Cosmo/src/cparse.c

1049 lines
34 KiB
C
Raw Normal View History

2020-10-28 05:16:30 +00:00
#include "cparse.h"
#include "cstate.h"
#include "clex.h"
#include "cchunk.h"
#include "cdebug.h"
#include "cmem.h"
#include <string.h>
// we define all of this here because we only need it in this file, no need for it to be in the header /shrug
typedef struct {
CLexState *lex;
CCompilerState* compiler;
CState *state;
CToken current;
CToken previous; // token right after the current token
bool hadError;
bool panic;
} CParseState;
typedef enum {
PREC_NONE,
PREC_ASSIGNMENT, // =
PREC_CONCAT, // ..
PREC_OR, // or
PREC_AND, // and
PREC_EQUALITY, // == !=
PREC_COMPARISON, // < > <= >=
PREC_TERM, // + -
PREC_FACTOR, // * /
PREC_UNARY, // ! -
2020-11-04 04:10:51 +00:00
PREC_OBJ, // {}
2020-10-28 05:16:30 +00:00
PREC_CALL, // . ()
PREC_PRIMARY // everything else
} Precedence;
typedef void (*ParseFunc)(CParseState* pstate, bool canAssign);
typedef struct {
ParseFunc prefix;
ParseFunc infix;
Precedence level;
} ParseRule;
static void parsePrecedence(CParseState*, Precedence);
static void variable(CParseState *pstate, bool canAssign);
static void expression(CParseState*);
static void statement(CParseState *pstate);
static void declaration(CParseState *pstate);
static void function(CParseState *pstate, FunctionType type);
static void expressionStatement(CParseState *pstate);
static ParseRule* getRule(CTokenType type);
static CObjFunction *endCompiler(CParseState *pstate, int results);
// ================================================================ [FRONT END/TALK TO LEXER] ================================================================
static void initCompilerState(CParseState* pstate, CCompilerState *ccstate, FunctionType type, CCompilerState *enclosing) {
pstate->compiler = ccstate;
ccstate->enclosing = enclosing;
ccstate->function = NULL;
ccstate->localCount = 0;
ccstate->scopeDepth = 0;
ccstate->pushedValues = 0;
ccstate->savedPushed = 0;
ccstate->type = type;
ccstate->function = cosmoO_newFunction(pstate->state);
if (type != FTYPE_SCRIPT)
ccstate->function->name = cosmoO_copyString(pstate->state, pstate->previous.start, pstate->previous.length);
// mark first local slot as used (this'll hold the CObjFunction of the current function)
Local *local = &ccstate->locals[ccstate->localCount++];
local->depth = 0;
local->isCaptured = false;
local->name.length = 0;
local->name.start = "";
}
static void initParseState(CParseState *pstate, CCompilerState *ccstate, CState *s, const char *source) {
pstate->lex = cosmoL_newLexState(s, source);
pstate->state = s;
pstate->hadError = false;
pstate->panic = false;
pstate->compiler = ccstate;
initCompilerState(pstate, ccstate, FTYPE_SCRIPT, NULL); // enclosing starts as NULL
}
static void freeParseState(CParseState *pstate) {
cosmoL_freeLexState(pstate->state, pstate->lex);
}
static void errorAt(CParseState *pstate, CToken *token, const char * msg) {
if (pstate->hadError)
return;
fprintf(stderr, "[line %d] Objection", token->line);
if (token->type == TOKEN_EOF) {
fprintf(stderr, " at end");
} else if (token->type == TOKEN_ERROR) {
} else {
fprintf(stderr, " at '%.*s'", token->length, token->start);
}
printf(": \n\t%s\n", msg);
pstate->hadError = true;
pstate->panic = true;
}
static void errorAtCurrent(CParseState *pstate, const char *msg) {
errorAt(pstate, &pstate->current, msg);
}
static void error(CParseState *pstate, const char *msg) {
errorAt(pstate, &pstate->previous, msg);
}
static void advance(CParseState *pstate) {
pstate->previous = pstate->current;
pstate->current = cosmoL_scanToken(pstate->lex);
//printf("got %d [%.*s]\n", pstate->current.type, pstate->current.length, pstate->current.start);
if (pstate->current.type == TOKEN_ERROR) {
// go ahead and consume the rest of the errors so it doesn't cascade
CToken temp;
do {
temp = cosmoL_scanToken(pstate->lex);
} while(temp.type == TOKEN_ERROR);
}
}
static bool check(CParseState *pstate, CTokenType type) {
return pstate->current.type == type;
}
// consumes the next token if it matches type, otherwise errors
static void consume(CParseState* pstate, CTokenType type, const char *msg) {
