIB_VERSION_MINOR 0)
project(LaikaLib VERSION ${LIB_VERSION_MAJOR}.${LIB_VERSION_MINOR})
# Put CMake targets (ALL_BUILD/ZERO_CHECK) into a folder
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# Set the project as the default startup project for VS
set_property(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT LaikaLib)
# compile LaikaLib library
file(GLOB_RECURSE LIBSOURCE ${CMAKE_CURRENT_SOURCE_DIR}/src/**.c)
add_library(LaikaLib STATIC ${LIBSOURCE})
# add the version definitions and the 'DEBUG' preprocessor definition if we're compiling as Debug
target_compile_definitions(LaikaLib PUBLIC LIB_VERSION_MAJOR=${LIB_VERSION_MAJOR} LIB_VERSION_MINOR=${LIB_VERSION_MINOR} "$<$<CONFIG:Debug>:DEBUG>")
# add include directory
target_include_directories(LaikaLib PUBLIC ${LIB_INCLUDEDIR})
# set library name
set_target_properties(LaikaLib PROPERTIES OUTPUT_NAME net-${LIB_VERSION_MAJOR}.${LIB_VERSION_MINOR})

54
lib/include/hashmap.h Normal file
View File

@ -0,0 +1,54 @@
// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#ifndef HASHMAP_H
#define HASHMAP_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
struct hashmap;
struct hashmap *hashmap_new(size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata);
struct hashmap *hashmap_new_with_allocator(
void *(*malloc)(size_t),
void *(*realloc)(void *, size_t),
void (*free)(void*),
size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata);
void hashmap_free(struct hashmap *map);
void hashmap_clear(struct hashmap *map, bool update_cap);
size_t hashmap_count(struct hashmap *map);
bool hashmap_oom(struct hashmap *map);
void *hashmap_get(struct hashmap *map, const void *item);
void *hashmap_set(struct hashmap *map, void *item);
void *hashmap_delete(struct hashmap *map, void *item);
void *hashmap_probe(struct hashmap *map, uint64_t position);
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata);
uint64_t hashmap_sip(const void *data, size_t len,
uint64_t seed0, uint64_t seed1);
uint64_t hashmap_murmur(const void *data, size_t len,
uint64_t seed0, uint64_t seed1);
// DEPRECATED: use `hashmap_new_with_allocator`
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*));
#endif

13
lib/include/laika.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef LAIKA_LAIKA_H
#define LAIKA_LAIKA_H
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#define ARRAY_START 4
#endif

47
lib/include/lerror.h Normal file
View File

@ -0,0 +1,47 @@
#ifndef LAIKA_ERROR_H
#define LAIKA_ERROR_H
#include <stdio.h>
#include <setjmp.h>
/* defines errorstack size */
#define LAIKA_MAXERRORS 32
/* DO NOT RETURN/GOTO/BREAK or otherwise skip LAIKA_TRYEND */
#define LAIKA_TRY if (setjmp(eLaika_errStack[++eLaika_errIndx]) == 0) {
#define LAIKA_CATCH } else {
#define LAIKA_TRYEND } --eLaika_errIndx;
/* if eLaika_errIndx is >= 0, we have a safe spot to jump too if an error is thrown */
#define LAIKA_ISPROTECTED (eLaika_errIndx >= 0)
/* CERROR(printf args):
if called after a LAIKA_TRY block will jump to the previous LAIKA_CATCH/LAIKA_TRYEND block,
otherwise program is exit()'d. if DEBUG is defined printf is called with passed args, else
arguments are ignored.
*/
#ifndef DEBUG
#define CERROR(...) { \
if (LAIKA_ISPROTECTED) \
longjmp(eLaika_errStack[eLaika_errIndx], 1); \
else \
exit(1); \
}
#define CWARN(...)
#else
#define CERROR(...) { \
printf("[ERROR] : " __VA_ARGS__); \
if (LAIKA_ISPROTECTED) \
longjmp(eLaika_errStack[eLaika_errIndx], 1); \
else \
exit(1); \
}
#define CWARN(...) \
printf("[WARN] : " __VA_ARGS__);
#endif
extern int eLaika_errIndx;
extern jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
#endif

26
lib/include/lmem.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef LAIKA_MEM_H
#define LAIKA_MEM_H
#include "laika.h"
#define GROW_FACTOR 2
#define laikaM_malloc(sz) laikaM_realloc(NULL, sz)
#define laikaM_free(buf) laikaM_realloc(buf, 0)
#define laikaM_free(buf) laikaM_realloc(buf, 0)
#define laikaM_growarray(type, buf, count, capacity) \
if (count >= capacity || buf == NULL) { \
capacity *= GROW_FACTOR; \
buf = (type*)cosmoM_realloc(buf, sizeof(type)*capacity); \
}
/* moves array elements above indx down by numElem, removing numElem elements at indx */
#define laikaM_rmvarray(type, buf, count, indx, numElem) { \
memmove(&buf[indx], &buf[indx+numElem], ((count-indx)-numElem)*sizeof(type)); \
count -= numElem; \
}
void *laikaM_realloc(void *buf, size_t sz);
#endif

10
lib/include/lpacket.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef LAIKA_PACKET_H
#define LAIKA_PACKET_H
typedef enum {
LAIKAPKT_HANDSHAKE_REQ,
LAIKAPKT_HANDSHAKE_RES,
LAIKAPKT_MAXNONE
} LAIKAPKT_ID;
#endif

25
lib/include/lpeer.h Normal file
View File

@ -0,0 +1,25 @@
#ifndef LAIKA_PEER_H
#define LAIKA_PEER_H
#include "laika.h"
#include "lsocket.h"
#include "lpacket.h"
#include "lpolllist.h"
struct sLaika_peer {
struct sLaika_socket sock;
struct sLaika_pollList *pList; /* pollList we're active in */
void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id);
size_t pktSize; /* current pkt size */
LAIKAPKT_ID pktID; /* current pkt ID */
size_t *pktSizeTable; /* const table to pull pkt size data from */
bool setPollOut; /* if EPOLLOUT/POLLOUT is set on sock's pollfd */
};
struct sLaika_peer *laikaS_newPeer(void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id), struct sLaika_pollList *pList, size_t *pktSizeTable);
void laikaS_freePeer(struct sLaika_peer *peer);
bool laikaS_handlePeerIn(struct sLaika_peer *peer);
bool laikaS_handlePeerOut(struct sLaika_peer *peer);
#endif