if (pstate->current.type == type) { // if token matches, consume the next token
advance(pstate);
return;
}
errorAtCurrent(pstate, msg);
}
static bool match(CParseState *pstate, CTokenType type) {
if (!check(pstate, type))
return false;
// if it matched, go ahead and consume the next token
advance(pstate);
return true;
}
static bool identifiersEqual(CToken *idA, CToken *idB) {
return idA->length == idB->length && memcmp(idA->start, idB->start, idA->length) == 0;
}
static void inline valuePushed(CParseState *pstate, int values) {
pstate->compiler->pushedValues += values;
}
static void inline valuePopped(CParseState *pstate, int values) {
pstate->compiler->pushedValues -= values;
}
// ================================================================ [WRITE TO CHUNK] ================================================================
CChunk* getChunk(CParseState *pstate) {
return &pstate->compiler->function->chunk;
}
// safely adds constant to chunk, checking for overflow
uint16_t makeConstant(CParseState *pstate, CValue val) {
int indx = addConstant(pstate->state, getChunk(pstate), val);
if (indx > UINT16_MAX) {
error(pstate, "UInt overflow! Too many constants in one chunk!");
return 0;
}
return (uint16_t)indx;
}
void writeu8(CParseState *pstate, INSTRUCTION i) {
writeu8Chunk(pstate->state, getChunk(pstate), i, pstate->previous.line);
}
void writeu16(CParseState *pstate, uint16_t i) {
writeu16Chunk(pstate->state, getChunk(pstate), i, pstate->previous.line);
}
void writeConstant(CParseState *pstate, CValue val) {
writeu8(pstate, OP_LOADCONST);
writeu16(pstate, makeConstant(pstate, val));
valuePushed(pstate, 1);
}
int writeJmp(CParseState *pstate, INSTRUCTION i) {
writeu8(pstate, i);
writeu16(pstate, 0xFFFF);
return getChunk(pstate)->count - 2;
}
void writePop(CParseState *pstate, int times) {
writeu8(pstate, OP_POP);
writeu8(pstate, times);
}
void writeJmpBack(CParseState *pstate, int location) {
int jmp = (getChunk(pstate)->count - location) + 3;
if (jmp > UINT16_MAX)
error(pstate, "UInt overflow! Too much code to jump!");
writeu8(pstate, OP_JMPBACK);
writeu16(pstate, jmp);
}
// patches offset operand at location
void patchJmp(CParseState *pstate, int index) {
unsigned int jump = getChunk(pstate)->count - index - 2;
if (jump > UINT16_MAX)
error(pstate, "UInt overflow! Too much code to jump!");
memcpy(&getChunk(pstate)->buf[index], &jump, sizeof(uint16_t));
}
static uint16_t identifierConstant(CParseState *pstate, CToken *name) {
return makeConstant(pstate, cosmoV_newObj((CObj*)cosmoO_copyString(pstate->state, name->start, name->length)));
}
static void addLocal(CParseState *pstate, CToken name) {
if (pstate->compiler->localCount > UINT8_MAX)
return error(pstate, "UInt overflow! Too many locals in scope!");
Local *local = &pstate->compiler->locals[pstate->compiler->localCount++];
local->name = name;
local->depth = -1;
local->isCaptured = false;
}
static int addUpvalue(CCompilerState *ccstate, uint8_t indx, bool isLocal) {
int upvals = ccstate->function->upvals;
// check and make sure we haven't already captured it
for (int i = 0; i < upvals; i++) {
Upvalue *upval = &ccstate->upvalues[i];
if (upval->index == indx && upval->isLocal == isLocal) // it matches! return that
return i;
}
// TODO: throw error if upvals >= UINT8_MAX
ccstate->upvalues[upvals].index = indx;
ccstate->upvalues[upvals].isLocal = isLocal;
return ccstate->function->upvals++;
}
static int getLocal(CCompilerState *ccstate, CToken *name) {
for (int i = ccstate->localCount - 1; i >= 0; i--) {
Local *local = &ccstate->locals[i];
if (local->depth != -1 && identifiersEqual(name, &local->name)) { // if the identifer is initalized and it matches, use it!
return i;
}
}
// it wasn't found
return -1;
}
static int getUpvalue(CCompilerState *ccstate, CToken *name) {
if (ccstate->enclosing == NULL) // there's no upvalues to lookup!
return -1;
int local = getLocal(ccstate->enclosing, name);
if (local != -1) {
ccstate->enclosing->locals[local].isCaptured = true;
return addUpvalue(ccstate, local, true);
}
int upval = getUpvalue(ccstate->enclosing, name);
if (upval != -1)
return addUpvalue(ccstate, upval, false);
return -1; // failed!
}
static void markInitialized(CParseState *pstate, int local) {
pstate->compiler->locals[local].depth = pstate->compiler->scopeDepth;
}
static int parseArguments(CParseState *pstate) {
int args = 0;
// there are args to parse!
if (!check(pstate, TOKEN_RIGHT_PAREN)) {
do {
expression(pstate);
args++;
} while(match(pstate, TOKEN_COMMA));
}
consume(pstate, TOKEN_RIGHT_PAREN, "Expected ')' to end call.");
// sanity check
if (args > UINT8_MAX) {
errorAtCurrent(pstate, "Too many arguments passed in call.");
}
return args;
}
// recovers stack (pops unneeded values, reports missing values)
static void alignStack(CParseState *pstate, int alignment) {
// realign the stack
if (pstate->compiler->pushedValues > alignment) {
writePop(pstate, pstate->compiler->pushedValues - alignment);
} else if (pstate->compiler->pushedValues < alignment) {
error(pstate, "Missing expression!");
}
pstate->compiler->pushedValues = alignment;
}
// ================================================================ [PRATT'S PARSER] ================================================================
static void number(CParseState *pstate, bool canAssign) {
cosmo_Number num = strtod(pstate->previous.start, NULL);
writeConstant(pstate, cosmoV_newNumber(num));
}
static void string(CParseState *pstate, bool canAssign) {
CObjString *strObj = cosmoO_copyString(pstate->state, pstate->previous.start + 1, pstate->previous.length - 2);
writeConstant(pstate, cosmoV_newObj((CObj*)strObj));
}
static void literal(CParseState *pstate, bool canAssign) {
switch (pstate->previous.type) {
case TOKEN_TRUE: writeu8(pstate, OP_TRUE); break;
case TOKEN_FALSE: writeu8(pstate, OP_FALSE); break;
case TOKEN_NIL: writeu8(pstate, OP_NIL); break;
default:
break;
}
valuePushed(pstate, 1);
}
// parses prefix operators
static void unary(CParseState *pstate, bool canAssign) {
CTokenType type = pstate->previous.type;
int cachedLine = pstate->previous.line; // eval'ing the next expression might change the line number
// only eval the next *value*
parsePrecedence(pstate, PREC_UNARY);
switch(type) {
case TOKEN_MINUS: writeu8Chunk(pstate->state, getChunk(pstate), OP_NEGATE, cachedLine); break;
case TOKEN_BANG: writeu8Chunk(pstate->state, getChunk(pstate), OP_NOT, cachedLine); break;
default:
error(pstate, "Unexpected unary operator!");
}
}
// parses infix operators
static void binary(CParseState *pstate, bool canAssign) {
CTokenType type = pstate->previous.type; // already consumed
int cachedLine = pstate->previous.line; // eval'ing the next expression might change the line number
parsePrecedence(pstate, getRule(type)->level + 1);
switch (type) {
// ARITH
case TOKEN_PLUS: writeu8Chunk(pstate->state, getChunk(pstate), OP_ADD, cachedLine); break;
case TOKEN_MINUS: writeu8Chunk(pstate->state, getChunk(pstate), OP_SUB, cachedLine); break;
case TOKEN_STAR: writeu8Chunk(pstate->state, getChunk(pstate), OP_MULT, cachedLine); break;
case TOKEN_SLASH: writeu8Chunk(pstate->state, getChunk(pstate), OP_DIV, cachedLine); break;
// EQUALITY
case TOKEN_EQUAL_EQUAL: writeu8Chunk(pstate->state, getChunk(pstate), OP_EQUAL, cachedLine); break;
case TOKEN_GREATER: writeu8Chunk(pstate->state, getChunk(pstate), OP_GREATER, cachedLine); break;
case TOKEN_LESS: writeu8Chunk(pstate->state, getChunk(pstate), OP_LESS, cachedLine); break;
case TOKEN_GREATER_EQUAL: writeu8Chunk(pstate->state, getChunk(pstate), OP_GREATER_EQUAL, cachedLine); break;
case TOKEN_LESS_EQUAL: writeu8Chunk(pstate->state, getChunk(pstate), OP_LESS_EQUAL, cachedLine); break;
case TOKEN_BANG_EQUAL: writeu8Chunk(pstate->state, getChunk(pstate), OP_EQUAL, cachedLine); writeu8Chunk(pstate->state, getChunk(pstate), OP_NOT, cachedLine); break;
default:
error(pstate, "Unexpected operator!");
}
valuePopped(pstate, 1); // we pop 2 values off the stack and push 1 for a net pop of 1 value
}
static void group(CParseState *pstate, bool canAssign) {
expression(pstate);
consume(pstate, TOKEN_RIGHT_PAREN, "Expected ')'");
}
static void _etterOP(CParseState *pstate, uint8_t op, int arg) {
writeu8(pstate, op);
if (op == OP_GETGLOBAL || op == OP_SETGLOBAL) // globals are stored with a u16
writeu16(pstate, arg);
else
writeu8(pstate, arg);
}
static void namedVariable(CParseState *pstate, CToken name, bool canAssign) {
uint8_t opGet, opSet;
int arg = getLocal(pstate->compiler, &name);
if (arg != -1) {
// we found it in out local table!