43
lib/include/lpolllist.h Normal file
View File

@ -0,0 +1,43 @@
#ifndef LAIKA_POLLLIST_H
#define LAIKA_POLLLIST_H
#include "laika.h"
#include "lsocket.h"
#include "hashmap.h"
/* number of pollFDs or epollFDs we expect to start with */
#define POLLSTARTCAP 8
struct sLaika_pollEvent {
struct sLaika_socket *sock;
bool pollIn;
bool pollOut;
};
struct sLaika_pollList {
struct hashmap *sockets;
struct sLaika_pollEvent *revents;
#ifdef LAIKA_USE_EPOLL
/* epoll */
struct epoll_event ev, ep_events[MAX_EPOLL_EVENTS];
SOCKET epollfd;
#else
/* raw poll descriptor */
PollFD *fds;
int fdCapacity;
int fdCount;
#endif
int reventCapacity;
int reventCount;
};
void laikaP_initPList(struct sLaika_pollList *pList);
void laikaP_cleanPList(struct sLaika_pollList *pList); /* free's all members */
void laikaP_addSock(struct sLaika_pollList *pList, struct sLaika_socket *sock);
void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock);
void laikaP_addPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock);
void laikaP_rmvPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock);
struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout, int *nevents);
#endif

86
lib/include/lsocket.h Normal file
View File

@ -0,0 +1,86 @@
/* socket/winsock headers */
#ifdef _WIN32
/* windows */
#ifndef NOMINMAX
#define NOMINMAX
#endif
#define _WINSOCK_DEPRECATED_NO_WARNINGS
#include <winsock2.h>
#include <windows.h>
#include <ws2tcpip.h>
#pragma comment(lib, "Ws2_32.lib")
typedef char buffer_t;
#define PollFD WSAPOLLFD
#define poll WSAPoll
#define LN_ERRNO WSAGetLastError()
#define LN_EWOULD WSAEWOULDBLOCK
#define LN_MSG_NOSIGNAL 0
#define SOCKETINVALID(x) (x == INVALID_SOCKET)
#define SOCKETERROR(x) (x == SOCKET_ERROR)
#else
/* posix platform */
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <poll.h>
#ifdef __linux__
#include <sys/epoll.h>
/* max events for epoll() */
#define MAX_EPOLL_EVENTS 128
#define LAIKA_USE_EPOLL
#endif
#include <unistd.h>
#include <errno.h>
typedef int SOCKET;
typedef void buffer_t;
#define PollFD struct pollfd
#define LN_ERRNO errno
#define LN_EWOULD EWOULDBLOCK
#define LN_MSG_NOSIGNAL MSG_NOSIGNAL
#define INVALID_SOCKET -1
#define SOCKETINVALID(x) (x < 0)
#define SOCKETERROR(x) (x == -1)
#endif
#include <fcntl.h>
typedef enum {
RAWSOCK_OK,
RAWSOCK_ERROR,
RAWSOCK_CLOSED,
RAWSOCK_POLL
} RAWSOCKCODE;
struct sLaika_socket {
uint8_t *outBuf; /* raw data to be sent() */
uint8_t *inBuf; /* raw data we recv()'d */
SOCKET sock; /* raw socket fd */
int outCount;
int inCount;
int outCap;
int inCap;
};
#define laikaS_isAlive(sock) (sock->sock != INVALID_SOCKET)
void laikaS_init(void);
void laikaS_cleanUp(void);
void laikaS_initSocket(struct sLaika_socket *sock);
void laikaS_cleanSocket(struct sLaika_socket *sock);
void laikaS_kill(struct sLaika_socket *sock); /* kills a socket */
void laikaS_connect(struct sLaika_socket *sock, char *ip, char *port); /* connect to ip & port */
void laikaS_bind(struct sLaika_socket *sock, uint16_t port); /* bind sock to port */
bool laikaS_setNonBlock(struct sLaika_socket *sock);
void laikaS_read(struct sLaika_socket *sock, void *buf, size_t sz); /* reads from inBuf */
void laikaS_write(struct sLaika_socket *sock, void *buf, size_t sz); /* writes to outBuf */
void laikaS_writeByte(struct sLaika_socket *sock, uint8_t data);
uint8_t laikaS_readByte(struct sLaika_socket *sock);
RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed);
RAWSOCKCODE laikaS_rawSend(struct sLaika_socket *sock, size_t sz, int *processed);