opGet = OP_GETLOCAL;
opSet = OP_SETLOCAL;
} else if ((arg = getUpvalue(pstate->compiler, &name)) != -1) {
opGet = OP_GETUPVAL;
opSet = OP_SETUPVAL;
} else {
// local & upvalue wasnt' found, assume it's a global!
arg = identifierConstant(pstate, &name);
opGet = OP_GETGLOBAL;
opSet = OP_SETGLOBAL;
}
if (canAssign && match(pstate, TOKEN_EQUAL)) {
// setter
expression(pstate);
_etterOP(pstate, opSet, arg);
valuePopped(pstate, 1);
} else {
// getter
_etterOP(pstate, opGet, arg);
valuePushed(pstate, 1);
}
}
static void and_(CParseState *pstate, bool canAssign) {
int jump = writeJmp(pstate, OP_EJMP); // conditional jump without popping
writePop(pstate, 1);
parsePrecedence(pstate, PREC_AND);
patchJmp(pstate, jump);
}
static void or_(CParseState *pstate, bool canAssign) {
int elseJump = writeJmp(pstate, OP_EJMP);
int endJump = writeJmp(pstate, OP_JMP);
patchJmp(pstate, elseJump);
writePop(pstate, 1);
parsePrecedence(pstate, PREC_OR);
patchJmp(pstate, endJump);
}
static void anonFunction(CParseState *pstate, bool canAssign) {
function(pstate, FTYPE_FUNCTION);
}
static void variable(CParseState *pstate, bool canAssign) {
namedVariable(pstate, pstate->previous, canAssign);
}
static void concat(CParseState *pstate, bool canAssign) {
CTokenType type = pstate->previous.type;
int vars = 1; // we already have something on the stack
do {
parsePrecedence(pstate, getRule(type)->level + 1); // parse until next concat
vars++;
} while (match(pstate, TOKEN_DOT_DOT));
writeu8(pstate, OP_CONCAT);
writeu8(pstate, vars);
valuePopped(pstate, vars - 1); // - 1 because we're pushing the concat result
}
static void call_(CParseState *pstate, bool canAssign) {
// we enter having already consumed the '('
// grab our arguments
uint8_t argCount = parseArguments(pstate);
valuePopped(pstate, argCount + 1); // all of these values will be popped off the stack when returned (+1 for the function)
writeu8(pstate, OP_CALL);
writeu8(pstate, argCount);
// hacky hacky hacky hACKY GACJ HACK!!!!!!!!
if (pstate->compiler->pushedValues < pstate->compiler->savedPushed) { // there's empty spots on the stack waiting to be filled, lets make OP_CALL fill those spots for us
writeu8(pstate, pstate->compiler->savedPushed - pstate->compiler->pushedValues); // number of expected results
pstate->compiler->pushedValues = pstate->compiler->savedPushed; // either way the stack will be balanaced after this call
} else {
writeu8(pstate, 1); // we expect 1 result by default
valuePushed(pstate, 1);
}
}
2020-11-04 04:10:51 +00:00
static void object(CParseState *pstate, bool canAssign) {
// already consumed the beginning '{'
int entries = 0;
consume(pstate, TOKEN_RIGHT_BRACE, "Expected '}' to end object definition!");
writeu8(pstate, OP_NEWOBJECT);
writeu8(pstate, entries);
valuePushed(pstate, 1);
}
static void dot(CParseState *pstate, bool canAssign) {
consume(pstate, TOKEN_IDENTIFIER, "Expect property name after '.'.");
uint8_t name = identifierConstant(pstate, &pstate->previous);
writeu8(pstate, OP_LOADCONST);
writeu16(pstate, name);
valuePushed(pstate, 1);
if (canAssign && match(pstate, TOKEN_EQUAL)) {
expression(pstate);
writeu8(pstate, OP_SETOBJECT);
valuePopped(pstate, 3); // pops key, value & object
} else {
writeu8(pstate, OP_GETOBJECT);
valuePopped(pstate, 1); // pops key & object but also pushes the field so total popped is 1
}
}
2020-10-28 05:16:30 +00:00
ParseRule ruleTable[] = {
[TOKEN_LEFT_PAREN] = {group, call_, PREC_CALL},
[TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
2020-11-04 04:10:51 +00:00
[TOKEN_LEFT_BRACE] = {object, NULL, PREC_OBJ},
2020-10-28 05:16:30 +00:00
[TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
2020-11-06 00:43:21 +00:00
[TOKEN_LEFT_BRACKET] = {NULL, NULL, PREC_NONE},
[TOKEN_RIGHT_BRACKET] = {NULL, NULL, PREC_NONE},
2020-10-28 05:16:30 +00:00
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
2020-11-04 04:10:51 +00:00
[TOKEN_DOT] = {NULL, dot, PREC_CALL},
2020-10-28 05:16:30 +00:00
[TOKEN_DOT_DOT] = {NULL, concat, PREC_CONCAT},
[TOKEN_MINUS] = {unary, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
[TOKEN_EOS] = {NULL, NULL, PREC_NONE},
[TOKEN_BANG] = {unary, NULL, PREC_NONE},
[TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
[TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
[TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_IDENTIFIER] = {variable, NULL, PREC_NONE},
[TOKEN_STRING] = {string, NULL, PREC_NONE},
[TOKEN_NUMBER] = {number, NULL, PREC_NONE},
[TOKEN_NIL] = {literal, NULL, PREC_NONE},
[TOKEN_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_AND] = {NULL, and_, PREC_AND},
[TOKEN_DO] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSEIF] = {NULL, NULL, PREC_NONE},
[TOKEN_END] = {NULL, NULL, PREC_NONE},
[TOKEN_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_FUNCTION] = {anonFunction, NULL, PREC_NONE},
[TOKEN_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_LOCAL] = {NULL, NULL, PREC_NONE},
[TOKEN_NOT] = {NULL, NULL, PREC_NONE},
[TOKEN_OR] = {NULL, or_, PREC_OR},
[TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_THEN] = {NULL, NULL, PREC_NONE},
[TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
2020-11-06 00:43:21 +00:00
[TOKEN_VAR] = {NULL, NULL, PREC_NONE},
[TOKEN_THIS] = {NULL, NULL, PREC_NONE},
2020-10-28 05:16:30 +00:00
[TOKEN_EOF] = {NULL, NULL, PREC_NONE}
};
static ParseRule* getRule(CTokenType type) {
return &ruleTable[type];
}
static void parsePrecedence(CParseState *pstate, Precedence prec) {
advance(pstate);
ParseFunc prefix = getRule(pstate->previous.type)->prefix;
if (prefix == NULL) {
return error(pstate, "Expected expression!");
}
bool canAssign = prec <= PREC_ASSIGNMENT;
prefix(pstate, canAssign);
while (prec <= getRule(pstate->current.type)->level) {
ParseFunc infix = getRule(pstate->current.type)->infix;
advance(pstate);
infix(pstate, canAssign);
}
if (canAssign && match(pstate, TOKEN_EQUAL)) {
error(pstate, "Invalid assignment!");
}
}
static void declareLocal(CParseState *pstate, bool forceLocal) {
if (pstate->compiler->scopeDepth == 0 && !forceLocal)
return;
CToken* name = &pstate->previous;
// check if we already have a local with that identifier
for (int i = 0; i < pstate->compiler->localCount; i++) {
Local *local = &pstate->compiler->locals[i];
// we've reached a previous scope or an invalid scope, stop checking lol
if (local->depth != -1 && pstate->compiler->scopeDepth > local->depth)
break;
if (identifiersEqual(name, &local->name))
error(pstate, "There's already a local in scope with this name!");
}
addLocal(pstate, *name);
}
static uint16_t parseVariable(CParseState *pstate, const char* errorMessage, bool forceLocal) {
consume(pstate, TOKEN_IDENTIFIER, errorMessage);
declareLocal(pstate, forceLocal);
if (pstate->compiler->scopeDepth > 0 || forceLocal)
return pstate->compiler->localCount - 1;
return identifierConstant(pstate, &pstate->previous);
}
static void defineVariable(CParseState *pstate, uint16_t global, bool forceLocal) {
if (pstate->hadError)
return;
if (pstate->compiler->scopeDepth > 0 || forceLocal) {
markInitialized(pstate, global);
valuePopped(pstate, 1); // the local stays on the stack!