936
lib/src/hashmap.c Normal file
View File

@ -0,0 +1,936 @@
// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include "hashmap.h"
static void *(*_malloc)(size_t) = NULL;
static void *(*_realloc)(void *, size_t) = NULL;
static void (*_free)(void *) = NULL;
// hashmap_set_allocator allows for configuring a custom allocator for
// all hashmap library operations. This function, if needed, should be called
// only once at startup and a prior to calling hashmap_new().
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
{
_malloc = malloc;
_free = free;
}
#define panic(_msg_) { \
/*fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__);*/ \
exit(1); \
}
struct bucket {
uint64_t hash:48;
uint64_t dib:16;
};
// hashmap is an open addressed hash map using robinhood hashing.
struct hashmap {
void *(*malloc)(size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
bool oom;
size_t elsize;
size_t cap;
uint64_t seed0;
uint64_t seed1;
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
int (*compare)(const void *a, const void *b, void *udata);
void (*elfree)(void *item);
void *udata;
size_t bucketsz;
size_t nbuckets;
size_t count;
size_t mask;
size_t growat;
size_t shrinkat;
void *buckets;
void *spare;
void *edata;
};
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
return (struct bucket*)(((char*)map->buckets)+(map->bucketsz*index));
}
static void *bucket_item(struct bucket *entry) {
return ((char*)entry)+sizeof(struct bucket);
}
static uint64_t get_hash(struct hashmap *map, const void *key) {
return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
}
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
// See hashmap_new for more information information
struct hashmap *hashmap_new_with_allocator(
void *(*_malloc)(size_t),
void *(*_realloc)(void*, size_t),
void (*_free)(void*),
size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
{
_malloc = _malloc ? _malloc : malloc;
_realloc = _realloc ? _realloc : realloc;
_free = _free ? _free : free;
int ncap = 16;
if (cap < ncap) {
cap = ncap;
} else {
while (ncap < cap) {
ncap *= 2;
}
cap = ncap;
}
size_t bucketsz = sizeof(struct bucket) + elsize;
while (bucketsz & (sizeof(uintptr_t)-1)) {
bucketsz++;
}
// hashmap + spare + edata
size_t size = sizeof(struct hashmap)+bucketsz*2;
struct hashmap *map = _malloc(size);
if (!map) {
return NULL;
}
memset(map, 0, sizeof(struct hashmap));
map->elsize = elsize;
map->bucketsz = bucketsz;
map->seed0 = seed0;
map->seed1 = seed1;
map->hash = hash;
map->compare = compare;
map->elfree = elfree;
map->udata = udata;
map->spare = ((char*)map)+sizeof(struct hashmap);
map->edata = (char*)map->spare+bucketsz;
map->cap = cap;
map->nbuckets = cap;
map->mask = map->nbuckets-1;
map->buckets = _malloc(map->bucketsz*map->nbuckets);
if (!map->buckets) {
_free(map);
return NULL;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
map->malloc = _malloc;
map->realloc = _realloc;
map->free = _free;
return map;
}
// hashmap_new returns a new hash map.
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or retrieved will be this size.
// Param `cap` is the default lower capacity of the hashmap. Setting this to
// zero will default to 16.
// Params `seed0` and `seed1` are optional seed values that are passed to the
// following `hash` function. These can be any value you wish but it's often
// best to use randomly generated values.
// Param `hash` is a function that generates a hash value for an item. It's
// important that you provide a good hash function, otherwise it will perform
// poorly or be vulnerable to Denial-of-service attacks. This implementation
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
// Param `compare` is a function that compares items in the tree. See the
// qsort stdlib function for an example of how this function works.
// The hashmap must be freed with hashmap_free().
// Param `elfree` is a function that frees a specific item. This should be NULL
// unless you're storing some kind of reference data in the hash.
struct hashmap *hashmap_new(size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void (*elfree)(void *item),
void *udata)
{
return hashmap_new_with_allocator(
(_malloc?_malloc:malloc),
(_realloc?_realloc:realloc),
(_free?_free:free),
elsize, cap, seed0, seed1, hash, compare, elfree, udata
);
}
static void free_elements(struct hashmap *map) {
if (map->elfree) {
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) map->elfree(bucket_item(bucket));
}
}
}
// hashmap_clear quickly clears the map.
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
// When the update_cap is provided, the map's capacity will be updated to match
// the currently number of allocated buckets. This is an optimization to ensure
// that this operation does not perform any allocations.
void hashmap_clear(struct hashmap *map, bool update_cap) {
map->count = 0;
free_elements(map);
if (update_cap) {
map->cap = map->nbuckets;
} else if (map->nbuckets != map->cap) {
void *new_buckets = map->malloc(map->bucketsz*map->cap);
if (new_buckets) {
map->free(map->buckets);
map->buckets = new_buckets;
}
map->nbuckets = map->cap;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->mask = map->nbuckets-1;
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
}
static bool resize(struct hashmap *map, size_t new_cap) {
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
map->seed1, map->hash, map->compare,
map->elfree, map->udata);
if (!map2) {
return false;
}
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *entry = bucket_at(map, i);
if (!entry->dib) {
continue;
}
entry->dib = 1;
size_t j = entry->hash & map2->mask;
for (;;) {
struct bucket *bucket = bucket_at(map2, j);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
break;
}
if (bucket->dib < entry->dib) {
memcpy(map2->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map2->spare, map->bucketsz);
}
j = (j + 1) & map2->mask;
entry->dib += 1;
}
}
map->free(map->buckets);
map->buckets = map2->buckets;
map->nbuckets = map2->nbuckets;
map->mask = map2->mask;
map->growat = map2->growat;
map->shrinkat = map2->shrinkat;
map->free(map2);
return true;
}
// hashmap_set inserts or replaces an item in the hash map. If an item is
// replaced then it is returned otherwise NULL is returned. This operation
// may allocate memory. If the system is unable to allocate additional
// memory then NULL is returned and hashmap_oom() returns true.
void *hashmap_set(struct hashmap *map, void *item) {
if (!item) {
panic("item is null");
}
map->oom = false;
if (map->count == map->growat) {
if (!resize(map, map->nbuckets*2)) {
map->oom = true;
return NULL;
}
}
struct bucket *entry = map->edata;
entry->hash = get_hash(map, item);
entry->dib = 1;
memcpy(bucket_item(entry), item, map->elsize);
size_t i = entry->hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
map->count++;
return NULL;
}
if (entry->hash == bucket->hash &&
map->compare(bucket_item(entry), bucket_item(bucket),
map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
return map->spare;
}
if (bucket->dib < entry->dib) {
memcpy(map->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map->spare, map->bucketsz);
}
i = (i + 1) & map->mask;
entry->dib += 1;
}
}
// hashmap_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
void *hashmap_get(struct hashmap *map, const void *key) {
if (!key) {
panic("key is null");
}
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
return bucket_item(bucket);
}
i = (i + 1) & map->mask;
}
}
// hashmap_probe returns the item in the bucket at position or NULL if an item
// is not set for that bucket. The position is 'moduloed' by the number of
// buckets in the hashmap.
void *hashmap_probe(struct hashmap *map, uint64_t position) {
size_t i = position & map->mask;
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
return bucket_item(bucket);
}
// hashmap_delete removes an item from the hash map and returns it. If the
// item is not found then NULL is returned.
void *hashmap_delete(struct hashmap *map, void *key) {
if (!key) {
panic("key is null");
}
map->oom = false;
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
bucket->dib = 0;
for (;;) {
struct bucket *prev = bucket;
i = (i + 1) & map->mask;
bucket = bucket_at(map, i);
if (bucket->dib <= 1) {
prev->dib = 0;
break;
}
memcpy(prev, bucket, map->bucketsz);
prev->dib--;
}
map->count--;
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
// Ignore the return value. It's ok for the resize operation to
// fail to allocate enough memory because a shrink operation
// does not change the integrity of the data.
resize(map, map->nbuckets/2);
}
return map->spare;
}
i = (i + 1) & map->mask;
}
}
// hashmap_count returns the number of items in the hash map.
size_t hashmap_count(struct hashmap *map) {
return map->count;
}
// hashmap_free frees the hash map
// Every item is called with the element-freeing function given in hashmap_new,
// if present, to free any data referenced in the elements of the hashmap.
void hashmap_free(struct hashmap *map) {
if (!map) return;
free_elements(map);
map->free(map->buckets);
map->free(map);
}
// hashmap_oom returns true if the last hashmap_set() call failed due to the
// system being out of memory.
bool hashmap_oom(struct hashmap *map) {
return map->oom;
}
// hashmap_scan iterates over all items in the hash map
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata)
{
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) {
if (!iter(bucket_item(bucket), udata)) {
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// SipHash reference C implementation
//
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
// <jeanphilippe.aumasson@gmail.com>
// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// default: SipHash-2-4
//-----------------------------------------------------------------------------
static uint64_t SIP64(const uint8_t *in, const size_t inlen,
uint64_t seed0, uint64_t seed1)
{
#define U8TO64_LE(p) \
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
#define U64TO8_LE(p, v) \
{ U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
#define U32TO8_LE(p, v) \
{ (p)[0] = (uint8_t)((v)); \
(p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); \
(p)[3] = (uint8_t)((v) >> 24); }
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
#define SIPROUND \
{ v0 += v1; v1 = ROTL(v1, 13); \
v1 ^= v0; v0 = ROTL(v0, 32); \
v2 += v3; v3 = ROTL(v3, 16); \
v3 ^= v2; \
v0 += v3; v3 = ROTL(v3, 21); \
v3 ^= v0; \
v2 += v1; v1 = ROTL(v1, 17); \
v1 ^= v2; v2 = ROTL(v2, 32); }
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
for (; in != end; in += 8) {
uint64_t m = U8TO64_LE(in);
v3 ^= m;
SIPROUND; SIPROUND;
v0 ^= m;
}
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
switch (left) {
case 7: b |= ((uint64_t)in[6]) << 48;
case 6: b |= ((uint64_t)in[5]) << 40;
case 5: b |= ((uint64_t)in[4]) << 32;
case 4: b |= ((uint64_t)in[3]) << 24;
case 3: b |= ((uint64_t)in[2]) << 16;
case 2: b |= ((uint64_t)in[1]) << 8;
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
}
v3 ^= b;
SIPROUND; SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
uint64_t out = 0;
U64TO8_LE((uint8_t*)&out, b);
return out;
}
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
//
// Murmur3_86_128
//-----------------------------------------------------------------------------
static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
const uint8_t * data = (const uint8_t*)key;
const int nblocks = len / 16;
uint32_t h1 = seed;
uint32_t h2 = seed;
uint32_t h3 = seed;
uint32_t h4 = seed;
uint32_t c1 = 0x239b961b;
uint32_t c2 = 0xab0e9789;
uint32_t c3 = 0x38b34ae5;
uint32_t c4 = 0xa1e38b93;
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
for (int i = -nblocks; i; i++) {
uint32_t k1 = blocks[i*4+0];
uint32_t k2 = blocks[i*4+1];
uint32_t k3 = blocks[i*4+2];
uint32_t k4 = blocks[i*4+3];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
}
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
uint32_t k4 = 0;
switch(len & 15) {
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8;
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
case 8: k2 ^= tail[ 7] << 24;
case 7: k2 ^= tail[ 6] << 16;
case 6: k2 ^= tail[ 5] << 8;
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
case 4: k1 ^= tail[ 3] << 24;
case 3: k1 ^= tail[ 2] << 16;
case 2: k1 ^= tail[ 1] << 8;
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
};
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
((uint32_t*)out)[0] = h1;
((uint32_t*)out)[1] = h2;
((uint32_t*)out)[2] = h3;
((uint32_t*)out)[3] = h4;
}
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
uint64_t hashmap_sip(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