return;
}
writeu8(pstate, OP_SETGLOBAL);
writeu16(pstate, global);
valuePopped(pstate, 1);
}
static void popLocals(CParseState *pstate, int toScope) {
if (pstate->hadError)
return;
// count the locals in scope to pop
int localsToPop = 0;
while (pstate->compiler->localCount > 0 && pstate->compiler->locals[pstate->compiler->localCount - 1].depth > toScope) {
Local *local = &pstate->compiler->locals[localsToPop];
if (local->isCaptured) { // local needs to be closed over so other closures can reference it
// first though, if there are other locals in queue to pop first, go ahead and pop those :)
if (localsToPop > 0) {
writePop(pstate, localsToPop);
localsToPop = 0;
}
writeu8(pstate, OP_CLOSE);
} else {
localsToPop++;
}
pstate->compiler->localCount--;
}
if (localsToPop > 0) {
writePop(pstate, localsToPop);
}
}
static void beginScope(CParseState *pstate) {
pstate->compiler->scopeDepth++;
}
static void endScope(CParseState *pstate) {
pstate->compiler->scopeDepth--;
popLocals(pstate, pstate->compiler->scopeDepth);
}
// parses expressionStatements until a TOKEN_END is consumed
static void block(CParseState *pstate) {
while(!check(pstate, TOKEN_END) && !check(pstate, TOKEN_EOF)) {
declaration(pstate);
}
consume(pstate, TOKEN_END, "'end' expected to end block.'");
}
static void varDeclaration(CParseState *pstate, bool forceLocal) {
uint16_t global = parseVariable(pstate, "Expected identifer!", forceLocal);
if (match(pstate, TOKEN_EQUAL)) { // assigning a variable
valuePopped(pstate, 1); // we are expecting a value
// consume all the ','
do {
expression(pstate);
} while (match(pstate, TOKEN_COMMA));
if (pstate->compiler->pushedValues < pstate->compiler->savedPushed) {
writeu8(pstate, OP_NIL); // didn't get expected result
valuePushed(pstate, 1);
}
valuePushed(pstate, 1);
} else if (match(pstate, TOKEN_COMMA)) {
valuePopped(pstate, 1); // we are expecting a value
varDeclaration(pstate, forceLocal);
if (pstate->compiler->pushedValues < pstate->compiler->savedPushed) {
writeu8(pstate, OP_NIL); // didn't get expected result
valuePushed(pstate, 1);
}
valuePushed(pstate, 1); // we already popped, & when we call defineVariable it'll pop, so go ahead and fix it here
} else {
writeu8(pstate, OP_NIL);
valuePushed(pstate, 1);
}
defineVariable(pstate, global, forceLocal);
}
static void ifStatement(CParseState *pstate) {
expression(pstate);
consume(pstate, TOKEN_THEN, "Expect 'then' after expression.");
int jump = writeJmp(pstate, OP_PEJMP);
valuePopped(pstate, 1); // OP_PEJMP pops the conditional!
// parse until 'end' or 'else'
beginScope(pstate);
while(!check(pstate, TOKEN_END) && !check(pstate, TOKEN_ELSE) && !check(pstate, TOKEN_ELSEIF) && !check(pstate, TOKEN_EOF)) {
declaration(pstate);
}
endScope(pstate);
if (match(pstate, TOKEN_ELSE)) {
int elseJump = writeJmp(pstate, OP_JMP);
// setup our jump
patchJmp(pstate, jump);
// parse until 'end'
beginScope(pstate);
block(pstate);
endScope(pstate);
patchJmp(pstate, elseJump);
} else if (match(pstate, TOKEN_ELSEIF)) {
int elseJump = writeJmp(pstate, OP_JMP);
// setup our jump
patchJmp(pstate, jump);
ifStatement(pstate); // recursively call into ifStatement
patchJmp(pstate, elseJump);
} else { // the most vanilla if statement possible (no else, no elseif)
patchJmp(pstate, jump);
consume(pstate, TOKEN_END, "'end' expected to end block.");
}
}
static void whileStatement(CParseState *pstate) {
int jumpLocation = getChunk(pstate)->count;
expression(pstate);
consume(pstate, TOKEN_DO, "expected 'do' after conditional expression.");
int exitJump = writeJmp(pstate, OP_PEJMP); // pop equality jump
valuePopped(pstate, 1); // OP_PEJMP pops the conditional!
beginScope(pstate);
block(pstate); // parse until 'end'
endScope(pstate);
writeJmpBack(pstate, jumpLocation);
patchJmp(pstate, exitJump);
}
static void function(CParseState *pstate, FunctionType type) {
CCompilerState compiler;
initCompilerState(pstate, &compiler, type, pstate->compiler);
int savedPushed = pstate->compiler->pushedValues;
// start parsing function
beginScope(pstate);
// parse the parameters
consume(pstate, TOKEN_LEFT_PAREN, "Expected '(' after identifier.");
if (!check(pstate, TOKEN_RIGHT_PAREN)) {
do {
// add arg to function
compiler.function->args++;
if (compiler.function->args > UINT16_MAX - 1) { // -1 since the function would already be on the stack
errorAtCurrent(pstate, "Too many parameters!");
}
// parse identifier for param (force them to be a local)
uint8_t funcIdent = parseVariable(pstate, "Expected identifier for function!", true);
defineVariable(pstate, funcIdent, true);
valuePushed(pstate, 1); // they *will* be populated during runtime
} while (match(pstate, TOKEN_COMMA));
}
consume(pstate, TOKEN_RIGHT_PAREN, "Expected ')' after parameters.");
// compile function block
block(pstate);
alignStack(pstate, savedPushed);
endScope(pstate);
CObjFunction *objFunc = endCompiler(pstate, 0);
// push closure
writeu8(pstate, OP_CLOSURE);
writeu16(pstate, makeConstant(pstate, cosmoV_newObj(objFunc)));
valuePushed(pstate, 1);
// tell the vm what locals/upvalues to pass to this closure
for (int i = 0; i < objFunc->upvals; i++) {
writeu8(pstate, compiler.upvalues[i].isLocal ? OP_GETLOCAL : OP_GETUPVAL);
writeu8(pstate, compiler.upvalues[i].index);
}
}
static void functionDeclaration(CParseState *pstate) {
uint8_t var = parseVariable(pstate, "Expected identifer!", false);
if (pstate->compiler->scopeDepth > 0)
markInitialized(pstate, var);
function(pstate, FTYPE_FUNCTION);
defineVariable(pstate, var, false);
}
static void returnStatement(CParseState *pstate) {
if (pstate->compiler->type != FTYPE_FUNCTION) {
error(pstate, "Expected 'return' in function!");
return;
}
// can return multiple results
int results = 0;
if (!check(pstate, TOKEN_EOS)) { // make sure its not an end of a statement
do {
expression(pstate);
results++;
} while (match(pstate, TOKEN_COMMA));
if (results > UINT8_MAX) {
error(pstate, "Too many results returned!");
return;
}
}
writeu8(pstate, OP_RETURN);
writeu8(pstate, results);
valuePopped(pstate, results);
}
static void localFunction(CParseState *pstate) {
uint8_t var = parseVariable(pstate, "Expected identifer!", true);
markInitialized(pstate, var);
function(pstate, FTYPE_FUNCTION);
defineVariable(pstate, var, true);
}
static void forLoop(CParseState *pstate) {
beginScope(pstate);
consume(pstate, TOKEN_LEFT_PAREN, "Expected '(' after 'for'");
// parse initalizer
if (!match(pstate, TOKEN_EOS)) {
expressionStatement(pstate);
}
int loopStart = getChunk(pstate)->count;
// parse conditional
int exitJmp = -1;