return SIP64((uint8_t*)data, len, seed0, seed1);
}
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
uint64_t hashmap_murmur(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
char out[16];
MM86128(data, len, seed0, &out);
return *(uint64_t*)out;
}
//==============================================================================
// TESTS AND BENCHMARKS
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
//==============================================================================
#ifdef HASHMAP_TEST
static size_t deepcount(struct hashmap *map) {
size_t count = 0;
for (size_t i = 0; i < map->nbuckets; i++) {
if (bucket_at(map, i)->dib) {
count++;
}
}
return count;
}
#pragma GCC diagnostic ignored "-Wextra"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <stdio.h>
#include "hashmap.h"
static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;
static void *xmalloc(size_t size) {
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
return NULL;
}
void *mem = malloc(sizeof(uintptr_t)+size);
assert(mem);
*(uintptr_t*)mem = size;
total_allocs++;
total_mem += size;
return (char*)mem+sizeof(uintptr_t);
}
static void xfree(void *ptr) {
if (ptr) {
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
free((char*)ptr-sizeof(uintptr_t));
total_allocs--;
}
}
static void shuffle(void *array, size_t numels, size_t elsize) {
char tmp[elsize];
char *arr = array;
for (size_t i = 0; i < numels - 1; i++) {
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
memcpy(tmp, arr + j * elsize, elsize);
memcpy(arr + j * elsize, arr + i * elsize, elsize);
memcpy(arr + i * elsize, tmp, elsize);
}
}
static bool iter_ints(const void *item, void *udata) {
int *vals = *(int**)udata;
vals[*(int*)item] = 1;
return true;
}
static int compare_ints(const void *a, const void *b) {
return *(int*)a - *(int*)b;
}
static int compare_ints_udata(const void *a, const void *b, void *udata) {
return *(int*)a - *(int*)b;
}
static int compare_strs(const void *a, const void *b, void *udata) {
return strcmp(*(char**)a, *(char**)b);
}
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_murmur(item, sizeof(int), seed0, seed1);
}
static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
}
static void free_str(void *item) {
xfree(*(char**)item);
}
static void all() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):2000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
rand_alloc_fail = true;
// test sip and murmur hashes
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
int *vals;
while (!(vals = xmalloc(N * sizeof(int)))) {}
for (int i = 0; i < N; i++) {
vals[i] = i;
}
struct hashmap *map;
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
hash_int, compare_ints_udata, NULL, NULL))) {}
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
// // printf("== %d ==\n", vals[i]);
assert(map->count == i);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
int *v;
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
for (int j = 0; j < i; j++) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
while (true) {
v = hashmap_set(map, &vals[i]);
if (!v) {
assert(hashmap_oom(map));
continue;
} else {
assert(!hashmap_oom(map));
assert(v && *v == vals[i]);
break;
}
}
v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
assert(!hashmap_set(map, &vals[i]));
assert(map->count == i+1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
}
int *vals2;
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
memset(vals2, 0, N * sizeof(int));
assert(hashmap_scan(map, iter_ints, &vals2));
for (int i = 0; i < N; i++) {
assert(vals2[i] == 1);
}
xfree(vals2);
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
int *v;
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(map->count == N-i-1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
for (int j = N-1; j > i; j--) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
}
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
assert(map->count != 0);
size_t prev_cap = map->cap;
hashmap_clear(map, true);
assert(prev_cap < map->cap);
assert(map->count == 0);
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
prev_cap = map->cap;
hashmap_clear(map, false);
assert(prev_cap == map->cap);
hashmap_free(map);
xfree(vals);
while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
hash_str, compare_strs, free_str, NULL)));
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_clear(map, false);
assert(hashmap_count(map) == 0);
for (int i = 0; i < N; i++) {
char *str;
while (!(str = xmalloc(16)));
sprintf(str, "s%i", i);
while(!hashmap_set(map, &str));
}
hashmap_free(map);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
#define bench(name, N, code) {{ \
if (strlen(name) > 0) { \
printf("%-14s ", name); \
} \
size_t tmem = total_mem; \
size_t tallocs = total_allocs; \
uint64_t bytes = 0; \
clock_t begin = clock(); \
for (int i = 0; i < N; i++) { \
(code); \
} \
clock_t end = clock(); \
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
double bytes_sec = (double)bytes/elapsed_secs; \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
N, elapsed_secs, \
elapsed_secs/(double)N*1e9, \
(double)N/elapsed_secs \
); \
if (bytes > 0) { \
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
} \
if (total_mem > tmem) { \
size_t used_mem = total_mem-tmem; \
printf(", %.2f bytes/op", (double)used_mem/N); \
} \
if (total_allocs > tallocs) { \
size_t used_allocs = total_allocs-tallocs; \
printf(", %.2f allocs/op", (double)used_allocs/N); \
} \
printf("\n"); \
}}
static void benchmarks() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):5000000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
int *vals = xmalloc(N * sizeof(int));
for (int i = 0; i < N; i++) {
vals[i] = i;
}
shuffle(vals, N, sizeof(int));
struct hashmap *map;
shuffle(vals, N, sizeof(int));
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete", N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
NULL, NULL);
bench("set (cap)", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get (cap)", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete (cap)" , N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
int main() {
hashmap_set_allocator(xmalloc, xfree);
if (getenv("BENCH")) {
printf("Running hashmap.c benchmarks...\n");
benchmarks();
} else {
printf("Running hashmap.c tests...\n");
all();
printf("PASSED\n");
}
}
#endif