if (!match(pstate, TOKEN_EOS)) {
expression(pstate);
consume(pstate, TOKEN_EOS, "Expected ';' after conditional");
exitJmp = writeJmp(pstate, OP_PEJMP);
valuePopped(pstate, 1);
}
// parse iterator
if (!match(pstate, TOKEN_RIGHT_PAREN)) {
int bodyJmp = writeJmp(pstate, OP_JMP);
int iteratorStart = getChunk(pstate)->count;
expression(pstate);
consume(pstate, TOKEN_RIGHT_PAREN, "Expected ')' after iterator");
writeJmpBack(pstate, loopStart);
loopStart = iteratorStart;
patchJmp(pstate, bodyJmp);
}
consume(pstate, TOKEN_DO, "Expected 'do'");
block(pstate); // parses until 'end'
writeJmpBack(pstate, loopStart);
if (exitJmp != -1) {
patchJmp(pstate, exitJmp);
}
endScope(pstate);
}
static void synchronize(CParseState *pstate) {
pstate->panic = false;
while (pstate->current.type != TOKEN_EOF) {
if (pstate->previous.type == TOKEN_EOS)
return;
advance(pstate);
}
}
static void expression(CParseState *pstate) {
parsePrecedence(pstate, PREC_ASSIGNMENT);
}
static void expressionStatement(CParseState *pstate) {
pstate->compiler->savedPushed = pstate->compiler->pushedValues;
if (match(pstate, TOKEN_VAR)) {
varDeclaration(pstate, false);
} else if (match(pstate, TOKEN_LOCAL)) {
// force declare a local
if (match(pstate, TOKEN_FUNCTION))
localFunction(pstate); // force local a function
else
varDeclaration(pstate, true); // force local a variable
} else if (match(pstate, TOKEN_IF)) {
ifStatement(pstate);
} else if (match(pstate, TOKEN_DO)) {
beginScope(pstate);
block(pstate);
endScope(pstate);
} else if (match(pstate, TOKEN_WHILE)) {
whileStatement(pstate);
} else if (match(pstate, TOKEN_FOR)) {
forLoop(pstate);
} else if (match(pstate, TOKEN_FUNCTION)) {
functionDeclaration(pstate);
} else if (match(pstate, TOKEN_RETURN)) {
returnStatement(pstate);
} else if (check(pstate, TOKEN_EOS)) {
// do nothing, just consume it
} else {
expression(pstate);
}
consume(pstate, TOKEN_EOS, "Expected end of statement after expression.");
// realign the stack
alignStack(pstate, pstate->compiler->savedPushed);
}
static void statement(CParseState *pstate) {
expressionStatement(pstate);
}
static void declaration(CParseState *pstate) {
statement(pstate);
// if we paniced, skip the whole statement!
if (pstate->panic)
synchronize(pstate);
}
static CObjFunction *endCompiler(CParseState *pstate, int results) {
popLocals(pstate, pstate->compiler->scopeDepth); // remove the locals from other scopes
writeu8(pstate, OP_RETURN);
writeu8(pstate, results);
// update pstate to next compiler state
CCompilerState *cachedCCState = pstate->compiler;
pstate->compiler = cachedCCState->enclosing;
return cachedCCState->function;
}
// ================================================================ [API] ================================================================
CObjFunction* cosmoP_compileString(CState *state, const char *source) {
CParseState parser;
CCompilerState compiler;
cosmoM_freezeGC(state); // ignore all GC events while compiling
initParseState(&parser, &compiler, state, source);
advance(&parser);
while (!match(&parser, TOKEN_EOF)) {
declaration(&parser);
}
consume(&parser, TOKEN_EOF, "End of file expected!");
popLocals(&parser, -1); // needed to close over the values
2020-10-28 23:29:50 +00:00
if (parser.hadError) { // we don't free the function, the state already has a reference to it in it's linked list of objects!
2020-10-28 05:16:30 +00:00
endCompiler(&parser, 0);
freeParseState(&parser);
// the VM still expects a result on the stack TODO: push the error string to the stack
cosmoV_pushValue(state, cosmoV_newNil());
2020-10-28 23:29:50 +00:00
cosmoM_unfreezeGC(state);
2020-10-28 05:16:30 +00:00
return NULL;
}
CObjFunction* resFunc = compiler.function;
// VM expects the closure on the stack :P (we do this before ending the compiler so our GC doesn't free it)
cosmoV_pushValue(state, cosmoV_newObj((CObj*)cosmoO_newClosure(state, resFunc)));
endCompiler(&parser, 0);
freeParseState(&parser);
2020-10-28 23:29:50 +00:00
cosmoM_unfreezeGC(state);
2020-10-28 05:16:30 +00:00
return resFunc;
}