4
lib/src/lerror.c Normal file
View File

@ -0,0 +1,4 @@
#include "lerror.h"
jmp_buf eLaika_errStack[LAIKA_MAXERRORS];
int eLaika_errIndx = -1;

18
lib/src/lmem.c Normal file
View File

@ -0,0 +1,18 @@
#include "lerror.h"
#include "lmem.h"
void *laikaM_realloc(void *buf, size_t sz) {
void *newBuf;
/* are we free'ing the buffer? */
if (sz == 0) {
free(buf);
return NULL;
}
/* if NULL is passed, realloc() acts like malloc() */
if ((newBuf = realloc(buf, sz)) == NULL)
CERROR("failed to allocate memory!");
return newBuf;
}

88
lib/src/lpeer.c Normal file
View File

@ -0,0 +1,88 @@
#include "lerror.h"
#include "lmem.h"
#include "lpeer.h"
struct sLaika_peer *laikaS_newPeer(void (*pktHandler)(struct sLaika_peer *peer, LAIKAPKT_ID id), struct sLaika_pollList *pList, size_t *pktSizeTable) {
struct sLaika_peer *peer = laikaM_malloc(sizeof(struct sLaika_peer));
laikaS_initSocket(&peer->sock);
peer->pktHandler = pktHandler;
peer->pList = pList;
peer->pktSizeTable = pktSizeTable;
peer->pktSize = 0;
peer->pktID = LAIKAPKT_MAXNONE;
peer->setPollOut = false;
return peer;
}
void laikaS_freePeer(struct sLaika_peer *peer) {
laikaS_cleanSocket(&peer->sock);
laikaM_free(peer);
}
bool laikaS_handlePeerIn(struct sLaika_peer *peer) {
RAWSOCKCODE err;
int recvd;
bool _tryCatchRes;
switch (peer->pktID) {
case LAIKAPKT_MAXNONE:
/* try grabbing pktID */
if (laikaS_rawRecv(&peer->sock, sizeof(uint8_t), &recvd) != RAWSOCK_OK)
return false;
peer->pktID = laikaS_readByte(&peer->sock);
/* sanity check packet ID */
if (peer->pktID >= LAIKAPKT_MAXNONE)
CERROR("received evil pktID!")
peer->pktSize = peer->pktSizeTable[peer->pktID];
break;
default:
/* try grabbing the rest of the packet */
if (laikaS_rawRecv(&peer->sock, peer->pktSize - peer->sock.inCount, &recvd) != RAWSOCK_OK)
return false;
/* have we received the full packet? */
if (peer->pktSize == peer->sock.inCount) {
/* dispatch to packet handler */
LAIKA_TRY
peer->pktHandler(peer, peer->pktID);
_tryCatchRes = true;
LAIKA_CATCH
_tryCatchRes = false;
LAIKA_TRYEND /* can't skip this, so the return is after */
return _tryCatchRes;
}
}
}
bool laikaS_handlePeerOut(struct sLaika_peer *peer) {
RAWSOCKCODE err;
int sent;
if (peer->sock.outCount == 0) /* sanity check */
return;
switch (laikaS_rawSend(&peer->sock, peer->sock.outCount, &sent)) {
case RAWSOCK_OK: /* we're ok! */
if (peer->setPollOut) { /* if POLLOUT was set, unset it */
laikaP_rmvPollOut(peer->pList, &peer->sock);
peer->setPollOut = false;
}
return true;
case RAWSOCK_POLL: /* we've been asked to set the POLLOUT flag */
if (!peer->setPollOut) { /* if POLLOUT wasn't set, set it so we'll be notified whenever the kernel has room :) */
laikaP_addPollOut(peer->pList, &peer->sock);
peer->setPollOut = true;
}
return true;
default: /* panic! */
case RAWSOCK_CLOSED:
case RAWSOCK_ERROR:
return false;
}
}

191
lib/src/lpolllist.c Normal file
View File

@ -0,0 +1,191 @@
#include "lerror.h"
#include "lmem.h"
#include "lpolllist.h"
typedef struct sLaika_hashMapElem {
SOCKET fd;
struct sLaika_socket *sock;
} tLaika_hashMapElem;
int elem_compare(const void *a, const void *b, void *udata) {
const tLaika_hashMapElem *ua = a;
const tLaika_hashMapElem *ub = b;
return ua->fd != ub->fd;
}
uint64_t elem_hash(const void *item, uint64_t seed0, uint64_t seed1) {
const tLaika_hashMapElem *u = item;
return (uint64_t)(u->fd);
}
void laikaP_initPList(struct sLaika_pollList *pList) {
laikaS_init();
/* setup hashmap */
pList->sockets = hashmap_new(sizeof(tLaika_hashMapElem), POLLSTARTCAP, 0, 0, elem_hash, elem_compare, NULL, NULL);
pList->revents = NULL; /* laikaP_pollList() will allocate the buffer */
pList->reventCapacity = POLLSTARTCAP/GROW_FACTOR;
pList->reventCount = 0;
#ifdef LAIKA_USE_EPOLL
/* setup our epoll */
memset(&pList->ev, 0, sizeof(struct epoll_event));
if ((pList->epollfd = epoll_create(POLLSTARTCAP)) == -1)
CERROR("epoll_create() failed!");
#else
pList->fds = NULL; /* laikaP_addSock will allocate the buffer */
pList->fdCapacity = POLLSTARTCAP/GROW_FACTOR; /* div by GROW_FACTOR since laikaM_growarray multiplies by GROW_FACTOR */
pList->fdCount = 0;
#endif
}
void laikaP_cleanPList(struct sLaika_pollList *pList) {
laikaM_free(pList->revents);
#ifdef LAIKA_USE_EPOLL
close(pList->epollfd);
#else
laikaM_free(pList->fds);
#endif
laikaS_cleanUp();
}
void laikaP_addSock(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
/* add socket to hashmap */
hashmap_set(pList->sockets, &(tLaika_hashMapElem){.fd = sock->sock, .sock = sock});
#ifdef LAIKA_USE_EPOLL
pList->ev.events = EPOLLIN;
pList->ev.data.ptr = (void*)sock;
if (epoll_ctl(pList->epollfd, EPOLL_CTL_ADD, sock->sock, &pList->ev) == -1)
CERROR("epoll_ctl [ADD] failed");
#else
/* allocate space in array & add PollFD */
laikaM_growarray(PollFD, pList->fds, pList->fdCount, pList->fdCapacity);
pList->fds[pList->fdCount++] = (PollFD){sock->sock, POLLIN};
#endif
}
void laikaP_rmvSock(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
/* remove socket from hashmap */
hashmap_delete(pList->sockets, &(tLaika_hashMapElem){.fd = sock->sock, .sock = sock});
#ifdef LAIKA_USE_EPOLL
/* epoll_event* isn't needed with EPOLL_CTL_DEL, however we still need to pass a NON-NULL pointer. [see: https://man7.org/linux/man-pages/man2/epoll_ctl.2.html#BUGS] */
if (epoll_ctl(pList->epollfd, EPOLL_CTL_DEL, sock->sock, &pList->ev) == -1) {
/* non-fatal error, socket probably just didn't exist, so ignore it. */
CWARN("epoll_ctl [DEL] failed");
}
#else
int i;
/* search fds for socket, remove it and shrink array */
for (i = 0; i < pList->fdCount; i++) {
if (pList->fds[i].fd == sock->sock) {
/* remove from array */
laikaM_rmvarray(PollFD, pList->fds, pList->fdCount, i, 1);
break;
}
}
#endif
}
void laikaP_addPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
#ifdef LAIKA_USE_EPOLL
pList->ev.events = EPOLLIN | EPOLLOUT;
pList->ev.data.ptr = (void*)sock;
if (epoll_ctl(pList->epollfd, EPOLL_CTL_MOD, sock->sock, &pList->ev) == -1) {
/* non-fatal error, socket probably just didn't exist, so ignore it. */
CWARN("epoll_ctl [MOD] failed");
}
#else
int i;
/* search fds for socket, add POLLOUT flag */
for (i = 0; i < pList->fdCount; i++) {
if (pList->fds[i].fd == sock->sock) {
pList->fds[i].events = POLLIN | POLLOUT;
break;
}
}
#endif
}
void laikaP_rmvPollOut(struct sLaika_pollList *pList, struct sLaika_socket *sock) {
#ifdef LAIKA_USE_EPOLL
pList->ev.events = EPOLLIN;
pList->ev.data.ptr = (void*)sock;
if (epoll_ctl(pList->epollfd, EPOLL_CTL_MOD, sock->sock, &pList->ev) == -1) {
/* non-fatal error, socket probably just didn't exist, so ignore it. */
CWARN("epoll_ctl [MOD] failed");
}
#else
int i;
/* search fds for socket, remove POLLOUT flag */
for (i = 0; i < pList->fdCount; i++) {
if (pList->fds[i].fd == sock->sock) {
pList->fds[i].events = POLLIN;
break;
}
}
#endif
}
struct sLaika_pollEvent *laikaP_poll(struct sLaika_pollList *pList, int timeout, int *_nevents) {
int nEvents, i;
pList->reventCount = 0; /* reset revent array */
#ifdef LAIKA_USE_EPOLL
/* fastpath: we store the sLaika_socket* pointer directly in the epoll_data_t, saving us a lookup into our socket hashmap
not to mention the various improvements epoll() has over poll() :D
*/
nEvents = epoll_wait(pList->epollfd, pList->ep_events, MAX_EPOLL_EVENTS, timeout);
if (SOCKETERROR(nEvents))
CERROR("epoll_wait() failed!");
for (i = 0; i < nEvents; i++) {
/* add event to revent array */
laikaM_growarray(struct sLaika_pollEvent, pList->revents, pList->reventCount, pList->reventCapacity);
pList->revents[pList->reventCount++] = (struct sLaika_pollEvent){
.sock = pList->ep_events[i].data.ptr,
.pollIn = pList->ep_events[i].events & EPOLLIN,
.pollOut = pList->ep_events[i].events & EPOLLOUT
};
}
#else
nEvents = poll(pList->fds, pList->fdCount, timeout); /* poll returns -1 for error, or the number of events */
if (SOCKETERROR(nEvents))
CERROR("poll() failed!");
/* walk through the returned poll fds, if they have an event, add it to our revents array */
for (i = 0; i < pList->fdCount && nEvents > 0; i++) {
PollFD pfd = pList->fds[i];
if (pList->fds[i].revents != 0) {
/* grab socket from hashmap */
struct sLaika_socket *sock = hashmap_get(pList->sockets, &(tLaika_hashMapElem){.fd = (SOCKET)pfd.fd});
/* insert event into revents array */
laikaM_growarray(struct sLaika_pollEvent, pList->revents, pList->reventCount, pList->reventCapacity);
pList->revents[pList->reventCount++] = (struct sLaika_pollEvent){
.sock = sock,
.pollIn = pfd.revents & POLLIN,
.pollOut = pfd.revents & POLLOUT
};
nEvents--;
}
}
#endif
/* return revents array */
*_nevents = i;
return pList->revents;
}

254
lib/src/lsocket.c Normal file
View File

@ -0,0 +1,254 @@
#include "lerror.h"
#include "lmem.h"
#include "lpolllist.h"
#include "lsocket.h"
static int _LNSetup = 0;
void laikaS_init(void) {
if (_LNSetup++ > 0)
return; /* WSA is already setup! */
#ifdef _WIN32
WSADATA wsaData;
if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)
CERROR("WSAStartup failed!")
#endif
}
void laikaS_cleanUp(void) {
if (--_LNSetup > 0)
return; /* WSA still needs to be up, a FoxNet peer is still using it */
#ifdef _WIN32
WSACleanup();
#endif
}
void laikaS_initSocket(struct sLaika_socket *sock) {
sock->sock = INVALID_SOCKET;
sock->inBuf = NULL;
sock->inCap = ARRAY_START;
sock->inCount = 0;
sock->outBuf = NULL;
sock->outCap = ARRAY_START;
sock->outCount = 0;
laikaS_init();
return sock;
}
void laikaS_cleanSocket(struct sLaika_socket *sock) {
/* free in & out arrays */
laikaM_free(sock->inBuf);
laikaM_free(sock->outBuf);
/* kill socket & cleanup WSA */
laikaS_kill(sock);
laikaS_cleanUp();
}
void laikaS_kill(struct sLaika_socket *sock) {
if (!laikaS_isAlive(sock)) /* sanity check */
return;
#ifdef _WIN32
shutdown(sock->sock, SD_BOTH);
closesocket(sock->sock);
#else
shutdown(sock->sock, SHUT_RDWR);
close(sock->sock);
#endif
sock->sock = INVALID_SOCKET;
}
void laikaS_connect(struct sLaika_socket *sock, char *ip, char *port) {
struct addrinfo res, *result, *curr;
if (!SOCKETINVALID(sock->sock))
CERROR("socket already setup!");
/* zero out our address info and setup the type */
memset(&res, 0, sizeof(struct addrinfo));
res.ai_family = AF_UNSPEC;
res.ai_socktype = SOCK_STREAM;
/* grab the address info */
if (getaddrinfo(ip, port, &res, &result) != 0)
CERROR("getaddrinfo() failed!");
/* getaddrinfo returns a list of possible addresses, step through them and try them until we find a valid address */
for (curr = result; curr != NULL; curr = curr->ai_next) {
sock->sock = socket(curr->ai_family, curr->ai_socktype, curr->ai_protocol);
/* if it failed, try the next sock */
if (SOCKETINVALID(sock->sock))
continue;
/* if it's not an invalid socket, break and exit the loop, we found a working addr! */
if (!SOCKETINVALID(connect(sock->sock, curr->ai_addr, curr->ai_addrlen)))
break;
laikaS_kill(sock);
}
freeaddrinfo(result);
/* if we reached the end of the linked list, we failed looking up the addr */
if (curr == NULL)
CERROR("couldn't connect a valid address handle to socket!");
}
void laikaS_bind(struct sLaika_socket *sock, uint16_t port) {
socklen_t addressSize;
struct sockaddr_in address;
if (!SOCKETINVALID(sock))
CERROR("socket already setup!")
/* open our socket */
sock->sock = socket(AF_INET, SOCK_STREAM, 0);
if (SOCKETINVALID(sock))
CERROR("socket() failed!");
/* attach socket to the port */
int opt = 1;
#ifdef _WIN32
if (setsockopt(sock->sock, SOL_SOCKET, SO_REUSEADDR, (const char*)&opt, sizeof(int)) != 0)
#else
if (setsockopt(sock->sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(int)) != 0)
#endif
CERROR("setsockopt() failed!");
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(port);
addressSize = sizeof(struct sockaddr_in);
/* bind to the port */
if (SOCKETERROR(bind(sock->sock, (struct sockaddr *)&address, addressSize)))
CERROR("bind() failed!");
if (SOCKETERROR(listen(sock->sock, SOMAXCONN)))
CERROR("listen() failed!");
}
void laikaS_acceptFrom(struct sLaika_socket *sock, struct sLaika_socket *from) {
socklen_t addressSize;
struct sockaddr address;
sock = accept(from->sock, &address, &addressSize);
if (SOCKETINVALID(sock))
CERROR("accept() failed!")
}
bool laikaS_setNonBlock(struct sLaika_socket *sock) {
#ifdef _WIN32
unsigned long mode = 1;
if (ioctlsocket(sock->sock, FIONBIO, &mode) != 0) {
#else
if (fcntl(sock->sock, F_SETFL, (fcntl(sock->sock, F_GETFL, 0) | O_NONBLOCK)) != 0) {
#endif
CWARN("fcntl failed on new connection");
laikaS_kill(sock);
return false;
}
return true;
}
void laikaS_read(struct sLaika_socket *sock, void *buf, size_t sz) {
memcpy(buf, sock->inBuf, sz);
laikaM_rmvarray(uint8_t, sock->inBuf, sock->inCount, 0, sz);
}
void laikaS_write(struct sLaika_socket *sock, void *buf, size_t sz) {
/* make sure we have enough space to copy the buffer */
laikaM_growarray(uint8_t, sock->outBuf, sock->outCount + sz, sock->outCap);\
/* copy the buffer, then increment outCount */
memcpy(&sock->outBuf[sock->outCount], buf, sz);
sock->outCount += sz;
}
void laikaS_writeByte(struct sLaika_socket *sock, uint8_t data) {
laikaM_growarray(uint8_t, sock->outBuf, sock->outCount, sock->outCap);
sock->outBuf[sock->outCount++] = data;
}
uint8_t laikaS_readByte(struct sLaika_socket *sock) {
uint8_t tmp = *sock->inBuf;
/* pop 1 byte */
laikaM_rmvarray(uint8_t, sock->inBuf, sock->inCount, 0, 1);
return tmp;
}
RAWSOCKCODE laikaS_rawRecv(struct sLaika_socket *sock, size_t sz, int *processed) {
RAWSOCKCODE errCode = RAWSOCK_OK;
int rcvd, start = sock->inCount;
/* make sure we have enough space to recv */
laikaM_growarray(uint8_t, sock->inBuf, sock->inCount + sz, sock->inCap);
rcvd = recv(sock->sock, (buffer_t*)&sock->inBuf[sock->inCount], sz, LN_MSG_NOSIGNAL);
if (rcvd == 0) {
errCode = RAWSOCK_CLOSED;
} else if (SOCKETERROR(rcvd) && LN_ERRNO != LN_EWOULD
#ifndef _WIN32
/* if it's a posix system, also make sure its not a EAGAIN result (which is a recoverable error, there's just nothing to read lol) */
&& LN_ERRNO != EAGAIN
#endif
) {
/* if the socket closed or an error occurred, return the error result */
errCode = RAWSOCK_ERROR;
} else if (rcvd > 0) {
/* recv() worked, add rcvd to inCount */
sock->inCount += rcvd;
}
*processed = rcvd;
return errCode;
}
RAWSOCKCODE laikaS_rawSend(struct sLaika_socket *sock, size_t sz, int *processed) {
RAWSOCKCODE errCode = RAWSOCK_OK;
int sent, sentBytes = 0;
/* write bytes to the socket until an error occurs or we finish sending */
do {
sent = send(sock->sock, (buffer_t*)(&sock->outBuf[sentBytes]), sz - sentBytes, LN_MSG_NOSIGNAL);
/* check for error result */
if (sent == 0) { /* connection closed gracefully */
errCode = RAWSOCK_CLOSED;
goto _rawWriteExit;
} else if (SOCKETERROR(sent)) { /* socket error? */
if (LN_ERRNO != LN_EWOULD
#ifndef _WIN32
/* posix also has some platforms which define EAGAIN as a different value than EWOULD, might as well support it. */
&& LN_ERRNO != EAGAIN
#endif
) { /* socket error! */
errCode = RAWSOCK_ERROR;
goto _rawWriteExit;
}
/*
it was a result of EWOULD or EAGAIN, kernel socket send buffer is full,
tell the caller we need to set our poll event POLLOUT
*/
errCode = RAWSOCK_POLL;
goto _rawWriteExit;
}
} while((sentBytes += sent) < sz);
_rawWriteExit:
/* trim sent data from outBuf */
laikaM_rmvarray(uint8_t, sock->outBuf, sock->outCount, 0, sentBytes);
*processed = sentBytes;
return errCode;
}